1
|
Wong CYJ, Baldelli A, Tietz O, van der Hoven J, Suman J, Ong HX, Traini D. An overview of in vitro and in vivo techniques for characterization of intranasal protein and peptide formulations for brain targeting. Int J Pharm 2024; 654:123922. [PMID: 38401871 DOI: 10.1016/j.ijpharm.2024.123922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The surge in neurological disorders necessitates innovative strategies for delivering active pharmaceutical ingredients to the brain. The non-invasive intranasal route has emerged as a promising approach to optimize drug delivery to the central nervous system by circumventing the blood-brain barrier. While the intranasal approach offers numerous advantages, the lack of a standardized protocol for drug testing poses challenges to both in vitro and in vivo studies, limiting the accurate interpretation of nasal drug delivery and pharmacokinetic data. This review explores the in vitro experimental assays employed by the pharmaceutical industry to test intranasal formulation. The focus lies on understanding the diverse techniques used to characterize the intranasal delivery of drugs targeting the brain. Parameters such as drug release, droplet size measurement, plume geometry, deposition in the nasal cavity, aerodynamic performance and mucoadhesiveness are scrutinized for their role in evaluating the performance of nasal drug products. The review further discusses the methodology for in vivo characterization in detail, which is essential in evaluating and refining drug efficacy through the nose-to-brain pathway. Animal models are indispensable for pre-clinical drug testing, offering valuable insights into absorption efficacy and potential variables affecting formulation safety. The insights presented aim to guide future research in intranasal drug delivery for neurological disorders, ensuring more accurate predictions of therapeutic efficacy in clinical contexts.
Collapse
Affiliation(s)
- Chun Yuen Jerry Wong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Alberto Baldelli
- Faculty of Food and Land Systems, The University of British Columbia, 2357 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Ole Tietz
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Julia van der Hoven
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Julie Suman
- Next Breath, an Aptar Pharma Company, Baltimore, MD 21227, USA
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia.
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
2
|
Luo D, Ni X, Yang H, Feng L, Chen Z, Bai L. A comprehensive review of advanced nasal delivery: Specially insulin and calcitonin. Eur J Pharm Sci 2024; 192:106630. [PMID: 37949195 DOI: 10.1016/j.ejps.2023.106630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Peptide drugs through nasal mucous membrane, such as insulin and calcitonin have been widely used in the medical field. There are always two sides to a coin. One side, intranasal drug delivery can imitate the secretion pattern in human body, having advantages of physiological structure and convenient use. Another side, the low permeability of nasal mucosa, protease environment and clearance effect of nasal cilia hinder the intranasal absorption of peptide drugs. Researchers have taken multiple means to achieve faster therapeutic concentration, lower management dose, and fewer side effects for better nasal preparations. To improve the peptide drugs absorption, various strategies had been explored via the nasal mucosa route. In this paper, we reviewed the achievements of 18 peptide drugs in the past decade about the perspectives of the efficacy, mechanism of enhancing intranasal absorption and safety. The most studies were insulin and calcitonin. As a result, absorption enhancers, nanoparticles (NPs) and bio-adhesive system are the most widely used. Among them, chitosan (CS), cell penetrating peptides (CPPs), tight junction modulators (TJMs), soft NPs and gel/hydrogel are the most promising strategies. Moreover, two or three strategies can be combined to prepare drug vectors. In addition, spray freeze dried (SFD), self-emulsifying nano-system (SEN), and intelligent glucose reaction drug delivery system are new research directions in the future.
Collapse
Affiliation(s)
- Dan Luo
- Department of Pharmacy, Shantou Hospital of Traditional Chinese Medicine, Shantou, Guangdong, China
| | - Xiaoqing Ni
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Yang
- Power China Chengdu Engineering Corporation Limited, Chengdu, Sichuan, China
| | - Lu Feng
- Department of Emergency, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
| | - Zhaoqun Chen
- Department of Pharmacy, Shantou Hospital of Traditional Chinese Medicine, Shantou, Guangdong, China.
