1
|
Llambrich S, Tielemans B, Saliën E, Atzori M, Wouters K, Van Bulck V, Platt M, Vanherp L, Gallego Fernandez N, Grau de la Fuente L, Poptani H, Verlinden L, Himmelreich U, Croitor A, Attanasio C, Callaerts-Vegh Z, Gsell W, Martínez-Abadías N, Vande Velde G. Pleiotropic effects of trisomy and pharmacologic modulation on structural, functional, molecular, and genetic systems in a Down syndrome mouse model. eLife 2024; 12:RP89763. [PMID: 38497812 PMCID: PMC10948151 DOI: 10.7554/elife.89763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Down syndrome (DS) is characterized by skeletal and brain structural malformations, cognitive impairment, altered hippocampal metabolite concentration and gene expression imbalance. These alterations were usually investigated separately, and the potential rescuing effects of green tea extracts enriched in epigallocatechin-3-gallate (GTE-EGCG) provided disparate results due to different experimental conditions. We overcame these limitations by conducting the first longitudinal controlled experiment evaluating genotype and GTE-EGCG prenatal chronic treatment effects before and after treatment discontinuation. Our findings revealed that the Ts65Dn mouse model reflected the pleiotropic nature of DS, exhibiting brachycephalic skull, ventriculomegaly, neurodevelopmental delay, hyperactivity, and impaired memory robustness with altered hippocampal metabolite concentration and gene expression. GTE-EGCG treatment modulated most systems simultaneously but did not rescue DS phenotypes. On the contrary, the treatment exacerbated trisomic phenotypes including body weight, tibia microarchitecture, neurodevelopment, adult cognition, and metabolite concentration, not supporting the therapeutic use of GTE-EGCG as a prenatal chronic treatment. Our results highlight the importance of longitudinal experiments assessing the co-modulation of multiple systems throughout development when characterizing preclinical models in complex disorders and evaluating the pleiotropic effects and general safety of pharmacological treatments.
Collapse
Affiliation(s)
- Sergi Llambrich
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Birger Tielemans
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Ellen Saliën
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Marta Atzori
- Department of Human Genetics, KU LeuvenLeuvenBelgium
| | - Kaat Wouters
- Laboratory of Biological Psychology, KU LeuvenLeuvenBelgium
| | | | - Mark Platt
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of LiverpoolLiverpoolUnited Kingdom
| | - Laure Vanherp
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Nuria Gallego Fernandez
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de BarcelonaBarcelonaSpain
| | - Laura Grau de la Fuente
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de BarcelonaBarcelonaSpain
| | - Harish Poptani
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of LiverpoolLiverpoolUnited Kingdom
| | - Lieve Verlinden
- Clinical and Experimental Endocrinology, KU LeuvenLeuvenBelgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Anca Croitor
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | | | | | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Neus Martínez-Abadías
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de BarcelonaBarcelonaSpain
| | | |
Collapse
|
2
|
Sidhu D, Vasundhara M, Dey P. The intestinal-level metabolic benefits of green tea catechins: Mechanistic insights from pre-clinical and clinical studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155207. [PMID: 38000106 DOI: 10.1016/j.phymed.2023.155207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND The intestinal-level host-microbiota interaction has been implicated in the pathogenesis of chronic diseases. The current review is intended to provide a comprehensive insight into deciphering whether intestinal-level bioactivities mediate the overall metabolic health benefits of green tea catechins. PURPOSE We have comprehensively discussed pre-clinical and clinical evidences of intestinal-level changes in metabolism, microbiota, and metabolome due to catechin-rich green tea treatments, ultimately limiting metabolic diseases. Exclusive emphasis has been given to purified catechins and green tea, and discussions on extraintestinal mechanisms of metabolic health benefits were avoided. METHODS A literature search for relevant pre-clinical and clinical studies was performed in various online databases (e.g., PubMed) using specific keywords (e.g., catechin, intestine, microbiota). Out of all the referred literature, ∼15% belonged to 2021-2023, ∼51% were from 2011-2020, and ∼32% from 2000-2010. RESULT The metabolic health benefits of green tea catechins are indeed influenced by the intestinal-level bioactivities, including reduction of mucosal inflammation and oxidative stress, attenuation of gut barrier dysfunction, decrease in intestinal lipid absorption and metabolism, favorable modulation of mucosal nuclear receptor signaling, alterations of the luminal global metabolome, and mitigation of the gut dysbiosis. The results from the recent clinical studies support the pre-clinical evidences. The challenges and pitfalls of the currently available knowledge on catechin bioactivities have been discussed, and constructive directions to harness the translational benefits of green tea through future interventions have been provided. CONCLUSION The metabolism, metabolome, and microbiota at the intestinal epithelia play critical roles in catechin metabolism, pharmacokinetics, bioavailability, and bioactivities. Especially the reciprocal interaction between the catechins and the gut microbiota dictates the metabolic benefits of catechins.
Collapse
Affiliation(s)
- Dwinder Sidhu
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, India
| | - M Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, India.
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, India.
| |
Collapse
|
3
|
Zhang Q, Gao Q, Zhao L, Li X, Wang X, Wang Y, Chen D. Evaluation of the effect of green tea and its constituents on embryo development in a zebrafish model. J Appl Toxicol 2023; 43:287-297. [PMID: 35982029 DOI: 10.1002/jat.4380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 01/17/2023]
Abstract
As one of the most popular beverages, green tea has attracted much interest for its beneficial effects on human health. However, the toxicity of green tea and its underlying mechanism are still poorly understood. Here, we evaluated the effect of green tea and its constituents on development by exposing zebrafish embryos to them. Morphologic results demonstrated that 0.1% and 0.2% green tea increased mortality, delayed epiboly of gastrulation, and shortened body length. Green tea altered the expression pattern of dlx3, cstlb, myod, and papc and decreased the expression levels of wnt5 and wnt11, suggesting that green tea disturbed convergence and extension movement through the downregulation of wnt5 and wnt11. The increased expression of the dorsal gene chordin and reduced expression of wnt8 and its target genes vox and vent in embryos exposed to 0.1% and 0.2% green tea indicated that green tea could affect dorsoventral differentiation by inhibiting the wnt8 signaling pathway. Additionally, green tea could inhibit epiboly progression by disrupting F-actin organization or removing F-actin in vegetal yolks during gastrulation. However, no malformation was caused by exposure to the five catechins and gallic acid individually. The mixture of constituents showed a similar effect to green tea solution on the embryos, such as smaller eyes and head, shorter body length, and slower heart rate, which indicated that the effect of green tea solution on embryo development was mainly due to the comprehensive effect of multiple components in the green tea solution.
Collapse
Affiliation(s)
- Qiuping Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Qian Gao
- School of Medicine, Nankai University, Tianjin, China
| | - Lin Zhao
- School of Medicine, Nankai University, Tianjin, China
| | - Xu Li
- School of Medicine, Nankai University, Tianjin, China
| | - Xixi Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Dongyan Chen
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Nacka-Aleksić M, Pirković A, Vilotić A, Bojić-Trbojević Ž, Jovanović Krivokuća M, Giampieri F, Battino M, Dekanski D. The Role of Dietary Polyphenols in Pregnancy and Pregnancy-Related Disorders. Nutrients 2022; 14:nu14245246. [PMID: 36558404 PMCID: PMC9782043 DOI: 10.3390/nu14245246] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Polyphenols are a group of phytochemicals with extensive biological functions and health-promoting potential. These compounds are present in most foods of plant origin and their increased widespread availability through the intake of nutritional supplements, fortified foods, and beverages, has also led to increased exposure throughout gestation. In this narrative review, we focus on the role of polyphenols in both healthy and pathological pregnancy. General information related to their classification and function is followed by an overview of their known effects in early-pregnancy events, including the current insights into molecular mechanisms involved. Further, we provide an overview of their involvement in some of the most common pregnancy-associated pathological conditions, such as preeclampsia and gestational diabetes mellitus. Additionally, we also discuss the estimated possible risk of polyphenol consumption on pregnancy outcomes. The consumption of dietary polyphenols during pregnancy needs particular attention considering the possible effects of polyphenols on the mechanisms involved in maternal adaptation and fetal development. Further studies are strongly needed to unravel the in vivo effects of polyphenol metabolites during pregnancy, as well as their role on advanced maternal age, prenatal nutrition, and metabolic risk of the offspring.
Collapse
Affiliation(s)
- Mirjana Nacka-Aleksić
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Andrea Pirković
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Aleksandra Vilotić
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Žanka Bojić-Trbojević
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Milica Jovanović Krivokuća
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maurizio Battino
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Dragana Dekanski
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| |
Collapse
|
5
|
Llambrich S, González-Colom R, Wouters J, Roldán J, Salassa S, Wouters K, Van Bulck V, Sharpe J, Callaerts-Vegh Z, Vande Velde G, Martínez-Abadías N. Green Tea Catechins Modulate Skeletal Development with Effects Dependent on Dose, Time, and Structure in a down Syndrome Mouse Model. Nutrients 2022; 14:nu14194167. [PMID: 36235819 PMCID: PMC9572077 DOI: 10.3390/nu14194167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022] Open
Abstract
Altered skeletal development in Down syndrome (DS) results in a brachycephalic skull, flattened face, shorter mandibular ramus, shorter limbs, and reduced bone mineral density (BMD). Our previous study showed that low doses of green tea extract enriched in epigallocatechin-3-gallate (GTE-EGCG), administered continuously from embryonic day 9 to postnatal day 29, reduced facial dysmorphologies in the Ts65Dn (TS) mouse model of DS, but high doses could exacerbate them. Here, we extended the analyses to other skeletal structures and systematically evaluated the effects of high and low doses of GTE-EGCG treatment over postnatal development in wild-type (WT) and TS mice using in vivo µCT and geometric morphometrics. TS mice developed shorter and wider faces, skulls, and mandibles, together with shorter and narrower humerus and scapula, and reduced BMD dynamically over time. Besides facial morphology, GTE-EGCG did not rescue any other skeletal phenotype in TS treated mice. In WT mice, GTE-EGCG significantly altered the shape of the skull and mandible, reduced the length and width of the long bones, and lowered the BMD. The disparate effects of GTE-EGCG depended on the dose, developmental timepoint, and anatomical structure analyzed, emphasizing the complex nature of DS and the need to further investigate the simultaneous effects of GTE-EGCG supplementation.
