1
|
Amin M, Lammers T, Ten Hagen TLM. Temperature-sensitive polymers to promote heat-triggered drug release from liposomes: Towards bypassing EPR. Adv Drug Deliv Rev 2022; 189:114503. [PMID: 35998827 DOI: 10.1016/j.addr.2022.114503] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/14/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023]
Abstract
Heat-triggered drug release from temperature-sensitive nanocarriers upon the application of mild hyperthermia is a promising approach to achieve site-specific delivery of drugs. The combination of mild hyperthermia (41-42 °C) and temperature-sensitive liposomes (TSL) that undergo lipid phase-transition and drug release has been studied extensively and has shown promising therapeutic outcome in a variety of animal tumor models as well as initial indications of success in humans. Sensitization of liposomes to mild hyperthermia by means of exploiting the thermal behavior of temperature-sensitive polymers (TSP) provides novel opportunities. Recently, TSP-modified liposomes (TSPL) have shown potential for enhancing tumor-directed drug delivery, either by triggered drug release or by triggered cell interactions in response to heat. In this review, we describe different classes of TSPL, and analyze and discuss the mechanisms and kinetics of content release from TSPL in response to local heating. In addition, the impact of lipid composition, polymer and copolymer characteristics, serum components and PEGylation on the mechanism of content release and TSPL performance is addressed. This is done from the perspective of rationally designing TSPL, with the overall goal of conceiving efficient strategies to increase the efficacy of TSPL plus hyperthermia to improve the outcome of targeted anticancer therapy.
Collapse
Affiliation(s)
- Mohamadreza Amin
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Center for Biohybrid Medical Systems, Aachen, Germany.
| | - Timo L M Ten Hagen
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Amin M, Huang W, Seynhaeve ALB, ten Hagen TLM. Hyperthermia and Temperature-Sensitive Nanomaterials for Spatiotemporal Drug Delivery to Solid Tumors. Pharmaceutics 2020; 12:E1007. [PMID: 33105816 PMCID: PMC7690578 DOI: 10.3390/pharmaceutics12111007] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Nanotechnology has great capability in formulation, reduction of side effects, and enhancing pharmacokinetics of chemotherapeutics by designing stable or long circulating nano-carriers. However, effective drug delivery at the cellular level by means of such carriers is still unsatisfactory. One promising approach is using spatiotemporal drug release by means of nanoparticles with the capacity for content release triggered by internal or external stimuli. Among different stimuli, interests for application of external heat, hyperthermia, is growing. Advanced technology, ease of application and most importantly high level of control over applied heat, and as a result triggered release, and the adjuvant effect of hyperthermia in enhancing therapeutic response of chemotherapeutics, i.e., thermochemotherapy, make hyperthermia a great stimulus for triggered drug release. Therefore, a variety of temperature sensitive nano-carriers, lipid or/and polymeric based, have been fabricated and studied. Importantly, in order to achieve an efficient therapeutic outcome, and taking the advantages of thermochemotherapy into consideration, release characteristics from nano-carriers should fit with applicable clinical thermal setting. Here we introduce and discuss the application of the three most studied temperature sensitive nanoparticles with emphasis on release behavior and its importance regarding applicability and therapeutic potentials.
Collapse
Affiliation(s)
- Mohamadreza Amin
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, 3015GE Rotterdam, The Netherlands; (M.A.); (W.H.); (A.L.B.S.)
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, 3015GE Rotterdam, The Netherlands
| | - Wenqiu Huang
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, 3015GE Rotterdam, The Netherlands; (M.A.); (W.H.); (A.L.B.S.)
| | - Ann L. B. Seynhaeve
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, 3015GE Rotterdam, The Netherlands; (M.A.); (W.H.); (A.L.B.S.)
| | - Timo L. M. ten Hagen
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, 3015GE Rotterdam, The Netherlands; (M.A.); (W.H.); (A.L.B.S.)
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, 3015GE Rotterdam, The Netherlands
| |
Collapse
|
3
|
Abri Aghdam M, Bagheri R, Mosafer J, Baradaran B, Hashemzaei M, Baghbanzadeh A, de la Guardia M, Mokhtarzadeh A. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. J Control Release 2019; 315:1-22. [DOI: 10.1016/j.jconrel.2019.09.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
|
4
|
Bi H, Xue J, Jiang H, Gao S, Yang D, Fang Y, Shi K. Current developments in drug delivery with thermosensitive liposomes. Asian J Pharm Sci 2019; 14:365-379. [PMID: 32104466 PMCID: PMC7032122 DOI: 10.1016/j.ajps.2018.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 06/26/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022] Open
Abstract
Thermosensitive liposomes (TSLs) have been an important research area in the field of tumor targeted chemotherapy. Since the first TSLs appeared that using 1,2-dipalmitoyl-sn-glyce-ro-3-phosphocholine (DPPC) as the primary liposomal lipid, many studies have been done using this type of liposome from basic and practical aspects. While TSLs composed of DPPC enhance the cargo release near the phase transition temperature, it has been shown that many factors affect their temperature sensitivity. Thus numerous attempts have been undertaken to develop new TSLs for improving their thermal response performance. The main objective of this review is to introduce the development and recent update of innovative TSLs formulations, including combination of radiofrequency ablation (RFA), high-intensity focused ultrasound (HIFU), magnetic resonance imaging (MRI) and alternating magnetic field (AMF). In addition, various factors affecting the design of TSLs, such as lipid composition, surfactant, size and serum components are also discussed.