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
3
|
L-Cysteine Modified Chitosan Nanoparticles and Carbon-Based Nanostructures for the Intranasal Delivery of Galantamine. Polymers (Basel) 2022; 14:polym14194004. [PMID: 36235952 PMCID: PMC9571213 DOI: 10.3390/polym14194004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
The present study evaluates the use of thiolized chitosan conjugates (CS) in combination with two fundamental carbon nanoforms (carbon dots (CDs) and Hierarchical Porous Carbons (HPC)) for the preparation of intranasally (IN) administrated galantamine (GAL) nanoparticles (NPs). Initially, the modification of CS with L-cysteine (Cys) was performed, and the successful formation of a Cys-CS conjugates was verified via 1H-NMR, FTIR, and pXRD. The new Cys-CS conjugate showed a significant solubility enhancement in neutral and alkaline pH, improving CS’s utility as a matrix-carrier for IN drug administration. In a further step, drug-loaded NPs were prepared via solid-oil–water double emulsification, and thoroughly analyzed by SEM, DLS, FTIR and pXRD. The results showed the formation of spherical NPs with a smooth surface, while the drug was amorphously dispersed within most of the prepared NPs, with the exemption of those systems contianing the CDs. Finally, in vitro dissolution release studies revealed that the prepared NPs could prolong GAL’s release for up to 12 days. In sum, regarding the most promising system, the results of the present study clearly suggest that the preparation of NPs using both Cys-CS and CDs results in a more thermodynamically stable drug dispersion, while a zero-order release profile was achieved, which is essential to attain a stable in vivo pharmacokinetic behavior.
Collapse
|
4
|
Raval J, Trivedi R, Suman S, Kukrety A, Prajapati P. NANO-BIOTECHNOLOGY AND ITS INNOVATIVE PERSPECTIVE IN DIABETES MANAGEMENT. Mini Rev Med Chem 2021; 22:89-114. [PMID: 34165408 DOI: 10.2174/1389557521666210623164052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
Diabetes occurs due to the imbalance of glucose in the body known as glucose homeostasis, thus leading to metabolic changes in the body. The two stages hypoglycemia or hyperglycemia classify diabetes into various categories. Various bio-nanotechnological approaches are coupled up with nano particulates, polymers, liposome, various gold plated and solid lipid particulates, regulating transcellular transport, non specific cellular uptake, and paracellular transport, leading to oral, trans-dermal , pulmonary, buccal , nasal , specific gene oriented administration to avoid the patient's non compliance with the parental routes of administration. Phytochemicals are emerging strategies for the future prospects of diabetes management.
Collapse
Affiliation(s)
- Jigar Raval
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhinagar-382007, Gujarat, India
| | - Riddhi Trivedi
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhinagar-382007, Gujarat, India
| | - Sonali Suman
- CDSCO, Meghaninagar, Ahmedabad, Gujarat 380003, India
| | | | - Prajesh Prajapati
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhinagar-382007, Gujarat, India
| |
Collapse
|
5
|
Khalid S, Abbas G, Hanif M, Shah S, Shah SNH, Jalil A, Yaqoob M, Ameer N, Anum A. Thiolated sodium alginate conjugates for mucoadhesive and controlled release behavior of metformin microspheres. Int J Biol Macromol 2020; 164:2691-2700. [PMID: 32810533 DOI: 10.1016/j.ijbiomac.2020.08.116] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/23/2020] [Accepted: 08/12/2020] [Indexed: 01/09/2023]
Abstract
The absorption of BCS III drugs can be improved by inhibiting the P-glycoprotein (P-gp) efflux and by increasing the mucoadhesion of natural polymers. In the present study, an esterification of sodium alginate (SA) with thioglycolic acid (TGA) was applied for the preparation of thiolated sodium alginate (TSA). The Ellman's test was applied to quantify the thiol group and a di-sulphide bond test was performed to confirm any SS linkages. The FTIR, DSC, XRD, 1H NMR and charring point determinations were confirmed the thiol group of TSA. The gel like rheological properties with porcine mucous was confirmed by viscoelasticity properties and the mucoadhesion with the rabbit intestine was carried out after compression of 30 mg tablets of TSA. The content of thiol group was in the range of 320-730 μmoL/g of the polymer. The FTIR spectrum showed a characteristic peak of sulfhydryl group at 2557 cm-1 in TSA and the reduction of the charring point from 220 °C to 178 °C was confirmed the thiolation of TSA. A direct relationship of mucoadhesion and swelling was observed with the concentration of TGA and SA, respectively. The prepared microspheres were 2-7 μm in size, excellent rheological properties and non-fickian drug release behavior was observed.