Collapse
Affiliation(s)
- Sergi Llambrich
- Biomedical MRI, Department of Imaging and Pathology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - Rubèn González-Colom
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Jens Wouters
- Biomedical MRI, Department of Imaging and Pathology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - Jorge Roldán
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Sara Salassa
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Kaat Wouters
- Laboratory of Biological Psychology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - Vicky Van Bulck
- Laboratory of Biological Psychology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - James Sharpe
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08003 Barcelona, Spain
- EMBL Barcelona, European Molecular Biology Laboratory, 08003 Barcelona, Spain
| | | | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging and Pathology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
- Correspondence: (G.V.V.); (N.M.-A.); Tel.: +32-16330924 (G.V.V.); +34-934034564 (N.M.-A.)
| | - Neus Martínez-Abadías
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Correspondence: (G.V.V.); (N.M.-A.); Tel.: +32-16330924 (G.V.V.); +34-934034564 (N.M.-A.)
| |
Collapse
|
6
|
Chen B, Zhang W, Lin C, Zhang L. A Comprehensive Review on Beneficial Effects of Catechins on Secondary Mitochondrial Diseases. Int J Mol Sci 2022; 23:ijms231911569. [PMID: 36232871 PMCID: PMC9569714 DOI: 10.3390/ijms231911569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are the main sites for oxidative phosphorylation and synthesis of adenosine triphosphate in cells, and are known as cellular power factories. The phrase "secondary mitochondrial diseases" essentially refers to any abnormal mitochondrial function other than primary mitochondrial diseases, i.e., the process caused by the genes encoding the electron transport chain (ETC) proteins directly or impacting the production of the machinery needed for ETC. Mitochondrial diseases can cause adenosine triphosphate (ATP) synthesis disorder, an increase in oxygen free radicals, and intracellular redox imbalance. It can also induce apoptosis and, eventually, multi-system damage, which leads to neurodegenerative disease. The catechin compounds rich in tea have attracted much attention due to their effective antioxidant activity. Catechins, especially acetylated catechins such as epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), are able to protect mitochondria from reactive oxygen species. This review focuses on the role of catechins in regulating cell homeostasis, in which catechins act as a free radical scavenger and metal ion chelator, their protective mechanism on mitochondria, and the protective effect of catechins on mitochondrial deoxyribonucleic acid (DNA). This review highlights catechins and their effects on mitochondrial functional metabolic networks: regulating mitochondrial function and biogenesis, improving insulin resistance, regulating intracellular calcium homeostasis, and regulating epigenetic processes. Finally, the indirect beneficial effects of catechins on mitochondrial diseases are also illustrated by the warburg and the apoptosis effect. Some possible mechanisms are shown graphically. In addition, the bioavailability of catechins and peracetylated-catechins, free radical scavenging activity, mitochondrial activation ability of the high-molecular-weight polyphenol, and the mitochondrial activation factor were also discussed.
Collapse
|
7
|
Salinas-Roca B, Rubió-Piqué L, Montull-López A. Polyphenol Intake in Pregnant Women on Gestational Diabetes Risk and Neurodevelopmental Disorders in Offspring: A Systematic Review. Nutrients 2022; 14:3753. [PMID: 36145129 PMCID: PMC9502213 DOI: 10.3390/nu14183753] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
The intake of foods containing polyphenols can have a protective role to avoid comorbidities during pregnancy and, at the same time, promote transgenerational health. This review aims to describe the effect of polyphenol intake through supplements or polyphenol-rich foods during pregnancy on the incidence and evolution of gestational diabetes mellitus (GDM), as well as the link with the neurodevelopment of the fetus. Using PRISMA procedures, a systematic review was conducted by searching in biomedical databases (PubMed, Cinahl and Scopus) from January to June 2022. Full articles were screened (n = 419) and critically appraised. Fourteen studies were selected and were divided into two different thematic blocks considering (i) the effect of polyphenols in GDM and (ii) the effect of GDM to mental disorders in the offspring. A positive relationship was observed between the intake of polyphenols and the prevention and control of cardiometabolic complications during pregnancy, such as GDM, which could be related to thwarted inflammatory and oxidative processes, as well as neuronal factors. GDM is related to a greater risk of suffering from diseases related to neurodevelopment, such as attention deficit hyperactivity disorder, autism spectrum disorder and learning disorder. Further clinical research on the molecule protective mechanism of polyphenols on pregnant women is required to understand the transgenerational impact on fetal neurodevelopment.
Collapse
Affiliation(s)
- Blanca Salinas-Roca
- Global Research on Wellbeing (GRoW) Research Group, Blanquerna School of Health Science, Ramon Llull University, Padilla, 326-332, 08025 Barcelona, Spain
- Department of Nursing and Physiotherapy, University of Lleida, Montserrat Roig 2, 25198 Lleida, Spain
| | - Laura Rubió-Piqué
- Antioxidants Research Group, Food Technology Department, AGROTECNIO-CERCA Center, University of Lleida, Av/Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Anna Montull-López
- Department of Nursing and Physiotherapy, University of Lleida, Montserrat Roig 2, 25198 Lleida, Spain
| |
Collapse
|
8
|
Bjørklund G, Antonyak H, Polishchuk A, Semenova Y, Lesiv M, Lysiuk R, Peana M. Effect of methylmercury on fetal neurobehavioral development: an overview of the possible mechanisms of toxicity and the neuroprotective effect of phytochemicals. Arch Toxicol 2022; 96:3175-3199. [PMID: 36063174 DOI: 10.1007/s00204-022-03366-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
Methylmercury (MeHg) is a global environmental pollutant with neurotoxic effects. Exposure to MeHg via consumption of seafood and fish can severely impact fetal neurobehavioral development even when MeHg levels in maternal blood are as low as about 5 μg/L, which the mother tolerates well. Persistent motor dysfunctions and cognitive deficits may result from trans-placental exposure. The present review summarizes current knowledge on the mechanisms of MeHg toxicity during the period of nervous system development. Although cerebellar Purkinje cells are MeHg targets, the actions of MeHg on thiol components in the neuronal cytoskeleton as well as on mitochondrial enzymes and induction of disturbances of glutamate signaling can impair extra-cerebellar functions, also at levels well tolerated by adult individuals. Numerous herbal substances possess neuroprotective effects, predominantly represented by natural polyphenolic molecules that might be utilized to develop natural drugs to alleviate neurotoxicity symptoms caused by MeHg or other Hg compounds.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | | | | | | | - Marta Lesiv
- Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
9
|
Sugita Y, Furukawa T. Effect of Green Tea and Tea Catechin on the Visual Motion Processing for Optokinetic Responses in Mice. Neuroscience 2022; 501:42-51. [PMID: 35987428 DOI: 10.1016/j.neuroscience.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022]
Abstract
In general, catechins contained in green tea are believed to have positive effects on the human body and mental health. The intake of epigallocatechin gallate (EGCG), a major polyphenol in green tea, is known to be effective for retinal protection; however, whether green tea and/or EGCG affect visual function remains unknown. In the present study, we investigated the effect of green tea and EGCG on visual motion processing by measuring optokinetic responses (OKRs) in young adult and aging mice. Young and aging mice (C57BL6/J) were fed a control diet (control) or the test diet, which contained matcha green tea powder or green tea extract (dried sencha green tea infusion), for 1 month, and their OKRs were measured. They were then intraperitoneally administered saline (control) or EGCG, and OKRs were measured. We found that the OKRs of young and aging mice after green tea intake and after EGCG administration showed higher temporal sensitivity than those of control mice. The visual ability to detect moving objects was enhanced in young and aging mice upon intake of green tea or EGCG. From the above results, the visual motion processing for optokinetic responses by ingesting green tea was enhanced, which may be related to the effect of EGCG.
Collapse
Affiliation(s)
- Yuko Sugita
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan.
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan.
| |
Collapse
|
10
|
Bešlo D, Došlić G, Agić D, Rastija V, Šperanda M, Gantner V, Lučić B. Polyphenols in Ruminant Nutrition and Their Effects on Reproduction. Antioxidants (Basel) 2022; 11:970. [PMID: 35624834 PMCID: PMC9137580 DOI: 10.3390/antiox11050970] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
The feeding of domestic animals with diets in which polyphenols are present is increasingly attracting the attention of nutritionists and scientists. This review summarizes the knowledge regarding polyphenols' possible positive and negative effects and their bioavailability. The bioavailability of substances is a prerequisite for any postabsorption effect in vivo. Positive and negative properties have been confirmed in previous studies on the diets of domestic animals rich in polyphenols, such as secondary metabolites of plants. Free radicals are formed in every organism, leading to oxidative stress. Free radicals are highly reactive molecules and can react in cells with macromolecules and can cause damage, including in reproductive cells. Some polyphenols at specific concentrations have antioxidant properties that positively affect animal reproduction by improving the quality of male and female gametes. The intake of phytoestrogens that mimic estrogen function can induce various pathological conditions in the female reproductive tract, including ovarian, fallopian, and uterine dysfunction. The metabolism of genistein and daidzein yields the metabolites equol and p-phenyl-phenol, leading to a decline in cow fertilization. The findings so far confirm that numerous questions still need to be answered. This review points out the importance of using polyphenols that have both benificial and some unfavorable properties in specific diets.
Collapse
Affiliation(s)
- Drago Bešlo
- Faculty of Agrobiotechnical Sciences Osijek, University J. J. Strossmayer Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (G.D.); (D.A.); (V.R.); (M.Š.); (V.G.)
| | - Gloria Došlić
- Faculty of Agrobiotechnical Sciences Osijek, University J. J. Strossmayer Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (G.D.); (D.A.); (V.R.); (M.Š.); (V.G.)
| | - Dejan Agić
- Faculty of Agrobiotechnical Sciences Osijek, University J. J. Strossmayer Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (G.D.); (D.A.); (V.R.); (M.Š.); (V.G.)
| | - Vesna Rastija
- Faculty of Agrobiotechnical Sciences Osijek, University J. J. Strossmayer Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (G.D.); (D.A.); (V.R.); (M.Š.); (V.G.)
| | - Marcela Šperanda
- Faculty of Agrobiotechnical Sciences Osijek, University J. J. Strossmayer Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (G.D.); (D.A.); (V.R.); (M.Š.); (V.G.)
| | - Vesna Gantner
- Faculty of Agrobiotechnical Sciences Osijek, University J. J. Strossmayer Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (G.D.); (D.A.); (V.R.); (M.Š.); (V.G.)
| | - Bono Lučić
- Ruđer Bošković Institute, NMR Centre, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| |
Collapse
|
11
|
Llambrich S, González R, Albaigès J, Wouters J, Marain F, Himmelreich U, Sharpe J, Dierssen M, Gsell W, Martínez-Abadías N, Vande Velde G. Multimodal in vivo Imaging of the Integrated Postnatal Development of Brain and Skull and Its Co-modulation With Neurodevelopment in a Down Syndrome Mouse Model. Front Med (Lausanne) 2022; 9:815739. [PMID: 35223915 PMCID: PMC8874331 DOI: 10.3389/fmed.2022.815739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
The brain and skeletal systems are intimately integrated during development through common molecular pathways. This is evidenced by genetic disorders where brain and skull dysmorphologies are associated. However, the mechanisms underlying neural and skeletal interactions are poorly understood. Using the Ts65Dn mouse model of Down syndrome (DS) as a case example, we performed the first longitudinal assessment of brain, skull and neurobehavioral development to determine alterations in the coordinated morphogenesis of brain and skull. We optimized a multimodal protocol combining in vivo micro-computed tomography (μCT) and magnetic resonance imaging (μMRI) with morphometric analyses and neurodevelopmental tests to longitudinally monitor the different systems' development trajectories during the first postnatal weeks. We also explored the impact of a perinatal treatment with green tea extracts enriched in epigallocatechin-3-gallate (GTE-EGCG), which can modulate cognition, brain and craniofacial development in DS. Our analyses quantified alterations associated with DS, with skull dysmorphologies appearing before brain anomalies, reduced integration and delayed acquisition of neurodevelopmental traits. Perinatal GTE-EGCG induced disparate effects and disrupted the magnitude of integration and covariation patterns between brain and skull. Our results exemplify how a longitudinal research approach evaluating the development of multiple systems can reveal the effect of morphological integration modulating the response of pathological phenotypes to treatment, furthering our understanding of complex genetic disorders.