Collapse
Key Words
- (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine
- (DPPGOG), 1,2-dipalmitoyl-sn-glycero-3-phosphoglyceroglycerol
- (DSPC), 1,2-distearoyl-sn-glycero-3-phosphocholine
- (DSPE-mPEG2000), 1,2-distearoyl-sn-glycero-3-phosphatiylethanol-amine-N-[methoxy(polyethyleneglycol)-2000]
- (LTSLs), lyso-lipid temperature sensitive liposomes
- (MPPC), 1-myristoyl-2-palmitoyl-sn-glycero-3-phosphatidylcholine
- (MSPC), 1-stearoyl-2-hydroxy-sn-glycero-3-phosphatidylcholine
- (P-lyso-PC), lysophosphatidylcholine
- (P188), 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphatidylcholinex
- (P188), HO-(C2H4O)a-(C3H6O)b-(C2H4O)c-H, a=80, b=27, c=80
- Content release rate
- Drug delivery
- Hyperthermia
- Smart liposomes
- Thermosensitive liposomes
- Tumor chemotherapy
- fTSLs, fast release TSLs
- sTSLs, slow release TSLs
Collapse
Affiliation(s)
- Hongshu Bi
- Institute of New Drug Development, Liaoning Yaolian Pharmaceutical Co., Ltd., Benxi, Liaoning 117004, China
| | - Jianxiu Xue
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Hong Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Shan Gao
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Dongjuan Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Yan Fang
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Kai Shi
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| |
Collapse
|
5
|
Mo Y, Du H, Chen B, Liu D, Yin Q, Yan Y, Wang Z, Wan F, Qi T, Wang Y, Zhang Q, Wang Y. Quick-Responsive Polymer-Based Thermosensitive Liposomes for Controlled Doxorubicin Release and Chemotherapy. ACS Biomater Sci Eng 2019; 5:2316-2329. [DOI: 10.1021/acsbiomaterials.9b00343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yulin Mo
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Hongliang Du
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Binlong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Dechun Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Qingqing Yin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Yue Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Zenghui Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Fangjie Wan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Tong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Yaoqi Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Yiguang Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
6
|
Abraham T, Mao M, Tan C. Engineering approaches of smart, bio-inspired vesicles for biomedical applications. Phys Biol 2018; 15:061001. [DOI: 10.1088/1478-3975/aac7a2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Ozcelikkale A, Moon HR, Linnes M, Han B. In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:10.1002/wnan.1460. [PMID: 28198106 PMCID: PMC5555839 DOI: 10.1002/wnan.1460] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/14/2016] [Accepted: 12/17/2016] [Indexed: 12/16/2022]
Abstract
Advances in nanotechnology have enabled numerous types of nanoparticles (NPs) to improve drug delivery to tumors. While many NP systems have been proposed, their clinical translation has been less than anticipated primarily due to failure of current preclinical evaluation techniques to adequately model the complex interactions between the NP and physiological barriers of tumor microenvironment. This review focuses on microfluidic tumor models for characterization of delivery efficacy and toxicity of cancer nanomedicine. Microfluidics offer significant advantages over traditional macroscale cell cultures by enabling recapitulation of tumor microenvironment through precise control of physiological cues such as hydrostatic pressure, shear stress, oxygen, and nutrient gradients. Microfluidic systems have recently started to be adapted for screening of drugs and NPs under physiologically relevant settings. So far the two primary application areas of microfluidics in this area have been high-throughput screening using traditional culture settings such as single cells or multicellular tumor spheroids, and mimicry of tumor microenvironment for study of cancer-related cell-cell and cell-matrix interactions. These microfluidic technologies are also useful in modeling specific steps in NP delivery to tumor and characterize NP transport properties and outcomes by systematic variation of physiological conditions. Ultimately, it will be possible to design drug-screening platforms uniquely tailored for individual patient physiology using microfluidics. These in vitro models can contribute to development of precision medicine by enabling rapid and patient-specific evaluation of cancer nanomedicine. WIREs Nanomed Nanobiotechnol 2017, 9:e1460. doi: 10.1002/wnan.1460 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Altug Ozcelikkale
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Hye-ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Michael Linnes
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA,
| |
Collapse
|
8
|
The effect of thermosensitive liposomal formulations on loading and release of high molecular weight biomolecules. Int J Pharm 2017; 524:279-289. [DOI: 10.1016/j.ijpharm.2017.03.090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 12/16/2022]
|
9
|
Kang ML, Kim JE, Im GI. Thermoresponsive nanospheres with independent dual drug release profiles for the treatment of osteoarthritis. Acta Biomater 2016; 39:65-78. [PMID: 27155347 DOI: 10.1016/j.actbio.2016.05.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/26/2016] [Accepted: 05/03/2016] [Indexed: 11/18/2022]
Abstract
UNLABELLED Dual drug delivery of drugs with different therapeutic effects in a single system is an effective way to treat a disease. One of the main challenges in dual drug delivery is to control the release behavior of each drug independently. In this study, we devised thermo-responsive polymeric nanospheres that can provide simultaneous and independent dual drug delivery in the response to temperature change. The nanospheres based on chitosan oligosaccharide conjugated pluronic F127 grafting carboxyl group were synthesized to deliver kartogenin (KGN) and diclofenac (DCF) in a single system. To achieve the dual drug release, KGN was covalently cross-linked to the outer part of the nanosphere, and DCF was loaded into the inner core of the nanosphere. The nanospheres demonstrated immediate release of DCF and sustained release of KGN, which were independently controlled by temperature change. The nanospheres treated with cold temperature effectively suppressed lipopolysaccharide-induced inflammation in chondrocytes and macrophage-like cells. The nanospheres also induced chondrogenic differentiation of mesenchymal stem cells, which was further enhanced by cold shock treatment. Bioluminescence of the fluorescence-labeled nanospheres was significantly increased after cold treatment in vivo. The nanospheres suppressed the progression of osteoarthritis in treated rats, which was further enhanced by cold treatment. The nanospheres also reduced cyclooxygenase-2 expression in the serum and synovial membrane of treated rats, which were further decreased with cold treatment. These results suggest that the thermo-responsive nanospheres provide dual-function therapeutics possessing anti-inflammatory and chondroprotective effects which can be enhanced by cold treatment. STATEMENT OF SIGNIFICANCE We developed thermo-responsive nanospheres that can provide a useful dual-function of suppressing the inflammation and promoting chondrogenesis in the treatment of osteoarthritis. For a dual delivery system to be effective, the release behavior of each drug should be independently controlled to optimize their desired therapeutic effects. We employed rapid release of diclofenac for acute anti-inflammatory effects, and sustained release of kartogenin, a newly found molecule, for chondrogenic effects in this polymeric nanospheres. This nanosphere demonstrated immediate release of diclofenac and sustained release of kartogenin, which were independently controlled by temperature change. The effectiveness of this system to subside inflammation and regenerate cartilage in osteoarthritis was successful demonstrated through in vitro and in vivo experiments in this study. We think that this study will add a new concept to current body of knowledge in the field of drug delivery and treatment of osteoarthritis.