Collapse
Affiliation(s)
- Siddra Khalid
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Ghulam Abbas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Muhammad Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan.
| | - Shahid Shah
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Syed Nisar Hussain Shah
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Aamir Jalil
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Muhammad Yaqoob
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Nabeela Ameer
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Ayesha Anum
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
6
|
Federer C, Kurpiers M, Bernkop-Schnürch A. Thiolated Chitosans: A Multi-talented Class of Polymers for Various Applications. Biomacromolecules 2020; 22:24-56. [PMID: 32567846 PMCID: PMC7805012 DOI: 10.1021/acs.biomac.0c00663] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Various properties of chitosan can be customized by thiolation for very specific needs in a wide range of application areas. Since the discovery of thiolated chitosans, many studies have proven their advantageous characteristics, such as adhesion to biological surfaces, adjustable cross-linking and swelling behavior, controllable drug release, permeation as well as cellular uptake enhancement, inhibition of efflux pumps and enzymes, complexation of metal ions, antioxidative properties, and radical scavenging activity. Simultaneously, these polymers remain biodegradable without increased toxicity. Within this Review, an overview about the different possibilities to covalently attach sulfhydryl ligands to the polymeric backbone of chitosan is given, and the resulting versatile physiochemical properties are discussed in detail. Furthermore, the broad spectrum of applications for thiolated chitosans in science and industry, ranging from their most advanced use in pharmaceutical and medical science over wastewater treatment to the impregnation of textiles, is addressed.
Collapse
Affiliation(s)
- Christoph Federer
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.,Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Markus Kurpiers
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.,Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Zhang P, Zhang Y, Liu CG. Polymeric nanoparticles based on carboxymethyl chitosan in combination with painless microneedle therapy systems for enhancing transdermal insulin delivery. RSC Adv 2020; 10:24319-24329. [PMID: 35516174 PMCID: PMC9055120 DOI: 10.1039/d0ra04460a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022] Open
Abstract
Biodegradable nanoparticles (NPs) have been frequently used as insulin transdermal delivery vehicles due to their grand bioavailability, better encapsulation, controlled release and less toxic properties. However, the skin's barrier properties prevent insulin-loaded NP permeation at useful levels. Nowadays, microneedles have been spotlighted as novel transdermal delivery systems due to their advantages such as painlessness, efficient penetration and no hazardous residues. Herein, we introduce polymeric nanocarriers based on carboxymethyl chitosan (CMCS) for insulin delivery, combining with microneedle therapy systems, which can rapidly deliver insulin (INS) into the skin. The resulting CMCS-based nanocarriers are spherical nanoparticles with a mean size around 200 nm, which could generate supramolecular micelles to effectively encapsulate insulin (EE% = 83.78 ± 3.73%). A nanocrystalline microneedle array (6 × 6, 75/150 μm) was used to penetrate the stratum corneum (SC) for enhancing transdermal insulin delivery, while minimizing the pain sensation caused by intravenous injection. Compared with the transdermal rate of passive diffusion [2.77 ± 0.64 μg (cm-2 h-1)], the transdermal rate of the insulin-loaded NP combined with microneedle penetration shows a 4.2-fold increase [10.24 ± 1.06 μg (cm-2 h-1)] from permeation experiment in vitro. In vivo hypoglycemic experiments demonstrate the potential of using nanocarrier combination with microneedle arrays for painless insulin delivery through the skin in a clinical setting. Thus, the developed combination scheme of nanoparticles and microneedle arrays offers an effective, user-friendly, and low-toxicity option for diabetes patients requiring long-term and multiple treatments.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Life Science, Luoyang Normal University Luoyang 471934 PR China
| | - Yan Zhang
- Department of Life Science, Luoyang Normal University Luoyang 471934 PR China
| | - Chen-Guang Liu
- College of Marine Life Sciences, Ocean University of China Qingdao 266003 PR China +86 532 82032586 +86 532 82032102
| |
Collapse
|
8
|
Sinani G, Sessevmez M, Gök MK, Özgümüş S, Alpar HO, Cevher E. Modified chitosan-based nanoadjuvants enhance immunogenicity of protein antigens after mucosal vaccination. Int J Pharm 2019; 569:118592. [PMID: 31386881 DOI: 10.1016/j.ijpharm.2019.118592] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 01/08/2023]
Abstract
Nasal vaccination is considered to be an effective and convenient way of increasing immune responses both systemically and locally. Although various nanovaccine carriers have been introduced as potential immune adjuvants, further improvements are still needed before they can be taken to clinical usage. Chitosan-based nanovaccine carriers are one of the most widely studiedadjuvants, owing to the abilityof chitosan toopen tight junctions between nasal epithelial cells and enhance particle uptake as well as its inherent immune activating role. In present study, bovine serum albumin (BSA) loaded nanoparticles were prepared using novel aminated (aChi) and aminated plus thiolated chitosan (atChi) polymers, to further enhance mucoadhesiveness and adjuvanticity of the vaccine system by improving electrostatic interactions of polymers with negatively charged glycoproteins. Nanocarriers with optimum size and surface charge, high encapsulation efficiency of model antigen and good stability were developed. Negligible toxicity was observed in Calu-3 and A549 cell lines. In vivo studies, revealed high levels of systemic antibodies (IgG, IgG1 and IgG2a) throughout the study and presence of sIgA in vaginal washes showed that common mucosal system was successfully stimulated. Cytokine levels indicated a mixed Th1/Th2 immune response. A shift towards cellular immune responses was observed after nasal immunisation with antigen loaded nanoparticle formulations. These nanoparticles exhibit great potential for nasal application of vaccines.