Collapse
Affiliation(s)
- Sergi Llambrich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Flanders, Belgium
| | - Rubèn González
- Grup de Recerca en Antropologia Biológica (GREAB), Department of Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Universitat de Barcelona, Barcelona, Spain
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Julia Albaigès
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Jens Wouters
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Flanders, Belgium
| | - Fopke Marain
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Flanders, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Flanders, Belgium
| | - James Sharpe
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- European Molecular Biology Laboratory (EMBL) Barcelona, European Molecular Biology Laboratory, Barcelona, Spain
| | - Mara Dierssen
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Flanders, Belgium
| | - Neus Martínez-Abadías
- Grup de Recerca en Antropologia Biológica (GREAB), Department of Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Universitat de Barcelona, Barcelona, Spain
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- European Molecular Biology Laboratory (EMBL) Barcelona, European Molecular Biology Laboratory, Barcelona, Spain
- *Correspondence: Neus Martínez-Abadías
| | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Flanders, Belgium
- Greetje Vande Velde
| |
Collapse
|
12
|
Gebelik Süresince Yeşil Çay Tüketiminin Anne ve Yenidoğan Karaciğer Hepatositlerinde CK-18 Molekülüne Etkisinin Karşılaştırmalı Değerlendirilmesi. ANADOLU KLINIĞI TIP BILIMLERI DERGISI 2021. [DOI: 10.21673/anadoluklin.881516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Hashem NM, Gonzalez-Bulnes A, Simal-Gandara J. Polyphenols in Farm Animals: Source of Reproductive Gain or Waste? Antioxidants (Basel) 2020; 9:antiox9101023. [PMID: 33096704 PMCID: PMC7589028 DOI: 10.3390/antiox9101023] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/30/2022] Open
Abstract
Reproduction is a complex process that is substantially affected by environmental cues, specifically feed/diet and its components. Farm animals as herbivorous animals are exposed to a large amount of polyphenols present in their natural feeding system, in alternative feed resources (shrubs, trees, and agro-industrial byproducts), and in polyphenol-enriched additives. Such exposure has increased because of the well-known antioxidant properties of polyphenols. However, to date, the argumentation around the impacts of polyphenols on reproductive events is debatable. Accordingly, the intensive inclusion of polyphenols in the diets of breeding animals and in media for assisted reproductive techniques needs further investigation, avoiding any source of reproductive waste and achieving maximum benefits. This review illustrates recent findings connecting dietary polyphenols consumption from different sources (conventional and unconventional feeds) with the reproductive performance of farm animals, underpinned by the findings of in vitro studies in this field. This update will help in formulating proper diets, optimizing the introduction of new plant species, and feed additives for improving reproductive function, avoiding possible reproductive wastes and maximizing possible benefits.
Collapse
Affiliation(s)
- Nesrein M. Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
- Correspondence: ; Tel.: +20-3-5921960; Fax: +20-3-5922780
| | - Antonio Gonzalez-Bulnes
- Departamento de Reproducción Animal, INIA, Avda, Puerta de Hierro s/n., 28040 Madrid, Spain;
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/ Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain;
| |
Collapse
|
14
|
The Impact of Dietary Supplementation of Whole Foods and Polyphenols on Atherosclerosis. Nutrients 2020; 12:nu12072069. [PMID: 32664664 PMCID: PMC7400924 DOI: 10.3390/nu12072069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022] Open
Abstract
The purpose of this review is to highlight current research on the benefits of supplementation with foods with a diverse polyphenol composition, including fruits, vegetables, nuts, grains, oils, spices, and teas in blunting atherosclerosis. We searched PubMed for publications utilizing whole food or polyphenols prepared from whole foods in Apolipoprotein E (ApoE) or Low-Density Lipoprotein Receptor (LDLR) knockout mice, and identified 73 studies in which plaque was measured. The majority of the studies reported a reduction in plaque. Nine interventions showed no effect, while three using Agaricus blazei mushroom, HYJA-ri-4 rice variety, and safrole-2', 3'-oxide (SFO) increased plaque. The mechanisms by which atherosclerosis was reduced include improved lipid profile, antioxidant status, and cholesterol clearance, and reduced inflammation. Importantly, not all dietary interventions that reduce plaque showed an improvement in lipid profile. Additionally, we found that, out of 73 studies, only 9 used female mice and only 6 compared both sexes. Only one study compared the two models (LDLR vs. ApoE), showing that the treatment worked in one but not the other. Not all supplementations work in both male and female animals, suggesting that increasing the variety of foods with different polyphenol compositions may be more effective in mitigating atherosclerosis.
Collapse
|
15
|
Granato D, Mocan A, Câmara JS. Is a higher ingestion of phenolic compounds the best dietary strategy? A scientific opinion on the deleterious effects of polyphenols in vivo. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Tao W, Zhang Y, Shen X, Cao Y, Shi J, Ye X, Chen S. Rethinking the Mechanism of the Health Benefits of Proanthocyanidins: Absorption, Metabolism, and Interaction with Gut Microbiota. Compr Rev Food Sci Food Saf 2019; 18:971-985. [PMID: 33336996 DOI: 10.1111/1541-4337.12444] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/21/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022]
Abstract
Proanthocyanidins, as the oligomers or polymers of flavan-3-ol, are widely discovered in plants such as fruits, vegetables, cereals, nuts, and leaves, presenting a major part of dietary polyphenols. Although proanthocyanidins exert several types of bioactivities, such as antioxidant, antimicrobial, cardioprotective, and neuroprotective activity, their exact mechanisms remain unclear. Due to the complexity of the structure of proanthocyanidins, such as their various monomers, different linkages and isomers, investigation of their bioavailability and metabolism is limited, which further hinders the explanation of their bioactivities. Since the large molecular weight and degree of polymerization limit the bioavailability of proanthocyanidins, the major effective site of proanthocyanidins is proposed to be in the gut. Many studies have revealed the effects of proanthocyanidins from different sources on changing the composition of gut microbiota based on in vitro and in vivo models and the bioactivities of their metabolites. However, the metabolic routes of proanthocyanidins by gut microbiota and their mutual interactions are still sparse. Thus, this review summarizes the chemistry, absorption, and metabolic pathways of proanthocyanidins ranging from monomers to polymers, as well as the mutual interactions between proanthocyanidins and gut microbiota, in order to better understand how proanthocyanidins exert their health-promoting functions.
Collapse
Affiliation(s)
- Wenyang Tao
- Dept. of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang Univ., Hangzhou, 310058, China
| | - Yu Zhang
- Dept. of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang Univ., Hangzhou, 310058, China
| | - Xuemin Shen
- Dept. of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang Univ., Hangzhou, 310058, China
| | - Yanping Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| | - John Shi
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, N1G 5C9, Canada
| | - Xingqian Ye
- Dept. of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang Univ., Hangzhou, 310058, China
| | - Shiguo Chen
- Dept. of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang Univ., Hangzhou, 310058, China
| |
Collapse
|
17
|
Kühne BA, Puig T, Ruiz-Martínez S, Crous-Masó J, Planas M, Feliu L, Cano A, García ML, Fritsche E, Llobet JM, Gómez-Catalán J, Barenys M. Comparison of migration disturbance potency of epigallocatechin gallate (EGCG) synthetic analogs and EGCG PEGylated PLGA nanoparticles in rat neurospheres. Food Chem Toxicol 2019; 123:195-204. [DOI: 10.1016/j.fct.2018.10.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 01/01/2023]
|
18
|
Dey A, Gomes A, Dasgupta SC. Black Tea ( Camellia sinensis) Extract Induced Prenatal and Postnatal Toxicity in Experimental Albino rats. Pharmacogn Mag 2018; 13:S769-S774. [PMID: 29491631 PMCID: PMC5822498 DOI: 10.4103/pm.pm_141_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/25/2017] [Indexed: 11/04/2022] Open
Abstract
Background Tea (Camellia sinensis) being the most widely drank beverage and despite having numerous beneficial role toward health and disease, its safety evaluation during pregnancy and prenatal, postnatal developmental period need to be monitored. Objective This study was to evaluate the toxicity of black tea extract (BTE) in experimental pregnant rats and on their pups during prenatal and postnatal developmental periods. Materials and Methods Pregnant female (120 ± 10 g) Wister albino rats were chosen for this study. Group 1 was control group where pregnant female rats were treated with saline. Group 2 and Group 3 were pregnant female rats treated with 50 mg and 100 mg BTE/kg/day, respectively, throughout prenatal and postnatal periods. All three groups of rats were provided food and drinking water ad libitum. Animals were examined through their urinary and serum parameters, histopathological studies, and biomorphometric studies in pups. All data were expressed as mean ± standard deviation with significance between the controls and the treated groups (n = 6). Collected data were subjected to the analysis of variance and Tukey test; P < 0.05 was considered as statistically significant. Results BTE produced significant alterations in urinary calcium, creatinine, and urea during prenatal period; exhibited proteinuria, ketonuria, and histology showed nephrotoxicity during postnatal period, and BTE also showed a significant increase in serum proinflammatory cytokines and decreased anti-inflammatory cytokines level compared to control group. BTE caused significant changes in biomorphometric parameters in the pups as compared with pups of control mothers. Conclusion This study confirmed the BTE-induced toxicity in pregnant rats and their pups. SUMMARY Black tea (Camellia sinensis) is the most widely drank beverage. This study was to evaluate the toxicity BTE in experimental pregnant rats and on their pups during prenatal and postnatal developmental periods. Animals were examined through their urinary and serum parameters, histopathological studies, and biomorphometric studies in pups. BTE.induced toxicity in pregnant rats and their pups. Abbreviations used: BTE: Black tea extract, IL-1α: Interleukin 1 alpha, IL-1 β: Interleukin 1 beta, IL-6: Interleukin 6, IL-10: Interleukin 10, TNF-α: Tumor necrosis factor alpha.