Collapse
Affiliation(s)
- Mi-Lan Kang
- Department of Orthopedics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Ji-Eun Kim
- Department of Orthopedics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Gun-Il Im
- Department of Orthopedics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea.
| |
Collapse
|
10
|
Al-Ahmady Z, Kostarelos K. Chemical Components for the Design of Temperature-Responsive Vesicles as Cancer Therapeutics. Chem Rev 2016; 116:3883-918. [DOI: 10.1021/acs.chemrev.5b00578] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zahraa Al-Ahmady
- Nanomedicine Lab, Faculty of Medical & Human Sciences, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom
- UCL
School of Pharmacy, Faculty of Life Science, University College London, Brunswick Square, London WC1N 1AX, United Kingdom
- Manchester
Pharmacy School, University of Manchester, Stopford Building, Manchester M13 9PT, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Medical & Human Sciences, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom
- UCL
School of Pharmacy, Faculty of Life Science, University College London, Brunswick Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
11
|
Aoki I, Yoneyama M, Hirose J, Minemoto Y, Koyama T, Kokuryo D, Bakalova R, Murayama S, Saga T, Aoshima S, Ishizaka Y, Kono K. Thermoactivatable polymer-grafted liposomes for low-invasive image-guided chemotherapy. Transl Res 2015; 166:660-673.e1. [PMID: 26303887 DOI: 10.1016/j.trsl.2015.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 07/02/2015] [Accepted: 07/29/2015] [Indexed: 11/28/2022]
Abstract
The objective of this study was to develop a thermotriggered, polymer-based liposomal drug carrier with an activatable magnetic resonance imaging (MRI) contrast property for monitoring the release of substances and for localized tumor therapy. The multimodal thermoactivatable polymer-grafted liposomes (MTPLs) were tested to investigate whether the accumulation of MTPLs in colon-26 grafted tumors could be visualized in vivo using MRI and optical imaging, whether MTPLs induce signal enhancement, reflecting the release of their contents, after triggering by short-term heating (42.5°C for 10 minutes) 9 hours after MTPL administration (late-phase triggering), and whether MTPLs can provide a sufficient antitumor effect. The imaging and therapeutic properties of MTPLs were tested both in vitro and in vivo (BALB/c nude mice: heated group with MTPLs (n = 5), nonheated group with MTPLs (n = 5), heated group with doxorubicin-free MTPLs (n = 5), nonheated group with manganese-free MTPLs (n = 5), and kinetics observation group (n = 3); N = 23). Through in vivo MRI and fluorescent imaging, the MTPLs were shown to have significantly accumulated in the grafted colon-26 tumors 8 hours after administration. Delayed thermotriggering (9 hours after administration) caused MR signal enhancement, reflecting the release of their contents, after a short exposure to tolerable heat. In addition, significant antitumor effects were observed after treatment. The proposed polymer-based activatable MTPLs with a "delayed thermotrigger" provide a promising technology for cancer theranostics that allows minimal adverse effects and rapid interactive therapy.
Collapse
Affiliation(s)
- Ichio Aoki
- Molecular Imaging Center, National Institute of Radiological Sciences (NIRS), Chiba, Japan.
| | - Misao Yoneyama
- Molecular Imaging Center, National Institute of Radiological Sciences (NIRS), Chiba, Japan
| | - Jun Hirose
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan
| | - Yuzuru Minemoto
- Department of Intractable Diseases, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takayoshi Koyama
- Department of Intractable Diseases, National Center for Global Health and Medicine, Tokyo, Japan
| | - Daisuke Kokuryo
- Molecular Imaging Center, National Institute of Radiological Sciences (NIRS), Chiba, Japan
| | - Rumiana Bakalova
- Molecular Imaging Center, National Institute of Radiological Sciences (NIRS), Chiba, Japan
| | - Shuhei Murayama
- Molecular Imaging Center, National Institute of Radiological Sciences (NIRS), Chiba, Japan
| | - Tsuneo Saga
- Molecular Imaging Center, National Institute of Radiological Sciences (NIRS), Chiba, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kenji Kono
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
12
|
Abstract
Thermally responsive nanogel drug delivery systems (TRNDDS) have been widely investigated as a new strategy for active targeting tumor therapy, as these can accumulate on the tumor site and/or release the payload at the desired site by structure changes rapidly once stimulated by temperature changes. In this review, we discuss the evolution of TRNDDS and future perspectives for antitumor drug and gene delivery. With further understanding of the specificity of tumor site at the cellular and molecular level, in parallel with the development of nanomaterial design and preparation, TRNDDS show great potential for tumor targeting therapy.