Collapse
Affiliation(s)
- Genada Sinani
- Department of Pharmaceutical Technology, School of Pharmacy, Altinbas University, 34144 Istanbul, Turkey; Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey
| | - Melike Sessevmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey
| | - M Koray Gök
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320 Istanbul, Turkey
| | - Saadet Özgümüş
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320 Istanbul, Turkey
| | - H Oya Alpar
- Department of Pharmaceutical Technology, School of Pharmacy, Altinbas University, 34144 Istanbul, Turkey; School of Pharmacy, University College London (UCL), WC1N 1AX London, UK
| | - Erdal Cevher
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey.
| |
Collapse
|
9
|
Liu S, Wang Y, Zhu Y, Yu T, Zhao H. Safety and sedative effect of intranasal dexmedetomidine in mandibular third molar surgery: a systematic review and meta-analysis. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1301-1310. [PMID: 31114165 PMCID: PMC6485320 DOI: 10.2147/dddt.s194894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective The focus of this meta-analysis was to assess the sedative effect and safety of intranasal dexmedetomidine (Dex) in mandibular third molar surgery. Methods The PubMed/Medline, Web of Science, Cochrane Library, and China National Knowledge Infrastructure databases were searched for studies published until May 1, 2018. Eligible studies were restricted to randomized controlled trials (RCTs) and controlled clinical trials. The evaluation indicators mainly included the bispectral index, observer assessment of alertness/sedation scale, systolic blood pressure, and heart rate. Data for each period in the Dex and control groups were pooled to evaluate its sedative effect and safety. Results Five RCTs met the inclusion criteria. This study included 363 patients: 158 patients received intranasal inhalation of Dex before surgery, and 158 patients were negative controls. The pooled results showed a good sedative effect during tooth extraction when intranasal inhalation of Dex was performed 30 minutes before third molar extraction (assessment of alertness/sedation, Dex vs control SMD −1.20, 95% CI −1.73 to −0.67, I2=0, P=0.95; bispectral index, Dex vs control SMD −11.68, 95% CI −19.49 to −3.87, I2=89%; P=0.0001), and parameters returned to normal within 90 minutes after inhalation. During the operation, blood pressure and heart rate decreased to some extent, but the decreases did not exceed 20% of the baseline, and all patients returned to normal conditions within 90 minutes after inhalation. Conclusion Intranasal inhalation of Dex 30 minutes before third molar extraction can provide a good sedative effect, and large-sample multicenter RCTs are needed to evaluate the analgesic effect of Dex.