Collapse
Affiliation(s)
- Avijit Dey
- Department of Zoology, Maulana Azad College, Kolkata, India
| | - Antony Gomes
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | | |
Collapse
|
19
|
Effect of the consumption of green tea extract during pregnancy and lactation on metabolism of mothers and 28d-old offspring. Sci Rep 2018; 8:1869. [PMID: 29382887 PMCID: PMC5790015 DOI: 10.1038/s41598-018-20174-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/15/2018] [Indexed: 12/30/2022] Open
Abstract
The objective was to investigate the effects of the maternal consumption of the green tea extract during pregnancy and lactation on mothers and offspring metabolism. The female Wistar rats, on the first day of pregnancy until the end of lactation, was divided into groups: MC– received water and ME– received green tea extract (400 mg/kg body weight/day), both ingested control diet. After lactation, at day 28th post-partum, the mothers and pups from each mother were euthanized and composed the groups: FC– pup from mother received water and FE– pup from mother received green tea extract. The ME group increased IL-10/TNF-α ratio and IL-1β content in the mesenteric and IL-1β content in retroperitoneal adipose tissues, and decreased catalase activity. The FE group decreased the retroperitoneal adipose tissue relative weight and SOD activity, but increased adiponectin, LPS, IL-10 and IL-6 content and IL-10/TNF-α ratio in retroperitoneal, IL-10 and TNF-α content in gonadal, and IL-6 content in mesenteric adipose tissues. In summary, the maternal consumption of green tea extract associated with control diet ingestion during pregnancy and lactation altered the inflammatory status of mothers and 28d-old offspring. These data elucidate the effects of green tea during pregnancy and lactation on maternal and offspring metabolism.
Collapse
|
20
|
Tyagi N, De R, Begun J, Popat A. Cancer therapeutics with epigallocatechin-3-gallate encapsulated in biopolymeric nanoparticles. Int J Pharm 2016; 518:220-227. [PMID: 27988378 DOI: 10.1016/j.ijpharm.2016.12.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/28/2016] [Accepted: 12/12/2016] [Indexed: 01/08/2023]
Abstract
With the recent quantum leap in chemoprevention by dietary products, their use as cancer therapeutics is garnering worldwide attention. The concept of effortlessly fighting this deadly disease by gulping cups of green tea or swallowing green tea extract capsules is appreciated universally. Epigallocatechin-3-gallate (EGCG), a major polyphenol in green tea, has generated significant interest in controlling carcinogenesis due to its growth-inhibitory efficacy against a variety of cancers by targeting multiple signaling pathways. However, the success of EGCG in preclinical studies is difficult to translate into clinical trials due to issues of low solubility, bioavailability and an uncertain therapeutic window. The laborious and expensive journey of drugs from the laboratory to commercialization can be improved by utilizing nanoparticles as anti-cancer drug carriers. Exploitation of biopolymeric nanoparticles in recent years has improved EGCG's biodistribution, stability and tumor selectivity, revealing its superior chemopreventive effects. This review briefly summarizes recent developments regarding the targets and side effects of EGCG, complications associated with its low bioavailability and critically analyses the application of biopolymeric nanoparticles encapsulating EGCG as a next generation delivery systems.
Collapse
Affiliation(s)
- Nisha Tyagi
- School of Pharmacy, The University of Queensland Brisbane, QLD,4102,Australia
| | - Ranjit De
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea
| | - Jakob Begun
- Inflammatory Disease Biology and Therapeutics Group- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia; School of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland Brisbane, QLD,4102,Australia; Inflammatory Disease Biology and Therapeutics Group- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
21
|
Green tea catechins are potent anti-oxidants that ameliorate sodium iodate-induced retinal degeneration in rats. Sci Rep 2016; 6:29546. [PMID: 27383468 PMCID: PMC4935886 DOI: 10.1038/srep29546] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/20/2016] [Indexed: 11/08/2022] Open
Abstract
Green tea extracts exhibit anti-oxidative and anti-inflammatory actions in different disease conditions. We hypothesized that green tea extract and its catechin constituents ameliorate sodium iodate-induced retinal degeneration in rats by counteracting oxidative stress. In this study, adult Sprague-Dawley rats were intravenously injected with a single dose of sodium iodate. Green tea extract (GTE; Theaphenon-E) or combinations of its catechin constituents, including (−)-epigallocatechin gallate (EGCG), were administered intra-gastrically before injection. Live imaging analysis using confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography showed a progressive increase of degenerating profile across the retinal surface and decrease in thickness of outer nuclear layer (ONL) at Day-14 of post-injection. These lesions were significantly ameliorated by Theaphenon-E and catechin combinations with EGCG. Catechins with exclusion of EGCG did not show obvious protective effect. Histological analyses confirmed that Theaphenon-E and catechins containing EGCG protect the retina by reducing ONL disruption. Retinal protective effects were associated with reduced expression of superoxide dismutase, glutathione peroxidase and caspase-3, and suppression of 8-iso-Prostaglandin F2α generation in the retina. In summary, GTE and its catechin constituents are potent anti-oxidants that offer neuroprotection to the outer retinal degeneration after sodium iodate insult, among which EGCG is the most active constituent.
Collapse
|
22
|
Shih LJ, Chen TF, Lin CK, Liu HS, Kao YH. Green tea (-)-epigallocatechin gallate inhibits the growth of human villous trophoblasts via the ERK, p38, AMP-activated protein kinase, and protein kinase B pathways. Am J Physiol Cell Physiol 2016; 311:C308-21. [PMID: 27147558 DOI: 10.1152/ajpcell.00003.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/20/2016] [Indexed: 11/22/2022]
Abstract
Green tea catechins, especially (-)-epigallocatechin gallate (EGCG), have been reported to circulate in the placenta of animals and blood of humans after consumption. Whether EGCG regulates activity of human villous trophoblasts (HVT) is unknown. This study investigated the pathways involved in EGCG modulation of trophoblast mitogenesis. EGCG inhibited trophoblast proliferation in a dose-dependent and time-dependent manner, as indicated by the number of cells and incorporation of bromodeoxyuridine (BrdU). EGCG was more effective than other green tea catechins in inhibiting cell growth. EGCG also increased the phosphorylation of the MAPK pathway proteins, ERK1/2, and p38, but not JNK. Furthermore, EGCG had no effects on the total amounts of ERK1/2, p38 MAPK, and JNK proteins. This suggests that EGCG selectively affects particular MAPK subfamilies. Pretreatment with specific inhibitors of ERK1/2, p38 MAPK, and AMP-activated protein kinase (AMPK) antagonized EGCG-induced decreases in both cell number and BrdU incorporation. These inhibitors also blocked EGCG-induced increases in the levels of phospho-ERK1/2, phospho-p38, and phospho-AMPK proteins, respectively. Moreover, EGCG was similar to the phosphatidylinositol 3-kinase inhibitors wortmannin and LY-294002 to decrease protein kinase B (AKT) phosphorylation, cell number, and BrdU incorporation. These data imply that EGCG inhibits the growth of HVT through the ERK, p38, AMPK, and AKT pathways.
Collapse
Affiliation(s)
- Li-Jane Shih
- Department of Life Sciences, National Central University, Jhongli, Taoyuan, Taiwan; and Taoyuan Armed Forces General Hospital, Longtan, Taoyuan, Taiwan
| | - Tz-Fang Chen
- Taoyuan Armed Forces General Hospital, Longtan, Taoyuan, Taiwan
| | - Cheng-Kuo Lin
- Taoyuan Armed Forces General Hospital, Longtan, Taoyuan, Taiwan
| | - Hang-Shen Liu
- Taoyuan Armed Forces General Hospital, Longtan, Taoyuan, Taiwan
| | - Yung-Hsi Kao
- Department of Life Sciences, National Central University, Jhongli, Taoyuan, Taiwan; and
| |
Collapse
|
23
|
Shih LJ, Lin YR, Lin CK, Liu HS, Kao YH. Green tea (-)-epigallocatechin gallate induced growth inhibition of human placental choriocarcinoma cells. Placenta 2016; 41:1-9. [DOI: 10.1016/j.placenta.2016.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/09/2016] [Accepted: 02/28/2016] [Indexed: 12/27/2022]
|
24
|
Barenys M, Gassmann K, Baksmeier C, Heinz S, Reverte I, Schmuck M, Temme T, Bendt F, Zschauer TC, Rockel TD, Unfried K, Wätjen W, Sundaram SM, Heuer H, Colomina MT, Fritsche E. Epigallocatechin gallate (EGCG) inhibits adhesion and migration of neural progenitor cells in vitro. Arch Toxicol 2016; 91:827-837. [PMID: 27116294 DOI: 10.1007/s00204-016-1709-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/06/2016] [Indexed: 01/18/2023]
Abstract
Food supplements based on herbal products are widely used during pregnancy as part of a self-care approach. The idea that such supplements are safe and healthy is deeply seated in the general population, although they do not underlie the same strict safety regulations than medical drugs. We aimed to characterize the neurodevelopmental effects of the green tea catechin epigallocatechin gallate (EGCG), which is now commercialized as high-dose food supplement. We used the "Neurosphere Assay" to study the effects and unravel underlying molecular mechanisms of EGCG treatment on human and rat neural progenitor cells (NPCs) development in vitro. EGCG alters human and rat NPC development in vitro. It disturbs migration distance, migration pattern, and nuclear density of NPCs growing as neurospheres. These functional impairments are initiated by EGCG binding to the extracellular matrix glycoprotein laminin, preventing its binding to β1-integrin subunits, thereby prohibiting cell adhesion and resulting in altered glia alignment and decreased number of migrating young neurons. Our data raise a concern on the intake of high-dose EGCG food supplements during pregnancy and highlight the need of an in vivo characterization of the effects of high-dose EGCG exposure during neurodevelopment.