Collapse
|
13
|
Zaher A, Li S, Wolf KT, Pirmoradi FN, Yassine O, Lin L, Khashab NM, Kosel J. Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes. BIOMICROFLUIDICS 2015; 9:054113. [PMID: 26487899 PMCID: PMC4592434 DOI: 10.1063/1.4931954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/17/2015] [Indexed: 05/04/2023]
Abstract
Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices' drug diffusion rates are on the order of 0.5-2 μg/h for higher release rate designs, and 12-40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source.
Collapse
Affiliation(s)
- A Zaher
- School of Engineering, University of British Columbia , Kelowna, British Columbia V1V 1V7, Canada
| | - S Li
- Smart Hybrid Materials (SHMs) Lab, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) , Thuwal 23955, Saudi Arabia
| | - K T Wolf
- Department of Mechanical Engineering, University of California at Berkeley , California 94720, USA
| | - F N Pirmoradi
- Department of Mechanical Engineering, University of California at Berkeley , California 94720, USA
| | - O Yassine
- Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST) , Thuwal 23955, Saudi Arabia
| | - L Lin
- Department of Mechanical Engineering, University of California at Berkeley , California 94720, USA
| | - N M Khashab
- Smart Hybrid Materials (SHMs) Lab, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) , Thuwal 23955, Saudi Arabia
| | - J Kosel
- Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST) , Thuwal 23955, Saudi Arabia
| |
Collapse
|
14
|
Triggering Mechanisms of Thermosensitive Nanoparticles Under Hyperthermia Condition. J Pharm Sci 2015; 104:2414-28. [DOI: 10.1002/jps.24536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/11/2022]
|
15
|
Ta T, Bartolak-Suki E, Park EJ, Karrobi K, McDannold NJ, Porter TM. Localized delivery of doxorubicin in vivo from polymer-modified thermosensitive liposomes with MR-guided focused ultrasound-mediated heating. J Control Release 2014; 194:71-81. [PMID: 25151982 DOI: 10.1016/j.jconrel.2014.08.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 07/29/2014] [Accepted: 08/13/2014] [Indexed: 12/23/2022]
Abstract
Thermosensitive liposomes have emerged as a viable strategy for localized delivery and triggered release of chemotherapy. MR-guided focused ultrasound (MRgFUS) has the capability of heating tumors in a controlled manner, and when combined with thermosensitive liposomes can potentially reduce tumor burden in vivo. However, the impact of this drug delivery strategy has rarely been investigated. We have developed a unique liposome formulation modified with p(NIPAAm-co-PAA), a polymer that confers sensitivity to both temperature and pH. These polymer-modified thermosensitive liposomes (PTSL) demonstrated sensitivity to focused ultrasound, and required lower thermal doses and were more cytotoxic than traditional formulations in vitro. A set of acoustic parameters characterizing optimal release from PTSL in vitro was applied in the design of a combined MRgFUS/PTSL delivery platform. This platform more effectively reduced tumor burden in vivo when compared to free drug and traditional formulations. Histological analysis indicated greater tumor penetration, more extensive ECM remodeling, and greater cell destruction in tumors administered PTSL, correlating with improved response to the therapy.
Collapse
Affiliation(s)
- Terence Ta
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA.
| | - Elizabeth Bartolak-Suki
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA.
| | - Eun-Joo Park
- Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA.
| | - Kavon Karrobi
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA.
| | - Nathan J McDannold
- Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA.
| | - Tyrone M Porter
- Department of Mechanical Engineering, Boston University, 110 Cummington Street, Boston, MA 02215, USA.
| |
Collapse
|
16
|
Rao W, Zhang W, Poventud-Fuentes I, Wang Y, Lei Y, Agarwal P, Weekes B, Li C, Lu X, Yu J, He X. Thermally responsive nanoparticle-encapsulated curcumin and its combination with mild hyperthermia for enhanced cancer cell destruction. Acta Biomater 2014; 10:831-42. [PMID: 24516867 DOI: 10.1016/j.actbio.2013.10.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this study, thermally responsive polymeric nanoparticle-encapsulated curcumin (nCCM) was prepared and characterized. The nCCM is ≈ 22 and 300 nm in diameter at 37 and 22 °C, respectively. The smaller size of the nCCM at 37 °C was found to significantly facilitate its uptake in vitro by human prostate adenocarcinoma PC-3 cancer cells. However, the intracellular nCCM decreases rapidly (rather than plateaus) after reaching its peak at ≈ 1.5 h during a 3-day incubation of the PC-3 cells with nCCM. Moreover, a mild hyperthermia (with negligible cytotoxicity alone) at 43 °C applied between 1 and 1.5 h during the 3-day incubation not only increases the peak uptake but also alters intracellular distribution of nCCM (facilitating its delivery into cell nuclei), which helps to retain a significantly much higher level of intracellular curcumin. These effects of mild hyperthermia could be due in part to the thermal responsiveness of the nCCM: they are more positively charged at 43 °C and can be more easily attracted to the negatively charged nuclear membrane to enter nuclei as a result of electrostatic interaction. Ultimately, a combination of the thermally responsive nCCM and mild hyperthermia significantly enhances the anticancer capability of nCCM, resulting in a more than 7-fold decrease in its inhibitory concentration to reduce cell viability to 50% (IC50). Further mechanistic studies suggest injury pathways associated with heat shock proteins 27 and 70 should contribute to the enhanced cancer cell destruction by inducing cell apoptosis and necrosis. Overall, this study demonstrates the potential of combining mild hyperthermia and thermally responsive nanodrugs such as nCCM for augmented cancer therapy.