Collapse
Affiliation(s)
- Shaopeng Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong 250012, People's Republic of China, .,Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, People's Republic of China,
| | - Ye Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong 250012, People's Republic of China, .,Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, People's Republic of China,
| | - Yong Zhu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong 250012, People's Republic of China, .,Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, People's Republic of China,
| | - Tingting Yu
- Department of Oral and Maxillofacial Surgery, Jinan Stomatological Hospital, Jinan, Shandong 250012, People's Republic of China,
| | - Huaqiang Zhao
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong 250012, People's Republic of China, .,Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, People's Republic of China,
| |
Collapse
|
10
|
Jain A, Hurkat P, Jain A, Jain A, Jain A, Jain SK. Thiolated Polymers: Pharmaceutical Tool in Nasal Drug Delivery of Proteins and Peptides. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9704-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
M Ways TM, Lau WM, Khutoryanskiy VV. Chitosan and Its Derivatives for Application in Mucoadhesive Drug Delivery Systems. Polymers (Basel) 2018; 10:E267. [PMID: 30966302 PMCID: PMC6414903 DOI: 10.3390/polym10030267] [Citation(s) in RCA: 433] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/17/2018] [Accepted: 03/02/2018] [Indexed: 12/14/2022] Open
Abstract
Mucoadhesive drug delivery systems are desirable as they can increase the residence time of drugs at the site of absorption/action, provide sustained drug release and minimize the degradation of drugs in various body sites. Chitosan is a cationic polysaccharide that exhibits mucoadhesive properties and it has been widely used in the design of mucoadhesive dosage forms. However, its limited mucoadhesive strength and limited water-solubility at neutral and basic pHs are considered as two major drawbacks of its use. Chemical modification of chitosan has been exploited to tackle these two issues. In this review, we highlight the up-to-date studies involving the synthetic approaches and description of mucoadhesive properties of chitosan and chitosan derivatives. These derivatives include trimethyl chitosan, carboxymethyl chitosan, thiolated chitosan, chitosan-enzyme inhibitors, chitosan-ethylenediaminetetraacetic acid (chitosan-EDTA), half-acetylated chitosan, acrylated chitosan, glycol chitosan, chitosan-catechol, methyl pyrrolidinone-chitosan, cyclodextrin-chitosan and oleoyl-quaternised chitosan. We have particularly focused on the effect of chemical derivatization on the mucoadhesive properties of chitosan. Additionally, other important properties including water-solubility, stability, controlled release, permeation enhancing effect, and in vivo performance are also described.
Collapse
Affiliation(s)
- Twana Mohammed M Ways
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK.
| | - Wing Man Lau
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| | | |
Collapse
|
12
|
Samaridou E, Alonso MJ. Nose-to-brain peptide delivery - The potential of nanotechnology. Bioorg Med Chem 2017; 26:2888-2905. [PMID: 29170026 DOI: 10.1016/j.bmc.2017.11.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/26/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
Abstract
Nose-to-brain (N-to-B) delivery offers to protein and peptide drugs the possibility to reach the brain in a non-invasive way. This article is a comprehensive review of the state-of-the-art of this emerging peptide delivery route, as well as of the challenges associated to it. Emphasis is given on the potential of nanosized drug delivery carriers to enhance the direct N-to-B transport of protein or peptide drugs. In particular, polymer- and lipid- based nanocarriers are comparatively analyzed in terms of the influence of their physicochemical characteristics and composition on their in vivo fate and efficacy. The use of biorecognitive ligands and permeation enhancers in order to enhance their brain targeting efficiency is also discussed. The article concludes highlighting the early stage of this research field and its still unveiled potential. The final message is that more explicatory PK/PD studies are required in order to achieve the translation from preclinical to the clinical development phase.
Collapse
Affiliation(s)
- Eleni Samaridou
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
13
|
Tiozzo Fasiolo L, Manniello MD, Tratta E, Buttini F, Rossi A, Sonvico F, Bortolotti F, Russo P, Colombo G. Opportunity and challenges of nasal powders: Drug formulation and delivery. Eur J Pharm Sci 2017; 113:2-17. [PMID: 28942007 DOI: 10.1016/j.ejps.2017.09.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 02/05/2023]
Abstract
In the field of nasal drug delivery, among the preparations defined by the European Pharmacopoeia, nasal powders facilitate the formulation of poorly water-soluble active compounds. They often display a simple composition in excipients (if any), allow for the administration of larger drug doses and enhance drug diffusion and absorption across the mucosa, improving bioavailability compared to nasal liquids. Despite the positive features, however, nasal products in this form still struggle to enter the market: the few available on the market are Onzetra Xsail® (sumatriptan) for migraine relief and, for the treatment of rhinitis, Rhinocort® Turbuhaler® (budesonide), Teijin Rhinocort® (beclomethasone dipropionate) and Erizas® (dexamethasone cipecilate). Hence, this review tries to understand why nasal powder formulations are still less common than liquid ones by analyzing whether this depends on the lack of (i) real evidence of superior therapeutic benefit of powders, (ii) therapeutic and/or commercial interest, (iii) efficient manufacturing methods or (iv) availability of suitable and affordable delivery devices. To this purpose, the reader's attention will be guided through nasal powder formulation strategies and manufacturing techniques, eventually giving up-to-date evidences of therapeutic efficacy in vivo. Advancements in the technology of insufflation devices will also be provided as nasal drug products are typical drug-device combinations.