Collapse
Affiliation(s)
- Marta Barenys
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Kathrin Gassmann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Christine Baksmeier
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Sabrina Heinz
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Ingrid Reverte
- Laboratory of Toxicology and Environmental Health/NEUROLAB, Department of Psychology, Universitat Rovira i Virgili, Campus Sescelades, 43007, Tarragona, Spain
| | - Martin Schmuck
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Thomas Temme
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Farina Bendt
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Tim-Christian Zschauer
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Thomas Dino Rockel
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Klaus Unfried
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Wim Wätjen
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, 06120, Halle/Saale, Germany
| | - Sivaraj Mohana Sundaram
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Heike Heuer
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Maria Teresa Colomina
- Laboratory of Toxicology and Environmental Health/NEUROLAB, Department of Psychology, Universitat Rovira i Virgili, Campus Sescelades, 43007, Tarragona, Spain
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| |
Collapse
|
25
|
Akaberi M, Hosseinzadeh H. Grapes (Vitis vinifera) as a Potential Candidate for the Therapy of the Metabolic Syndrome. Phytother Res 2016; 30:540-56. [PMID: 26800498 DOI: 10.1002/ptr.5570] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/17/2015] [Accepted: 12/12/2015] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome is associated with several disorders, including hypertension, diabetes, hyperlipidemia as well as cardiovascular diseases and stroke. Plant-derived polyphenols, compounds found in numerous plant species, play an important role as potential treatments for components of metabolic syndrome. Studies have provided evidence for protective effects of various polyphenol-rich foods against metabolic syndrome. Fruits, vegetables, cereals, nuts, and berries are rich in polyphenolic compounds. Grapes (Vitis vinifera), especially grape seeds, stand out as rich sources of polyphenol potent antioxidants and have been reported helpful for inhibiting the risk factors involved in the metabolic syndrome such as hyperlipidemia, hyperglycemia, and hypertension. There are also many studies about gastroprotective, hepatoprotective, and anti-obesity effects of grape polyphenolic compounds especially proanthocyanidins in the literature. The present study investigates the protective effects of grape seeds in metabolic syndrome. The results of this study show that grape polyphenols have significant effects on the level of blood glucose, lipid profile, blood pressure, as well as beneficial activities in liver and heart with various mechanisms. In addition, the pharmacokinetics of grape polyphenols is discussed. More detailed mechanistic investigations and phytochemical studies for finding the exact bioactive component(s) and molecular signaling pathways are suggested.
Collapse
Affiliation(s)
- Maryam Akaberi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Oliveira MRD, Nabavi SF, Daglia M, Rastrelli L, Nabavi SM. Epigallocatechin gallate and mitochondria-A story of life and death. Pharmacol Res 2015; 104:70-85. [PMID: 26731017 DOI: 10.1016/j.phrs.2015.12.027] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/20/2015] [Accepted: 12/23/2015] [Indexed: 01/05/2023]
Abstract
Epigallocatechin gallate (EGCG) is a flavonoid belonging to the chemical class of falvan-3-ols (catechins) esterified with gallic acid. It is the main catechin found in green tea (Camellia sinensis L.) accounting for about 50% of its total polyphenols. Extensive research performed in recent years has revealed that green tea demonstrates a wide range of positive biological activities against serious chronic diseases such as cardiovascular and neurodegenerative pathologies, cancer, metabolic syndrome and type 2 diabetes. These protective properties can be traced back to the potent antioxidant and anti-inflammatory activities of EGCG. Recent studies have suggested that it may exert its beneficial effects by modulating mitochondrial functions impacting mitochondrial biogenesis, bioenergetic control (ATP production and anabolism), alteration of the cell cycle, and mitochondria-related apoptosis. This review evaluates recent evidence on the ability of EGCG to exert critical influence on the above mentioned pathways.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry, ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900 Cuiabá, MT, Brazil.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Jaiyen C, Jutabha P, Anzai N, Lungkaphin A, Soodvilai S, Srimaroeng C. Interaction of green tea catechins with renal organic cation transporter 2. Xenobiotica 2015; 46:641-650. [PMID: 26576923 DOI: 10.3109/00498254.2015.1107785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
1. Green tea extract (GTE) and EGCG have previously shown to increase the uptake of MPP+ into Caco-2 cells. However, whether GTE and its derivatives interact with renal basolateral organic cation transporter 2 (Oct2) which plays a crucial role for cationic clearance remains unknown. Thus, this study assessed the potential of drug-green tea (GT) catechins and its derivatives interactions with rat Oct2 using renal cortical slices and S2 stably expressing rat Oct2 (S2rOct2). 2. Both GTE and ECG inhibited MPP+ uptake in renal slices in a concentration-dependent manner (IC50 = 2.71 ± 0.360 mg/ml and 0.87 ± 0.151 mM), and this inhibitory effect was reversible. Inhibition of [3H]MPP+ transport in S2rOct2 by either GTE or ECG (IC50 = 1.90 ± 0.087 mg/ml and 1.67 ± 0.088 mM) was also observed. 3. The weak and reversible interactions of GTE and ECG with rOct2 indicate that consumption of GT beverages could not interfere with cationic drugs secreted via renal OCT2 in humans. However, the rise of therapeutic use of GTE and ECG might have to take into account the significant possibility of adverse drug-green tea catechins interactions which could alter renal organic cation drug clearance.
Collapse
Affiliation(s)
- Chaliya Jaiyen
- a Department of Physiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand.,b Department of Pharmacology and Toxicology , Dokkyo Medical University, School of Medicine , Tochigi , Japan , and
| | - Promsuk Jutabha
- b Department of Pharmacology and Toxicology , Dokkyo Medical University, School of Medicine , Tochigi , Japan , and
| | - Naohiko Anzai
- b Department of Pharmacology and Toxicology , Dokkyo Medical University, School of Medicine , Tochigi , Japan , and
| | - Anusorn Lungkaphin
- a Department of Physiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand
| | - Sunhapas Soodvilai
- c Department of Physiology , Faculty of Science, Mahidol University , Bangkok , Thailand
| | - Chutima Srimaroeng
- a Department of Physiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand
| |
Collapse
|
28
|
Thomopoulos TP, Ntouvelis E, Diamantaras AA, Tzanoudaki M, Baka M, Hatzipantelis E, Kourti M, Polychronopoulou S, Sidi V, Stiakaki E, Moschovi M, Kantzanou M, Petridou ET. Maternal and childhood consumption of coffee, tea and cola beverages in association with childhood leukemia: a meta-analysis. Cancer Epidemiol 2015; 39:1047-59. [PMID: 26329264 DOI: 10.1016/j.canep.2015.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To systematically review studies and meta-analyze the literature on the association of maternal and/or index child's coffee, tea, and cola consumption with subsequent development of childhood leukemia and its major subtypes. METHODS Eligible studies were identified through a detailed algorithm and hand-search of eligible articles' references; thereafter, summary-effect estimates were calculated by leukemia subtype and dose-response meta-analyses were performed. RESULTS Twelve case-control studies, comprising a total of 3649 cases and 5705 controls, were included. High maternal coffee consumption was positively associated with acute lymphoblastic leukemia (ALL; OR: 1.43, 95%CI: 1.22-1.68) and acute myeloid leukemia (AML; OR: 2.52, 95%CI: 1.59-3.57). Any or low to moderate maternal cola consumption was also positively associated with overall leukemia (AL) and ALL, A linear trend between coffee and cola consumption and childhood leukemia was observed in the dose-response analyses. On the contrary, low to moderate tea consumption was inversely associated with AL (OR: 0.85, 95%CI: 0.75-0.97), although the trend was non-significant. A null association between offspring's cola consumption and leukemia was noted. CONCLUSIONS Our findings confirm the detrimental association between maternal coffee consumption and childhood leukemia risk and provide indications for a similar role of maternal cola intake. In contrast, an inverse association with tea was found, implying that other micronutrients contained in this beverage could potentially counterbalance the deleterious effects of caffeine. Further research should focus on the intake of specific micronutrients, different types of coffee and tea, specific immunophenotypes of the disease, and the modifying effect of genetic polymorphisms.
Collapse
Affiliation(s)
- Thomas P Thomopoulos
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, University of Athens, Greece
| | - Evangelos Ntouvelis
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, University of Athens, Greece
| | | | - Marianna Tzanoudaki
- Department of Immunology and Histocompatibility "Aghia Sofia" Children's Hospital, Athens, Greece
| | - Margarita Baka
- Department of Pediatric Hematology-Oncology, "Pan.& Agl. Kyriakou" Children's Hospital, Athens, Greece
| | - Emmanuel Hatzipantelis
- 2nd Department of Pediatrics, Aristotelion University of Thessaloniki, AHEPA General Hospital, Thessaloniki, Greece
| | - Maria Kourti
- Department of Pediatric Hematology and Oncology, Hippokration Hospital, Thessaloniki, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Haematology-Oncology, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Vasiliki Sidi
- Department of Pediatric Hematology and Oncology, Hippokration Hospital, Thessaloniki, Greece
| | - Eftichia Stiakaki
- Department of Pediatric Hematology-Oncology, University Hospital of Heraklion, Heraklion, Greece
| | - Maria Moschovi
- Haematology-Oncology Unit, First Department of Pediatrics, Athens University Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Maria Kantzanou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, University of Athens, Greece
| | - Eleni Th Petridou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, University of Athens, Greece.
| |
Collapse
|
29
|
Yimam M, Lee YC, Hyun EJ, Jia Q. Reproductive and Developmental Toxicity of Orally Administered Botanical Composition, UP446-Part I: Effects on Embryo-Fetal Development in New Zealand White Rabbits and Sprague Dawley Rats. ACTA ACUST UNITED AC 2015; 104:141-52. [PMID: 26303163 DOI: 10.1002/bdrb.21150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/22/2015] [Indexed: 12/31/2022]
Abstract
The pharmacotoxicology impacts of dietary supplements taken at the time of pregnancy have remained alarming since women are the frequent herbal medicine users in many countries as a complement to the conventional pregnancy management. The use of herbal medicines and diet supplements in expectant mothers linked closely to the health of the childbearing mothers and the fetuses where the lack of developmental safety data imposes a challenge to make the right choices. Here, we describe the potential adverse effects of UP446, a standardized bioflavonoid composition from the roots of Scutellaria baicalensis and the heartwoods of Acacia catechu, on embryo-fetal development following maternal exposure during the critical period of major organogenesis in rabbits and rats. Pregnant dams were treated orally with UP446 at doses of 250, 500, and 1000 mg/kg/day during gestation. The number of resorptions, implantations, litter size, body weights, and skeletal development was evaluated. Maternal food intake and body, tissue, and placenta weight were also assessed. There were no statistically significant differences in implantation, congenital malformation, embryo-fetal mortalities, and fetuses sex ratios in all dosing groups of both species. Therefore, the no observed adverse effect level of UP446 was considered to be greater than 1000 mg/kg in both the maternal and fetus in both species.