Collapse
|
17
|
Ozcelikkale A, Ghosh S, Han B. Multifaceted Transport Characteristics of Nanomedicine: Needs for Characterization in Dynamic Environment. Mol Pharm 2013; 10:2111-26. [PMID: 23517188 DOI: 10.1021/mp3005947] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Altug Ozcelikkale
- School
of Mechanical Engineering and ‡Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana,
United States
| | - Soham Ghosh
- School
of Mechanical Engineering and ‡Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana,
United States
| | - Bumsoo Han
- School
of Mechanical Engineering and ‡Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana,
United States
| |
Collapse
|
18
|
|
19
|
Lehner R, Wang X, Wolf M, Hunziker P. Designing switchable nanosystems for medical application. J Control Release 2012; 161:307-16. [DOI: 10.1016/j.jconrel.2012.04.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 04/27/2012] [Indexed: 11/26/2022]
|
20
|
Seo SR, Kim JC. Photo-responsive interpenetrating network beads of alginate/polyvinyl alcohol–coumarin conjugate. Drug Dev Ind Pharm 2012; 39:1921-7. [DOI: 10.3109/03639045.2012.696655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Lee MS, Kim JC. Effects of Surfactants on Phase Transition of Poly(N-isopropylacrylamide) and Poly(N-isopropylacrylamide-co-dimethylaminoethylmethacrylate). J DISPER SCI TECHNOL 2012. [DOI: 10.1080/01932691.2011.561181] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Wang L, Zhang J, An Y, Wang Z, Liu J, Li Y, Zhang D. A study on the thermochemotherapy effect of nanosized As2O3/MZF thermosensitive magnetoliposomes on experimental hepatoma in vitro and in vivo. NANOTECHNOLOGY 2011; 22:315102. [PMID: 21730756 DOI: 10.1088/0957-4484/22/31/315102] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this paper, we describe the synthesis and characterization of a nanosized, thermosensitive magnetoliposome encapsulating magnetic nanoparticles (MZFs) and antitumor drugs (As(2)O(3)). The nanoliposomes were spherical and mostly single volume, with an average diameter of 128.2 nm. Differential scanning calorimetry (DSC) showed a liposome phase transition temperature of 42.71 °C. After that, we studied the liposomes' anti-hepatoma effect in vitro and in vivo. The antitumor effect of the nanoliposomes on human hepatoma cells, SMMC-7721, and changes in expression of apoptosis-related proteins were examined in vitro. The results show that As(2)O(3)/MZF thermosensitive magnetoliposomes combined with hyperthermia had a great impact on the Bax/Bcl-2 ratio, which increased to 1.914 and exhibited a rapid response to induce apoptosis of tumor cells. An in situ rabbit liver tumor model was established and used to evaluate the antitumor effect of combined hyperthermia and chemotherapy following transcatheter arterial embolization with As(2)O(3)/MZF thermosensitive magnetoliposomes. The results demonstrated a strong anti-hepatoma effect, with a tumor volume inhibition rate of up to 85.22%. Thus, As(2)O(3)/MZF thermosensitive magnetoliposomes may play a great role in the treatment of hepatocarcinoma.
Collapse
Affiliation(s)
- Li Wang
- School of Medicine, Southeast University, Nanjing, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Tagami T, Ernsting MJ, Li SD. Efficient tumor regression by a single and low dose treatment with a novel and enhanced formulation of thermosensitive liposomal doxorubicin. J Control Release 2011; 152:303-9. [DOI: 10.1016/j.jconrel.2011.02.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 12/15/2010] [Accepted: 02/08/2011] [Indexed: 12/17/2022]
|
24
|
|
25
|
He X. Thermostability of biological systems: fundamentals, challenges, and quantification. Open Biomed Eng J 2011; 5:47-73. [PMID: 21769301 PMCID: PMC3137158 DOI: 10.2174/1874120701105010047] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 12/25/2022] Open
Abstract
This review examines the fundamentals and challenges in engineering/understanding the thermostability of biological systems over a wide temperature range (from the cryogenic to hyperthermic regimen). Applications of the bio-thermostability engineering to either destroy unwanted or stabilize useful biologicals for the treatment of diseases in modern medicine are first introduced. Studies on the biological responses to cryogenic and hyperthermic temperatures for the various applications are reviewed to understand the mechanism of thermal (both cryo and hyperthermic) injury and its quantification at the molecular, cellular and tissue/organ levels. Methods for quantifying the thermophysical processes of the various applications are then summarized accounting for the effect of blood perfusion, metabolism, water transport across cell plasma membrane, and phase transition (both equilibrium and non-equilibrium such as ice formation and glass transition) of water. The review concludes with a summary of the status quo and future perspectives in engineering the thermostability of biological systems.