Collapse
Affiliation(s)
- Laura Tiozzo Fasiolo
- Food and Drug Department, University of Parma, Viale delle Scienze 27A, 43124 Parma, Italy; Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Michele Dario Manniello
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
| | - Elena Tratta
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Viale delle Scienze 27A, 43124 Parma, Italy
| | - Alessandra Rossi
- Food and Drug Department, University of Parma, Viale delle Scienze 27A, 43124 Parma, Italy
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Viale delle Scienze 27A, 43124 Parma, Italy
| | - Fabrizio Bortolotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Paola Russo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
| | - Gaia Colombo
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy.
| |
Collapse
|
14
|
Influence of Dosage Form, Formulation, and Delivery Device on Olfactory Deposition and Clearance: Enhancement of Nose-to-CNS Uptake. J Pharm Innov 2015. [DOI: 10.1007/s12247-015-9222-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Qian S, Wang Q, Zuo Z. Improved brain uptake of peptide-based CNS drugs via alternative routes of administrations of its nanocarrier delivery systems: a promising strategy for CNS targeting delivery of peptides. Expert Opin Drug Metab Toxicol 2014; 10:1491-508. [DOI: 10.1517/17425255.2014.956080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Abstract
Alginic acid nanoparticles (NPs) containing insulin, with nicotinamide as permeation enhancer were developed for sublingual delivery. The lower concentration of proteolytic enzymes, lower thickness and enhanced retention due to bioadhesive property, were relied on for enhanced insulin absorption. Insulin-loaded NPs were prepared by mild and aqueous based nanoprecipitation process. NPs were negatively charged and had a mean size of ∼200 nm with low dispersity index. Insulin loading capacities of >95% suggested a high association of insulin with alginic acid. Fourier Transform Infra-Red Spectroscopy (FTIR) spectra and DSC (Differential Scanning Calorimetry) thermogram of insulin-loaded NPs revealed the association of insulin with alginic acid. Circular dichroism (CD) spectra confirmed conformational stability, while HPLC analysis confirmed chemical stability of insulin in the NPs. Sublingually delivered NPs with nicotinamide exhibited high pharmacological availability (>100%) and bioavailability (>80%) at a dose of 5 IU/kg. The high absolute pharmacological availability of 20.2% and bioavailability of 24.1% in comparison with subcutaneous injection at 1 IU/kg, in the streptozotocin-induced diabetic rat model, suggest the insulin-loaded alginic acid NPs as a promising sublingual delivery system of insulin.
Collapse
Affiliation(s)
- Nilam H Patil
- a Department of Pharmaceutical Science and Technology , Institute of Chemical Technology , Mumbai , Maharashtra , India
| | - Padma V Devarajan
- a Department of Pharmaceutical Science and Technology , Institute of Chemical Technology , Mumbai , Maharashtra , India
| |
Collapse
|
17
|
Nazar H, Caliceti P, Carpenter B, El-Mallah AI, Fatouros DG, Roldo M, van der Merwe SM, Tsibouklis J. A once-a-day dosage form for the delivery of insulin through the nasal route: in vitro assessment and in vivo evaluation. Biomater Sci 2013; 1:306-314. [DOI: 10.1039/c2bm00132b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Mukhopadhyay P, Mishra R, Rana D, Kundu PP. Strategies for effective oral insulin delivery with modified chitosan nanoparticles: A review. Prog Polym Sci 2012. [DOI: 10.1016/j.progpolymsci.2012.04.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Palmberger TF, Augustijns P, Vetter A, Bernkop-Schnürch A. Safety assessment of thiolated polymers: effect on ciliary beat frequency in human nasal epithelial cells. Drug Dev Ind Pharm 2011; 37:1455-62. [PMID: 21635138 DOI: 10.3109/03639045.2011.584537] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the nasal safety of gel formulations of thiolated polymers (thiomers) by assessing their effect on ciliary beat frequency (CBF) in human nasal epithelial cells. METHODS Poly(acrylic acid) 450 kDa-cysteine (PAA-cys) and alginate-cysteine (alg-cys) were synthesized by covalent attachment of L-cysteine to the polymeric backbone. The cationic polymer chitosan-thiobutylamidine (chito-TBA) was synthesized by attaching iminothiolane to chitosan. CBF using was measured by a photometric system. CBF was measured before incubating the cells with test gels, during incubation and after washing out the polymeric test gels to evaluate reversibility of cilio-inhibition. The influence of viscosity on CBF was determined by using hydroxyethylcellulose (HEC)-gels of various concentrations. RESULTS Ciliary beating was observed to be affected by viscosity, but cilia were still beating in the presence of a HEC-gel displaying an apparent viscosity of 25 Pa.s. In case of thiolated polymers and their unmodified control, a concentration-dependent decrease in CBF could be observed. PAA-cys, alg-cys, chito-TBA and their corresponding unmodified controls exhibited a moderate cilio-inhibitory effect, followed by a partial recovery of CBF when used at a concentration of 1%. Alg-cys 2% and chito-TBA 2% (m/v) gels exhibited severe cilio-inhibition, which was partially reversible. L-cysteine and reduced glutathione led to mild cilio-inhibition at concentrations of 3% (m/v). CONCLUSIONS Taking into account that dilution after application and cilio-modifying effects is usually more pronounced under in vitro conditions, thiomers can be considered as suitable excipients for nasal drug delivery systems.