Collapse
Affiliation(s)
| | | | - Eu-Jin Hyun
- Unigen Inc., Dongnam-Gu, Cheonan-Si, Chungnam, Korea
| | - Qi Jia
- Unigen Inc, Seattle, Washington
| |
Collapse
|
30
|
Yimam M, Lee YC, Hyun EJ, Jia Q. Reproductive and Developmental Toxicity of Orally Administered Botanical Composition, UP446-Part III: Effects on Fertility and Early Embryonic Development to Implantation in Sprague Dawley Rats. ACTA ACUST UNITED AC 2015; 104:166-76. [PMID: 26173630 DOI: 10.1002/bdrb.21143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/09/2015] [Indexed: 12/17/2022]
Abstract
In recent years, high prevalence of adverse effects associated to the use of traditional medicines during pregnancy is becoming alarming due to the self-medication of oral supplements by expecting mothers without supervision. Many expectant mothers use alternative and complementary medicines as a supplement to conventional pregnancy management with an inherent belief of considering herbal remedies as harmless. To the contrary, herbal remedies could incur a potential teratogenic risk both to the child bearing mother and the developing fetuses when consumed before or at the time of gestation. Here, we describe the potential adverse effects of orally administered UP446, a standardized bioflavonoid composition from the roots of Scutellaria baicalensis and the heartwoods of Acacia catechu, on fertility and early embryonic development to implantation in Sprague Dawley rats at doses of 250, 500, and 1000 mg/kg. Besides body weight and food consumption, reproductive functions, sperm motility and morphology, estrus cycle, and fertility rate were monitored. There were no statistically significant differences in reproductive function in all UP446 treated groups in both genders. Test substance impacts on reproductive parameters were very minimal. Neither sperm motility nor morphology was affected as a result of oral UP446 administrations in males. There were no treatment-related effects on estrus cycle stages in females. No significant changes in necropsy or histopathology were observed for all the groups. Therefore, the no observed adverse effect level (NOAEL) of UP446 was considered to be 1000 mg/kg, the highest dose tested, in both genders.
Collapse
Affiliation(s)
| | | | | | - Qi Jia
- Unigen, Inc, Cheonan-Si, Chungnam, Korea
| |
Collapse
|
31
|
Abstract
Obesity and being overweight are linked with a cluster of metabolic and vascular disorders that have been termed the metabolic syndrome. This syndrome promotes the incidence of cardiovascular diseases that are an important public health problem because they represent a major cause of death worldwide. Whereas there is not a universally-accepted set of diagnostic criteria, most expert groups agree that this syndrome is defined by an endothelial dysfunction, an impaired insulin sensitivity and hyperglycemia, dyslipidemia, abdominal obesity and hypertension. Epidemiological studies suggest that the beneficial cardiovascular health effects of diets rich in green tea are, in part, mediated by their flavonoid content, with particular benefits provided by members of this family such as epigallocatechin gallate (EGCG). Although their bioavailability is discussed, various studies suggest that EGCG modulates cellular and molecular mechanisms of various symptoms leading to metabolic syndrome. Therefore, according to in vitro and in vivo model data, this review attempts to increase our understanding about the beneficial properties of EGCG to prevent metabolic syndrome.
Collapse
|
32
|
Yimam M, Lee YC, Hyun EJ, Jia Q. Reproductive and Developmental Toxicity of Orally Administered Botanical Composition, UP446-Part II: Effects on Prenatal and Postnatal Development, Including Maternal Function in Sprague-Dawley Rats. ACTA ACUST UNITED AC 2015; 104:153-65. [DOI: 10.1002/bdrb.21142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/06/2015] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Eu-Jin Hyun
- Unigen, Inc; Dongnam-Gu, Cheonan-Si Chungnam Korea
| | - Qi Jia
- Unigen, Inc; Seattle Washington
| |
Collapse
|
33
|
Lesser MNR, Keen CL, Lanoue L. Reproductive and developmental outcomes, and influence on maternal and offspring tissue mineral concentrations, of (-)-epicatechin, (+)-catechin, and rutin ingestion prior to, and during pregnancy and lactation in C57BL/6J mice. Toxicol Rep 2015; 2:443-449. [PMID: 28962380 PMCID: PMC5598508 DOI: 10.1016/j.toxrep.2015.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 01/01/2023] Open
Abstract
Maternal food intake, body weights, and tissue weights were not affected by the dietary treatments. RU2 dams had alterations in liver zinc, copper, and calcium compared to the other treatment groups. Fetal and placental weights, and number of implantation sites and resorption sites per litter were similar across treatment groups. Offspring food intake, body weight, litter size, survival, sex, and skeletal development were similar among groups. EC1 and EC2 offspring had alterations in liver copper and iron (EC2 only). RU1 and RU2 had alterations in liver calcium.
Maternal nutrition can have a significant effect on developmental processes during pregnancy and lactation. While certain flavonoids have been postulated to be beneficial for health, little is known about the effects of ingestion during pregnancy and lactation on the mother and progeny. We report on the effects of maternal consumption of high levels of certain flavonoids on reproductive and developmental outcomes in a mouse model. C57BL/6J female mice were fed a control diet (CT), the CT diet supplemented with 1% or 2% of a mix of epicatechin and catechin (EC1, EC2), or rutin (RU1, RU2) prior to, during pregnancy, and lactation. A subset of dams was killed on gestation day (GD) 18.5 to evaluate fetal outcomes and the remainder was allowed to deliver to evaluate offspring. Maternal food intake, body and tissue weight did not differ among groups. The number of resorptions, implantations, litter size, postnatal survival, body weight, and skeletal development were also similar. Alterations in maternal and offspring liver mineral concentrations were observed. The current results indicate that consumption of high amounts of epicatechin, catechin, and rutin during gestation and lactation is not associated with any marked developmental effects, although changes in liver mineral concentrations were noted.
Collapse
Key Words
- (+)-Catechin
- (+)-Catechin hydrate (PubChem CID: 24278298)
- (−)-Epicatechin
- (−)-Epicatechin (PubChem CID: 24894431)
- ANOVA, analysis of variance
- CT, control diet
- Development
- EC1, control diet supplemented with 1% mix of (−)-epicatechin and (+)-catechin
- EC2, control diet supplemented with 1% mix of (−)-epicatechin and (+)-catechin
- EGCG, epigallo-catechin-gallate
- Flavonoids (or flavanols or flavonols)
- GD, gestation day
- GTC-H, heat sterilized green tea catechins
- GTE, green tea extract
- PND, postnatal day
- Pregnancy
- RU1, control diet supplemented with 1% rutin
- RU2, control diet supplemented with 2% rutin
- Rutin
- Rutin-hydrate (PubChem CID: 24899379)
- SEM, standard error of the means
- TBHQ, tertiary butylhydroquinone
Collapse
Affiliation(s)
- Mary N R Lesser
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, United States.,Department of Nutritional Sciences & Toxicology, University of California, Berkeley, 119 Morgan Hall, Berkeley, CA 94720, United States
| | - Carl L Keen
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.,Department of Internal Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Louise Lanoue
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| |
Collapse
|
34
|
Ly C, Yockell-Lelièvre J, Ferraro ZM, Arnason JT, Ferrier J, Gruslin A. The effects of dietary polyphenols on reproductive health and early development†. Hum Reprod Update 2014; 21:228-48. [DOI: 10.1093/humupd/dmu058] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
35
|
Margalef M, Pons Z, Muguerza B, Arola-Arnal A. A rapid method to determine colonic microbial metabolites derived from grape flavanols in rat plasma by liquid chromatography-tandem mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7698-7706. [PMID: 25069016 DOI: 10.1021/jf5019752] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study describes the development and validation of a liquid chromatography-mass spectrometry method for determination of a large number of flavanol colonic derivatives in biological samples. The method was validated with rat plasma after the intake of grape seed flavanols. The minimum plasma volume necessary to maintain good recovery values within the range of 83-110% for all of the standards was determined by micro solid-phase extraction (μ-SPE). In total, 16 commercial standards were used to measure 30 different phenolic compounds present at low concentration levels (micromolar). The chromatographic method enabled reliable quantification of plasma colonic flavanol derivatives with low limits of detection and quantification, achieving values of 0.03 nM and 0.10 nM, respectively. The developed method can be readily applied to determine all of the flavanol metabolites that are most likely responsible for the majority of biological effects of poorly absorbed flavanols.
Collapse
Affiliation(s)
- Maria Margalef
- Nutrigenomic Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili , Tarragona 43007, Spain
| | | | | | | |
Collapse
|
36
|
Sun Y, Mukai Y, Tanaka M, Saito T, Sato S, Kurasaki M. Green tea extract increases mRNA expression of enzymes which influence epigenetic marks in newborn female offspring from undernourished pregnant mother. PLoS One 2013; 8:e74559. [PMID: 24009774 PMCID: PMC3756974 DOI: 10.1371/journal.pone.0074559] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 08/02/2013] [Indexed: 11/18/2022] Open
Abstract
Biochemical and toxicological properties of catechin remain unclear, e.g.; how catechin affects female offspring from undernourished pregnant dams. Here, to elucidate effects of low prenatal protein on female offspring health status, changes of enzymes which modify epigenetic marks related with metabolism in kidneys from newborns were investigated after continuously administering catechin extracted from green tea to lactating maternal rats after pregnant undernourishment. We found that green tea extract intake during lactation up-regulated the activation of AMP-activated protein kinase in young female offspring from protein-restricted dams and modulated the AMP-activated protein kinase pathway in the kidney. This pathway was indicated to be stimulated by SIRT1 gene expression. The feeding of green tea extract to protein-restricted dams during lactation is likely to up-regulate AMP-activated protein kinase activation and may partly lead to alterations of the AMP-activated protein kinase pathway in female offspring kidneys. In addition, energy metabolism in fetal and offspring period with green tea extract administration might be related to enzymes which modify epigenetic marks such as DNA methyltransferase 1 and 3a.