Collapse
Affiliation(s)
- Xiaoming He
- Multiscale Biothermostability Engineering Laboratory, Department of Mechanical Engineering and Biomedical Engineering Program, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA
| |
Collapse
|
26
|
Zhang W, Gilstrap K, Wu L, K C RB, Moss MA, Wang Q, Lu X, He X. Synthesis and characterization of thermally responsive Pluronic F127-chitosan nanocapsules for controlled release and intracellular delivery of small molecules. ACS NANO 2010; 4:6747-6759. [PMID: 21038924 DOI: 10.1021/nn101617n] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this study, we synthesized empty core-shell structured nanocapsules of Pluronic F127 and chitosan and characterized the thermal responsiveness of the nanocapsules in size and wall-permeability. Moreover, we determined the feasibility of using the nanocapsules to encapsulate small molecules for temperature-controlled release and intracellular delivery. The nanocapsules are ∼37 nm at 37 °C and expand to ∼240 nm when cooled to 4 °C in aqueous solutions, exhibiting >200 times change in volume. Moreover, the permeability of the nanocapsule wall is high at 4 °C (when the nanocapsules are swollen), allowing free diffusion of small molecules (ethidium bromide, MW = 394.3 Da) across the wall, while at 37 °C (when the nanocapsules are swollen), the wall-permeability is so low that the small molecules can be effectively withheld in the nanocapsule for hours. As a result of their thermal responsiveness in size and wall-permeability, the nanocapsules are capable of encapsulating the small molecules for temperature-controlled release and intracellular delivery into the cytosol of both cancerous (MCF-7) and noncancerous (C3H10T1/2) mammalian cells. The cancerous cells were found to take up the nanocapsules much faster than the noncancerous cells during 45 min incubation at 37 °C. Moreover, toxicity of the nanocapsules as a delivery vehicle was found to be negligible. The Pluronic F127-chitosan nanocapsules should be very useful for encapsulating small therapeutic agents to treat diseases particularly when it is combined with cryotherapy where the process of cooling and heating between 37 °C and hypothermic temperatures is naturally done.
Collapse
Affiliation(s)
- Wujie Zhang
- Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kang MK, Lee HY, Kim JC. Release Property of Alginate Beads Coated with Poly(N-isopropylacrylamide-co-dimethylaminoethylmethacrylate). J DISPER SCI TECHNOL 2010. [DOI: 10.1080/01932690903294212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
McCarthy JR, Korngold E, Weissleder R, Jaffer FA. A light-activated theranostic nanoagent for targeted macrophage ablation in inflammatory atherosclerosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:2041-9. [PMID: 20721949 PMCID: PMC3018665 DOI: 10.1002/smll.201000596] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The synthesis and utility of a multimodal theranostic nanoagent based upon magnetofluorescent nanoparticles for the treatment of inflammatory atherosclerosis is described. These particles are modified with near-infrared fluorophores and light-activated therapeutic moieties, which allow for the optical determination of agent localization and phototoxic activation at spectrally distinct wavelengths. The resulting agent is readily taken up by murine macrophages in vitro and is highly phototoxic, with an LD(50) of 430 pM. Intravenous administration results in the localization of the nanoagent within macrophage-rich atherosclerotic lesions that can be imaged by intravital fluorescence microscopy. Irradiation of the atheroma with 650 nm light activates the therapeutic component and results in eradication of inflammatory macrophages, which may induce lesion stabilization. Importantly, these agents display limited skin photosensitivity, are highly efficacious, and provide an integrated imaging and therapeutic nanoplatform for atherosclerosis.
Collapse
Affiliation(s)
| | | | - Ralph Weissleder
- Center for Systems Biology, Harvard Medical School and Massachusetts General Hospital, 185 Cambridge Street, Suite 5.210, Boston, MA 02114, USA, Phone: 617-726-9218, Fax: 617-726-5708
| | | |
Collapse
|
29
|
Wang JH, Tung HD, Chen TY, Hung CH, Chen CH, Changchien CS, Hu TH, Lee CM, Lu SN. Radiofrequency ablation of small hepatocellular carcinoma with intravenous pegylated liposomal doxorubicin. Hepatol Int 2010; 5:567-74. [PMID: 21442054 DOI: 10.1007/s12072-010-9215-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 08/31/2010] [Indexed: 11/28/2022]
Abstract
PURPOSE Synergy between radiofrequency ablation (RFA) and chemotherapy was demonstrated for liver malignancy. We assess the efficacy of intravenous pegylated liposomal doxorubicin (PLD) for RFA in patients with small hepatocellular carcinoma (HCC). METHODS This study was designed as a non-randomized control trial. Patients received either PLD (20 mg) intravenously before RFA, or standard RFA alone. Computed tomography was performed immediately and 4 weeks after RFA to obtain ablative diameter, area and volume for each tumor. The changes in ablation size were analyzed by paired images for each tumor. All patients were followed up regularly. RESULTS A total of 24 patients with 29 HCCs, including 12 patients with 16 tumors (mean 2.2 cm ± 0.9) in the PLD and RFA group, and 12 patients with 13 tumors (2.4 cm ± 0.5) in the RFA alone group, were enrolled. The ablative diameter, area and volume significantly decreased 4 weeks after RFA. The ablative volume decrease was significantly greater for the RFA alone group than for the combination group (26.1 vs. 12.1%, p = 0.018). The 3-year cumulative tumor progression and survival rates did not differ significantly between the two groups. CONCLUSION Intravenous PLD before RFA reduced contraction of ablative volume and might have no impact on tumor progression and survival in patients with small HCC after RFA.