Collapse
Affiliation(s)
- Thomas F Palmberger
- Department of Pharmaceutical Technology, Institute of Pharmacy, Innsbruck, Austria
| | | | | | | |
Collapse
|
20
|
Chaudhury A, Das S. Recent advancement of chitosan-based nanoparticles for oral controlled delivery of insulin and other therapeutic agents. AAPS PharmSciTech 2011; 12:10-20. [PMID: 21153572 DOI: 10.1208/s12249-010-9561-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/30/2010] [Indexed: 01/04/2023] Open
Abstract
Nanoparticles composed of naturally occurring biodegradable polymers have emerged as potential carriers of various therapeutic agents for controlled drug delivery through the oral route. Chitosan, a cationic polysaccharide, is one of such biodegradable polymers, which has been extensively exploited for the preparation of nanoparticles for oral controlled delivery of several therapeutic agents. In recent years, the area of focus has shifted from chitosan to chitosan derivatized polymers for the preparation of oral nanoparticles due to its vastly improved properties, such as better drug retention capability, improved permeation, enhanced mucoadhesion and sustained release of therapeutic agents. Chitosan derivatized polymers are primarily the quaternized chitosan derivatives, chitosan cyclodextrin complexes, thiolated chitosan, pegylated chitosan and chitosan combined with other peptides. The current review focuses on the recent advancements in the field of oral controlled release via chitosan nanoparticles and discusses about its in vitro and in vivo implications.
Collapse
|
21
|
Jintapattanakit A, Peungvicha P, Sailasuta A, Kissel T, Junyaprasert VB. Nasal absorption and local tissue reaction of insulin nanocomplexes of trimethyl chitosan derivatives in rats. J Pharm Pharmacol 2011; 62:838-43. [PMID: 20609059 DOI: 10.1211/jpp.62.05.0004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES The objective of this work was to explore the potential and safety of trimethyl chitosan (TMC) and PEGylated TMC for improved absorption of insulin after nasal administration. METHODS The nasal absorption of insulin nanocomplexes of TMC or PEGylated TMC was evaluated in anaesthetized rats. Concomitantly, the histopathological effects of these nanocomplexes on rat nasal mucosa were studied using a perfusion fixation technique. KEY FINDINGS All insulin nanocomplexes containing TMC or PEGylated TMC showed a 34-47% reduction in the blood glucose concentration, when the insulin absorption through the rat nasal mucosa was measured indirectly. In addition, the relative pharmacodynamic bioavailability (F(dyn)) of the formulations was found to be dependent upon the charge ratio of insulin and polymer, regardless of polymer structure. The F(dyn) apparently decreased with increasing charge ratio of insulin : polymer. Although acute alterations in nasal morphology by the formulations were affected by the charge ratio of insulin and polymer, the formulation of insulin/PEGylated TMC nanocomplexes was shown to be less toxic to the nasal epithelial membrane than insulin/TMC nanocomplexes. CONCLUSIONS PEGylated TMC nanocomplexes were a suitable absorption enhancer for nasal delivery of insulin.