Collapse
Affiliation(s)
- Yongkun Sun
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuuka Mukai
- Department of Nutrition, Aomori University of Health and Welfare, Aomori, Aomori, Japan
| | - Masato Tanaka
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takeshi Saito
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shin Sato
- Department of Nutrition, Aomori University of Health and Welfare, Aomori, Aomori, Japan
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
37
|
Arola-Arnal A, Oms-Oliu G, Crescenti A, del Bas JM, Ras MR, Arola L, Caimari A. Distribution of grape seed flavanols and their metabolites in pregnant rats and their fetuses. Mol Nutr Food Res 2013; 57:1741-52. [PMID: 23728968 DOI: 10.1002/mnfr.201300032] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 11/11/2022]
Abstract
SCOPE Polyphenols have been demonstrated to provide health benefits affecting cellular and physiological processes. This study aims to evaluate the bioavailability and distribution of grape seed flavanol compounds during pregnancy and whether fetuses could be exposed to these compounds. METHODS AND RESULTS The distribution of flavanols and their metabolites in rat plasma, liver, white adipose tissue, brain, amniotic fluid, placenta, and fetuses after 1 and 2 h of an acute intake of a grape seed proanthocyanidin extract was examined by LC-ESI-TOF/MS. Flavanols and their metabolites were widely distributed in both pregnant and nonpregnant rat plasma and tissues. In liver, the conjugated forms of flavanols were less available in pregnant than nonpregnant rats. Flavanol metabolites were abundant in maternal placenta but detected at low levels in fetuses and amniotic fluid. CONCLUSION Flavanol metabolization appears to be less active in the liver during pregnancy. Moreover, data indicated that transport across the placenta is not efficient and for flavanols and their metabolites, the placenta seems to act as a barrier. However, these compounds target the fetus and are excreted in the amniotic fluid.
Collapse
Affiliation(s)
- Anna Arola-Arnal
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | | | | | | | | | | | | |
Collapse
|
38
|
Li S, Tse IM, Li ET. Maternal green tea extract supplementation to rats fed a high-fat diet ameliorates insulin resistance in adult male offspring. J Nutr Biochem 2012; 23:1655-60. [DOI: 10.1016/j.jnutbio.2011.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 12/22/2022]
|
39
|
Wu L, Zhang QL, Zhang XY, Lv C, Li J, Yuan Y, Yin FX. Pharmacokinetics and blood-brain barrier penetration of (+)-catechin and (-)-epicatechin in rats by microdialysis sampling coupled to high-performance liquid chromatography with chemiluminescence detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9377-9383. [PMID: 22953747 DOI: 10.1021/jf301787f] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
(+)-Catechin (C) and (-)-epicatechin (EC), as the basic monomer units of flavanols, can be widely found in natural products or medicinal herbs. Recent pharmacological studies have revealed that C and EC exhibit good neuroprotective effects. However, there is little information about pharmacokinetic profiles in the brain and in vivo BBB penetration of C and EC. In this paper, an ultrasensitive method using high-performance liquid chromatography (HPLC) with chemiluminescence (CL) detection was developed for the analysis of microdialysis samples. The detection limits for C and EC in Ringer's solution were 1.0 and 1.2 ng/mL, respectively. The intraday and interday accuracies for C and EC in Ringer's solution ranged from -3.0 to 4.4%, and the intraday and interday precisions were below 5.2%. The mean in vivo recoveries of C and EC in microdialysis probes were 33.7% and 26.5% in blood while 38.3% and 29.1% in brain. Pharmacokinetic parameters were estimated using the statistical moment method after iv administration (C and EC, 20 mg/kg of body weight) in rats. Brain-to-blood (AUC(brain)/AUC(blood)) distribution ratios were 0.0726 ± 0.0376 for C and 0.1065 ± 0.0531 for EC, indicating that C and EC could pass through the BBB, which is further evidence of their neuroprotective effects.
Collapse
Affiliation(s)
- Liang Wu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, P R China
| | | | | | | | | | | | | |
Collapse
|
40
|
Logsdon AL, Herring BJ, Lockard JE, Miller BM, Kim H, Hood RD, Bailey MM. Exposure to green tea extract alters the incidence of specific cyclophosphamide-induced malformations. ACTA ACUST UNITED AC 2012; 95:231-7. [PMID: 22447743 DOI: 10.1002/bdrb.21011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/14/2012] [Indexed: 11/07/2022]
Abstract
BACKGROUND Green tea extract (GTE) has been shown to have antioxidative properties due to its high content of polyphenols and catechin gallates. Previous studies indicated that catechin gallates scavenge free radicals and attenuate the effects of reactive oxygen species. Cyclophosphamide (CP) produces reactive oxidative species, which can have adverse effects on development, causing limb, digit, and cranial abnormalities. The current study was performed to determine if exposure to GTE can decrease teratogenic effects induced by CP in CD-1 mice. METHODS From gestation days (GD) 6-13, mated CD-1 mice were dosed with 400 or 800 mg/kg/d GTE; 100, 200, 400, or 800 mg/kg/d GTE + CP; CP alone, or the vehicle. GTE was given by gavage. CP (20 mg/kg) was given by intraperitoneal injection on GD 10. Dams were sacrificed on GD 17, and their litters were examined for adverse effects. RESULTS The highest GTE dose did not effectively attenuate, and in some cases exacerbated the negative effect of CP. GTE alone was also associated with an increased incidence of microblepharia. Conversely, moderate GTE doses (200 and/or 400 mg/kg/d) attenuated the effect of CP on fetal weight and (GTE 200 mg/kg/d) decreased the incidences of certain defects resulting from CP exposure. CONCLUSIONS Exposure of a developing mammal to moderate doses of GTE can modulate the effects of exposure to CP during development, possibly by affecting biotransformation, while a higher GTE dose tended to exacerbate the developmental toxicity of CP. GTE alone appeared to cause an adverse effect on eyelid development.
Collapse
Affiliation(s)
- Amanda L Logsdon
- Department of Biological Sciences, Emporia State University, Emporia, Kansas, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Pérez-Pastén R, Martínez-Galero E, Chamorro-Cevallos G. Quercetin and naringenin reduce abnormal development of mouse embryos produced by hydroxyurea. J Pharm Pharmacol 2010; 62:1003-9. [PMID: 20663034 DOI: 10.1111/j.2042-7158.2010.01118.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVES There is limited evidence about the impact of quercetin and naringenin on embryonic development. The purpose of this work was to evaluate in vitro their direct teratogenic potential as well as their protective activity against teratogenesis mediated by oxidative damage on mouse embryos. METHODS Quercetin and naringenin toxicity on whole mouse cultured embryos, as well as their ability to protect embryos against hydroxyurea-induced insult were evaluated. KEY FINDINGS Quercetin 100 microm and naringenin 300 microm produced significant reduction of developmental and growth parameters, in comparison with those of the control group. Embryos exposed to the concurrent administration of quercetin or naringenin with hydroxyurea (2 microm, 2 h) were significantly protected from growth and developmental retardation, and abnormalities induced by hydroxyurea. Interestingly, embryos exposed to hydroxyurea and dimethyl sulfoxide 0.1%, the vehicle employed to dissolve flavonoids, also showed significant damage amelioration. CONCLUSIONS These results indicate that quercetin and naringenin have not only a minor toxic effect on development, but also a protective effect against hydroxyurea-induced embryonic damage.
Collapse
Affiliation(s)
- Ricardo Pérez-Pastén
- Departamento de Pharmacia, Escuela Nacional de Ciencias Biológicas, I.P.N. Campus Zacatenco, México D.F., México
| | | | | |
Collapse
|
42
|
Abib RT, Quincozes-Santos A, Zanotto C, Zeidán-Chuliá F, Lunardi PS, Gonçalves CA, Gottfried C. Genoprotective Effects of the Green Tea-Derived Polyphenol/Epicatechin Gallate in C6 Astroglial Cells. J Med Food 2010; 13:1111-5. [DOI: 10.1089/jmf.2009.0255] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Renata T. Abib
- Neuroglial Plasticity Laboratory, Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - André Quincozes-Santos
- Neuroglial Plasticity Laboratory, Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Zanotto
- Neuroglial Plasticity Laboratory, Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fares Zeidán-Chuliá
- Medical Biochemistry and Developmental Biology, Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | - Paula S. Lunardi
- Neuroglial Plasticity Laboratory, Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos-Alberto Gonçalves
- Neuroglial Plasticity Laboratory, Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carmem Gottfried
- Neuroglial Plasticity Laboratory, Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
43
|
Chu KO, Chan KP, Wang CC, Chu CY, Li WY, Choy KW, Rogers MS, Pang CP. Green tea catechins and their oxidative protection in the rat eye. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:1523-1534. [PMID: 20085274 DOI: 10.1021/jf9032602] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Catechins, active constituents of green tea, are well-known antioxidative natural products. It was proposed that green tea extract (GTE) consumption could benefit the eye, and the pharmacokinetics of catechins and oxidation status in rat eye were investigated after oral administration. Sprague-Dawley rats were fed GTE and sacrificed at different time intervals. Their eyes were dissected into cornea, lens, retina, choroid-sclera, vitreous humor, and aqueous humor for analysis of catechins and 8-epi-isoprostane by HPLC-ECD and GC-NCI-MS, respectively. Catechins were differentially distributed in eye tissues. Gallocatechin was present at the highest concentration in the retina, 22729.4 +/- 4229.4 pmol/g, and epigallocatechin in aqueous humor at 602.9 +/- 116.7 nM. The corresponding area-under-curves were 207,000 pmol x h/g and 2035.0 +/- 531.7 nM x h, respectively. The time of maximum concentration of the catechins varied from 0.5 to 12.2 h. Significant reductions in 8-epi-isoprostane levels were found in the compartments except the choroid-sclera or plasma, indicating antioxidative activities of catechins in these tissues.
Collapse
Affiliation(s)
- Kai On Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, Kowloon, Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lanoue L, Green KK, Kwik-Uribe C, Keen CL. Dietary factors and the risk for acute infant leukemia: evaluating the effects of cocoa-derived flavanols on DNA topoisomerase activity. Exp Biol Med (Maywood) 2010; 235:77-89. [DOI: 10.1258/ebm.2009.009184] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
There is cumulative strong evidence that diets rich in flavanols can provide certain positive health benefits, particularly with respect to the cardiovascular system. Consequently, it has been suggested that increasing one's dietary intake of flavanols may be of benefit. Complicating this idea, there are reports that high intakes of certain flavonoids during pregnancy are associated with an increased risk for acute infant leukemia due to a poison effect of select polyphenolic compounds on DNA topoisomerase (topo) II activity that promotes aberrant chromosomal translocations. In the current study, we characterized the effects of select flavanols (epicatechin and catechin monomers), and select flavanol dimers and longer oligomers, on topo II activity, and on cellular toxicity in vitro. In contrast to the chemotherapeutic drug etoposide (VP16) and the flavonol quercetin, which strongly inhibited topo II activity and increased the formation of cleavage complexes demonstrating a poison effect, the flavanols epicatechin and catechin had little effect on topo II enzyme activity. Accordingly, several fold greater concentrations of the flavanols were required to achieve cellular toxicity similar to that of quercetin and VP16 in cultures of myeloid and lymphoid cells. Low cellular toxicity and limited topo II inhibition were also observed with a procyanidin-rich cocoa extract. Of all the flavanols tested, the dimers (B2, B5 and a mix of both) exerted the greatest inhibition of topo II and inhibited cellular proliferation rates at concentrations similar to quercetin. However, in contrast to quercetin, the dimers did not function as topo II poisons. Collectively, our in vitro data show that cocoa-derived flavanols have limited effects on topo II activity and cellular proliferation in cancer cell lines. We predict that these compounds are likely to have limited leukemogenic potential at physiological concentrations.