Collapse
|
30
|
Jung SH, Kim SK, Jung SH, Kim EH, Cho SH, Jeong KS, Seong H, Shin BC. Increased stability in plasma and enhanced cellular uptake of thermally denatured albumin-coated liposomes. Colloids Surf B Biointerfaces 2010; 76:434-40. [DOI: 10.1016/j.colsurfb.2009.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 11/30/2009] [Accepted: 12/03/2009] [Indexed: 11/28/2022]
|
31
|
Hioki A, Wakasugi A, Kawano K, Hattori Y, Maitani Y. Development of an in Vitro Drug Release Assay of PEGylated Liposome Using Bovine Serum Albumin and High Temperature. Biol Pharm Bull 2010; 33:1466-70. [DOI: 10.1248/bpb.33.1466] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Atsuko Hioki
- Institute of Medicinal Chemistry, Hoshi University
| | - Ai Wakasugi
- Institute of Medicinal Chemistry, Hoshi University
| | - Kumi Kawano
- Institute of Medicinal Chemistry, Hoshi University
| | | | | |
Collapse
|
32
|
Paoli EE, Kruse DE, Seo JW, Zhang H, Kheirolomoom A, Watson KD, Chiu P, Stahlberg H, Ferrara KW. An optical and microPET assessment of thermally-sensitive liposome biodistribution in the Met-1 tumor model: Importance of formulation. J Control Release 2009; 143:13-22. [PMID: 20006659 DOI: 10.1016/j.jconrel.2009.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/16/2009] [Accepted: 12/06/2009] [Indexed: 01/18/2023]
Abstract
The design of delivery vehicles that are stable in circulation but can be activated by exogenous energy sources is challenging. Our goals are to validate new imaging methods for the assessment of particle stability, to engineer stable and activatable particles and to assess accumulation of a hydrophilic model drug in an orthotopic tumor. Here, liposomes were injected into the tail vein of FVB mice containing bilateral Met-1 tumors and imaged in vivo using microPET and optical imaging techniques. Cryo-electron microscopy was applied to assess particle shape prior to injection, ex vivo fluorescence images of dissected tissues were acquired, excised tissue was further processed with a cell-digest preparation and assayed for fluorescence. We find that for a stable particle, in vivo tumor images of a hydrophilic model drug were highly correlated with PET images of the particle shell and ex vivo fluorescence images of processed tissue, R(2)=0.95 and R(2)=0.99 respectively. We demonstrate that the accumulation of a hydrophilic model drug is increased by up to 177 fold by liposomal encapsulation, as compared to accumulation of the drug at 24 hours.
Collapse
Affiliation(s)
- E E Paoli
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Aluri S, Janib SM, Mackay JA. Environmentally responsive peptides as anticancer drug carriers. Adv Drug Deliv Rev 2009; 61:940-52. [PMID: 19628014 PMCID: PMC2757494 DOI: 10.1016/j.addr.2009.07.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 01/08/2023]
Abstract
The tumor microenvironment provides multiple cues that may be exploited to improve the efficacy of established chemotherapeutics; furthermore, polypeptides are uniquely situated to capitalize on these signals. Peptides provide: 1) a rich repertoire of biologically specific interactions to draw upon; 2) environmentally responsive phase behaviors, which may be tuned to respond to signatures of disease; 3) opportunities to direct self-assembly; 4) control over routes of biodegradation; 5) the option to seamlessly combine functionalities into a single polymer via a one-step biosynthesis. As development of cancer-targeted nanocarriers expands, peptides provide a unique source of functional units that may target disease. This review explores potential microenvironmental physiology indicative of tumors and peptides that have demonstrated an ability to target and deliver to these signals.
Collapse
Affiliation(s)
- Suhaas Aluri
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90033-9121, USA
| | | | | |
Collapse
|
34
|
|
35
|
Djafarzadeh R, Milani V, Rieth N, von Luettichau I, Skrablin PS, Hofstetter M, Noessner E, Nelson PJ. TIMP-1-GPI in combination with hyperthermic treatment of melanoma increases sensitivity to FAS-mediated apoptosis. Cancer Immunol Immunother 2009; 58:361-71. [PMID: 18618109 PMCID: PMC11030769 DOI: 10.1007/s00262-008-0559-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 06/27/2008] [Indexed: 02/02/2023]
Abstract
Resistance to apoptosis is a prominent feature of malignant melanoma. Hyperthermic therapy can be an effective adjuvant treatment for some tumors including melanoma. We developed a fusion protein based on the tissue inhibitor of matrix metalloproteinase-1 linked to a glycosylphosphatidylinositol anchor (TIMP-1-GPI). The TIMP-1-GPI-fusion protein shows unique properties. Exogenous administration of TIMP-1-GPI can result in transient morphological changes to treated cells including modulation of proliferation and decreased resistance to apoptosis. The effect of TIMP-1-GPI on the biology of melanoma in the context of a defined hyperthermic dose was evaluated in vitro. Clonogenic assays were used to measure cell survival. Gelatinase zymography determined secretion of MMP-2 and MMP-9. Monoclonal antibody against FAS/CD95 was applied to induce apoptosis. The expression of pro- and anti-apoptotic proteins and the secretion of immunoregulatory cytokines were then evaluated using Western blot and ELISA. TIMP-1-GPI combined with a sub-lethal hyperthermic treatment (41.8 degrees C for 2 h) suppressed tumor cell growth capacity as measured by clonogenic assay. The co-treatment also significantly suppressed tumor cell proliferation, enhanced FAS receptor surface expression increased tumor cell susceptibility to FAS-mediated killing. The increased sensitivity to FAS-induced apoptosis was linked to alterations in the apoptotic mediators Bcl-2, Bax, Bcl-XL and Apaf-1. The agent works in concert with sub-lethal hyperthermic treatment to render melanoma cells sensitive to FAS killing. The targeted delivery of TIMP-1-GPI to tumor environments in the context of regional hyperthermic therapy could be optimized through the use of thermosensitive liposomes.
Collapse
Affiliation(s)
- Roghieh Djafarzadeh
- Medizinische Poliklinik, Ludwig-Maximilians-Universität München, Schillerstrasse 42, 80336 Munich, Germany
| | - Valeria Milani
- Medical Clinic III, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Nicole Rieth
- Medizinische Poliklinik, Ludwig-Maximilians-Universität München, Schillerstrasse 42, 80336 Munich, Germany
| | - Irene von Luettichau
- Medizinische Poliklinik, Ludwig-Maximilians-Universität München, Schillerstrasse 42, 80336 Munich, Germany
- Department of Paediatrics, Technical University, Munich, Germany
| | - Petra S. Skrablin
- Helmholz Zentrum Munich-Institute of Molecular Immunology, Munich, Germany
| | - Monika Hofstetter
- Medizinische Poliklinik, Ludwig-Maximilians-Universität München, Schillerstrasse 42, 80336 Munich, Germany
| | - Elfriede Noessner
- Helmholz Zentrum Munich-Institute of Molecular Immunology, Munich, Germany
| | - Peter J. Nelson
- Medizinische Poliklinik, Ludwig-Maximilians-Universität München, Schillerstrasse 42, 80336 Munich, Germany
| |
Collapse
|
36
|
Kullberg M, Mann K, Owens JL. A two-component drug delivery system using Her-2-targeting thermosensitive liposomes. J Drug Target 2009; 17:98-107. [DOI: 10.1080/10611860802471562] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
|
38
|
Pridgen EM, Langer R, Farokhzad OC. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine (Lond) 2007; 2:669-80. [PMID: 17976029 DOI: 10.2217/17435889.2.5.669] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanotechnology has the potential to impact the treatment of cancer significantly. This review will explore how this potential is beginning to be realized through the design of polymeric nanoparticle delivery systems. Current research is focused on developing biocompatible nanoparticles capable of targeting specific cancer markers and delivering imaging and therapeutic agents for the detection and treatment of cancer, resulting in a number of preclinical and clinical applications. More sophisticated nanoparticle designs are now in development, including particles able to release multiple drugs for enhanced treatment efficacy and targeted, multifunctional particles capable of combining imaging and drug release.
Collapse
Affiliation(s)
- Eric M Pridgen
- MIT-Harvard Center for Cancer Nanotechnology Excellence, Department of Chemical Engineering, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
39
|
Wan WK, Yang L, Padavan DT. Use of degradable and nondegradable nanomaterials for controlled release. Nanomedicine (Lond) 2007; 2:483-509. [PMID: 17716133 DOI: 10.2217/17435889.2.4.483] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drug-delivery devices are fundamentally important in improving the pharmacological profiles of therapeutic molecules. Nanocontrolled-release systems are attracting a lot of attention currently owing to their large surface area and their ability to target delivery to specific sites in the human body. In addition, they can penetrate the cell membrane for gene, nucleic acid and bioactive peptide/protein delivery. Representative applications of nanodrug-delivery systems include controlled-release wound dressings, controlled-release scaffolds for tissue regeneration and implantable biodegradable nanomaterial-based medical devices integrated with drug-delivery functions. We review the present status and future perspectives of various types of nanocontrolled-release systems. Although many of the well-established degradable and nondegradable controlled-release vehicles are being investigated for their processing into nanocarriers, several new emerging nanomaterials are being studied for their controlled-release properties. The release of multiple bioactive agents, each with its own kinetic profile, is becoming possible. In addition, integration of the nanocontrolled-release systems with other desirable functions to create new, cross-discipline applications can also be realized.
Collapse
Affiliation(s)
- W K Wan
- University of Western Ontario, Biomedical Engineering Graduate Program, London, Ontario, Canada.
| | | | | |
Collapse
|
40
|
Han HD, Lee A, Hwang T, Song CK, Seong H, Hyun J, Shin BC. Enhanced circulation time and antitumor activity of doxorubicin by comblike polymer-incorporated liposomes. J Control Release 2007; 120:161-8. [PMID: 17524514 DOI: 10.1016/j.jconrel.2007.03.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/02/2007] [Accepted: 03/29/2007] [Indexed: 10/23/2022]
Abstract
Polymer incorporation on liposomal membranes has been extensively studied as a method of enhancing the circulation time of liposomes in the bloodstream. In this study, we investigated the in vitro and in vivo characteristics of liposomes whose surface was modified using a comblike polymer comprised of a poly(methyl methacrylate) (PMMA) backbone and short poly(ethylene oxide) (PEO) side chains. Doxorubicin (DOX)-loaded liposomes incorporating with the comblike polymer were prepared and their circulation time, biodistribution and antitumor activity were evaluated in B16F10 melanoma tumor-bearing mice. The circulation half-life time in the bloodstream of the comblike polymer-incorporated liposomes (CPILs) was approximately 14- or 2-fold higher than those of the conventional or polyethyleneglycol-fixed liposomes (PEG-liposomes), respectively. Additionally, in the biodistribution assay, the accumulation of the CPILs in the tumor was higher than those of the other liposomes. Based on this result, the antitumor activities of the CPILs were higher than those of conventional liposome formulation of DOX or free DOX due to the higher passive targeting efficiency of the long-circulating CPILs to tumor. This study suggests that the incorporation of the comblike polymer on the liposomal membrane is a promising tool to further improve circulation time of liposomes in tumor-bearing mice.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/blood
- Antibiotics, Antineoplastic/pharmacokinetics
- Antibiotics, Antineoplastic/pharmacology
- Area Under Curve
- Doxorubicin/administration & dosage
- Doxorubicin/blood
- Doxorubicin/pharmacokinetics
- Doxorubicin/pharmacology
- Drug Delivery Systems
- Female
- Half-Life
- Injections, Intravenous
- Injections, Subcutaneous
- Liposomes
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Metabolic Clearance Rate
- Mice
- Mice, Inbred C57BL
- Polymers/chemical synthesis
- Polymers/chemistry
- Polymers/therapeutic use
- Tissue Distribution
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hee Dong Han
- Bioactive Molecules Delivery and Control Research Team, Korea Research Institute of Chemical Technology, Yuseong, Daejeon, South Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Yamamoto SI, Pietrasik J, Matyjaszewski K. The effect of structure on the thermoresponsive nature of well-defined poly(oligo(ethylene oxide) methacrylates) synthesized by ATRP. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/pola.22371] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|