Collapse
Affiliation(s)
- Louise Lanoue
- Department of Nutrition, University of California, Davis, One Shields Ave Davis, CA 95616
| | - Kerri K Green
- Department of Nutrition, University of California, Davis, One Shields Ave Davis, CA 95616
| | | | - Carl L Keen
- Department of Nutrition, University of California, Davis, One Shields Ave Davis, CA 95616
- Department of Internal Medicine, University of California, Davis, One Shields Ave Davis, CA 95616, USA
| |
Collapse
|
45
|
Morita O, Knapp JF, Tamaki Y, Stump DG, Moore JS, Nemec MD. Effects of green tea catechin on embryo/fetal development in rats. Food Chem Toxicol 2009; 47:1296-303. [DOI: 10.1016/j.fct.2009.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 02/25/2009] [Accepted: 03/03/2009] [Indexed: 11/16/2022]
|
46
|
Xu H, Lui WT, Chu CY, Ng PS, Wang CC, Rogers MS. Anti-angiogenic effects of green tea catechin on an experimental endometriosis mouse model. Hum Reprod 2008; 24:608-18. [PMID: 19088106 DOI: 10.1093/humrep/den417] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The development of new blood vessels plays an essential role in growth and survival of endometriosis. Epigallocatechin gallate (EGCG) from green tea has powerful anti-angiogenic properties and our aim was to evaluate these properties in experimental endometriosis. METHODS AND RESULTS Eutopic endometrium from endometriosis patients was transplanted s.c. to severely compromised immunodeficient mice, randomly treated i.p. with EGCG (anti-angiogenic and -oxidant), Vitamin E (a non-angiogenic antioxidant) or saline for 2 weeks. The endometrial implant, including adjacent host outer skin and subcutaneous layers plus inner abdominal muscle and peritoneum, was collected. New microvessels were determined by species-specific immunohistochemistry. Angiogenic factors in lesions and abdominal muscle were detected by quantitative real-time PCR. Apoptosis was studied by terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling and quantitative real-time PCR. In saline control, endometrial implants developed new blood vessels with proliferating glandular epithelium and were tightly adhered to host subcutaneous and abdominal muscle layers. After EGCG, endometriotic lesions were smaller than control (P < 0.05), and glandular epithelium was smaller and eccentrically distributed. Angiogenesis in lesions from the implant and adjacent tissues was under-developed, and microvessel size and density were lower (both P < 0.01) than control. mRNA for angiogenic vascular endothelial growth factor A, but not hypoxia inducible factor 1, alpha subunit, was significantly down-regulated in lesions after EGCG (P < 0.05). In addition, apoptosis in the lesions was more obvious, and nuclear factor kappa B and mitogen activated protein kinase 1 mRNA levels were up-regulated (P < 0.05) after EGCG treatment. No differences were observed with Vitamin E treatment. CONCLUSIONS EGCG significantly inhibits the development of experimental endometriosis through anti-angiogenic effects.
Collapse
Affiliation(s)
- H Xu
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
| | | | | | | | | | | |
Collapse
|
47
|
Wang CC, Chu KO, Chong WS, Li WY, Pang CP, Shum ASW, Lau TK, Rogers MS. Tea epigallocatechin-3-gallate increases 8-isoprostane level and induces caudal regression in developing rat embryos. Free Radic Biol Med 2007; 43:519-27. [PMID: 17640562 DOI: 10.1016/j.freeradbiomed.2007.04.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Revised: 04/26/2007] [Accepted: 04/26/2007] [Indexed: 10/23/2022]
Abstract
Tea is the most common beverage after water. Concerns have been raised about the safety of tea during pregnancy, especially for embryo development. We aimed at studying the effects of active tea components on developing embryos by in vitro rat embryo culture. Rat embryos during early organogenesis were cultivated in serum supplemented with one of the tea catechins. Developmental hallmarks and malformations (Mal) in the developing embryos were compared and evaluated by a standard morphological scoring system. The embryotoxicity of each tea catechin was classified according to the European Center for the Validation of Alternative Methods. Cell viability was assessed by supervital dye staining, apoptosis by TUNEL assay, and peroxidation by the 8-isoprostane EIA method. We found that (+)-catechin had the least effect on developing embryos (Mal(50)=715.1 mg/L; IC50(Mal)=435 mg/L), whereas (-)-epigallocatechin gallate had the most adverse effect (Mal(50)=54.2 mg/L; IC50(Mal)=45.8 mg/L). The major malformation in affected embryos included caudal retardation with abnormal axial flexion and delayed hind-limb formation. All catechins were classified as nonembryotoxic except (-)-epigallocatechin gallate, which was classified as weakly embryotoxic. With (-)-epigallocatechin gallate, increased numbers of nonviable and apoptotic cells in the malformed embryos were associated with increased embryo 8-isoprostane.
Collapse
Affiliation(s)
- Chi Chiu Wang
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Shatin, New Territories, Hong Kong.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Intra J, Kuo SM. Physiological levels of tea catechins increase cellular lipid antioxidant activity of vitamin C and vitamin E in human intestinal caco-2 cells. Chem Biol Interact 2007; 169:91-9. [PMID: 17603031 PMCID: PMC1965493 DOI: 10.1016/j.cbi.2007.05.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 05/24/2007] [Accepted: 05/25/2007] [Indexed: 10/23/2022]
Abstract
Oxidative stress has been linked to the development of various chronic diseases. Vegetables and fruits, which contain polyphenols, were shown to have protective effects. (-)-Epigallocatechin-3-gallate (EGCG), a polyphenol abundant in tea, has been shown to have antioxidant activities in cell-free conditions and this study focused on the effect of cellular EGCG. Using an intestinal cell model to examine the oxidative stress induced by hydroxyl radicals, we report here that physiological concentrations (0.1-1 microM) of EGCG have dose- and incubation duration-dependent cell-associated lipid antioxidant activity (measuring malondialdehyde production). Vitamin E and vitamin C at 10-40 microM also showed cell-associated lipid antioxidant activities under shorter incubation durations. When EGCG was included in the incubation with vitamin E or C, more antioxidant activities were consistently observed than when vitamins were added alone. Catechin (widely present in fruits and vegetables) at 1 microM also significantly increased the antioxidant activity of vitamins E and C. Previous studies examining cell-associated activity of EGCG mainly focused on the 10-100 microM concentration range. Our results suggest that although the physiological level (0.1-1 microM) of dietary catechins is much lower than that of vitamins, they further contribute to the total antioxidant capacity even in the presence of vitamins.
Collapse
Affiliation(s)
- Janjira Intra
- Department of Exercise and Nutrition Sciences, University at Buffalo, 15 Farber Hall, Buffalo, NY 14214, USA
| | | |
Collapse
|
49
|
Friedman M. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol Nutr Food Res 2007; 51:116-34. [PMID: 17195249 PMCID: PMC7168386 DOI: 10.1002/mnfr.200600173] [Citation(s) in RCA: 382] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 10/20/2006] [Indexed: 12/17/2022]
Abstract
Tea leaves produce organic compounds that may be involved in the defense of the plants against invading pathogens including insects, bacteria, fungi, and viruses. These metabolites include polyphenolic compounds, the six so-called catechins, and the methyl-xanthine alkaloids caffeine, theobromine, and theophylline. Postharvest inactivation of phenol oxidases in green tea leaves prevents oxidation of the catechins, whereas postharvest enzyme-catalyzed oxidation (fermentation) of catechins in tea leaves results in the formation of four theaflavins as well as polymeric thearubigins. These substances impart the black color to black teas. Black and partly fermented oolong teas contain both classes of phenolic compounds. A need exists to develop a better understanding of the roles of polyphenolic tea compounds in food and medical microbiology. This overview surveys and interprets our present knowledge of activities of tea flavonoids and teas against foodborne and other pathogenic bacteria, virulent protein toxins produced by some of the bacteria, virulent bacteriophages, pathogenic viruses and fungi. Also covered are synergistic, mechanistic, and bioavailability aspects of the antimicrobial effects. Further research is suggested for each of these categories. The herein described findings are not only of fundamental interest, but also have practical implications for nutrition, food safety, and animal and human health.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, USA.
| |
Collapse
|
50
|
Chu KO, Wang CC, Chu CY, Choy KW, Pang CP, Rogers MS. Uptake and distribution of catechins in fetal organs following in utero exposure in rats. Hum Reprod 2006; 22:280-7. [PMID: 16959805 DOI: 10.1093/humrep/del353] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Although catechins are known to be powerful antioxidants, no reports have shown their transport to fetal organs. We investigated the distribution of catechins in fetal rat organs after maternal exposure to green tea extract (GTE). METHODS GTE (550 mg/kg) or water was fed orally to pregnant dams at 15.5 days of gestation, the dams were sacrificed and fetal organs were dissected 0, 0.5, 1, 2, 3, 5, and 8 h later. Catechins and catechin gallates were determined by high-performance liquid chromatography (HPLC) after solid-phase extraction. RESULTS In the GTE-treated group, catechins were detected in most of the fetal organs studied, including the brain, eyes, heart, lungs, kidneys and liver but not in the control group. The first peak times (T(max)) were about 0.5-1 h. The maximum concentrations (C(max)) of catechins in the fetal eye were about 2-10 times higher than in the other organs, ranging from 249 pmol/g for epicatechin (EC) to 831 pmol/g for epigallocatechin gallate (EGCG). Catechin gallates were generally more readily taken up by fetal organs than catechins. EGCG had the highest level of uptake according to area under the curve (AUC) plots and the highest C(max) in all organs. CONCLUSIONS Various fetal organs had low but significant levels of catechins after GTE intake by the dams, and organ levels were found to be related to catechin structure. EGCG could be a potential candidate for antioxidant supplementation of the fetus in utero.
Collapse
Affiliation(s)
- K O Chu
- Department of Obstetrics and Gynaecology, The Chinese Univerity of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong
| | | | | | | | | | | |
Collapse
|