Collapse
|
22
|
Chung TW, Liu DZ, Yang JS. Effects of interpenetration of thermo-sensitive gels by crosslinking of chitosan on nasal delivery of insulin: In vitro characterization and in vivo study. Carbohydr Polym 2010. [DOI: 10.1016/j.carbpol.2010.04.068] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Albrecht K, Moeller M, Groll J. Nano- and Microgels Through Addition Reactions of Functional Oligomers and Polymers. CHEMICAL DESIGN OF RESPONSIVE MICROGELS 2010. [DOI: 10.1007/12_2010_69] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Ozsoy Y, Gungor S, Cevher E. Nasal delivery of high molecular weight drugs. Molecules 2009; 14:3754-79. [PMID: 19783956 PMCID: PMC6254717 DOI: 10.3390/molecules14093754] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/14/2009] [Accepted: 09/17/2009] [Indexed: 01/28/2023] Open
Abstract
Nasal drug delivery may be used for either local or systemic effects. Low molecular weight drugs with are rapidly absorbed through nasal mucosa. The main reasons for this are the high permeability, fairly wide absorption area, porous and thin endothelial basement membrane of the nasal epithelium. Despite the many advantages of the nasal route, limitations such as the high molecular weight (HMW) of drugs may impede drug absorption through the nasal mucosa. Recent studies have focused particularly on the nasal application of HMW therapeutic agents such as peptide-protein drugs and vaccines intended for systemic effects. Due to their hydrophilic structure, the nasal bioavailability of peptide and protein drugs is normally less than 1%. Besides their weak mucosal membrane permeability and enzymatic degradation in nasal mucosa, these drugs are rapidly cleared from the nasal cavity after administration because of mucociliary clearance. There are many approaches for increasing the residence time of drug formulations in the nasal cavity resulting in enhanced drug absorption. In this review article, nasal route and transport mechanisms across the nasal mucosa will be briefly presented. In the second part, current studies regarding the nasal application of macromolecular drugs and vaccines with nano- and micro-particulate carrier systems will be summarised.
Collapse
Affiliation(s)
- Yildiz Ozsoy
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 34116-Universite, Istanbul, Turkey.
| | | | | |
Collapse
|
25
|
Wang X, Zheng C, Wu Z, Teng D, Zhang X, Wang Z, Li C. Chitosan-NAC nanoparticles as a vehicle for nasal absorption enhancement of insulin. J Biomed Mater Res B Appl Biomater 2009; 88:150-61. [DOI: 10.1002/jbm.b.31161] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Analytical characterization of chitosan nanoparticles for peptide drug delivery applications. Anal Bioanal Chem 2008; 393:207-15. [PMID: 18958447 DOI: 10.1007/s00216-008-2463-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 10/01/2008] [Accepted: 10/07/2008] [Indexed: 10/21/2022]
Abstract
Chitosan-cyclodextrin hybrid nanoparticles (NPs) were obtained by the ionic gelation process in the presence of glutathione (GSH), chosen as a model drug. NPs were characterized by means of transmission electron microscopy and zeta-potential measurements. Furthermore, a detailed X-ray photoelectron spectroscopy study was carried out in both conventional and depth-profile modes. The combination of controlled ion-erosion experiments and a scrupulous curve-fitting approach allowed for the first time the quantitative study of the GSH in-depth distribution in the NPs. NPs were proven to efficiently encapsulate GSH in their inner cores, thus showing promising perspectives as drug carriers.
Collapse
|
27
|
Jain AK, Khar RK, Ahmed FJ, Diwan PV. Effective insulin delivery using starch nanoparticles as a potential trans-nasal mucoadhesive carrier. Eur J Pharm Biopharm 2008; 69:426-35. [DOI: 10.1016/j.ejpb.2007.12.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 11/13/2007] [Accepted: 12/03/2007] [Indexed: 10/22/2022]
|
28
|
Di Colo G, Zambito Y, Zaino C. Polymeric Enhancers of Mucosal Epithelia Permeability: Synthesis, Transepithelial Penetration-Enhancing Properties, Mechanism of Action, Safety Issues. J Pharm Sci 2008; 97:1652-80. [PMID: 17828745 DOI: 10.1002/jps.21043] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transmucosal drug administration across nasal, buccal, and ocular mucosae is noninvasive, eliminates hepatic first-pass metabolism and harsh environmental conditions, allows rapid onset, and further, mucosal surfaces are readily accessible. Generally, however, hydrophilic drugs, such as peptides and proteins, are poorly permeable across the epithelium, which results in insufficient bioavailability. Therefore, reversible modifications of epithelial barrier structure by permeation enhancers are required. Low molecular weight enhancers generally have physicochemical characteristics favoring their own absorption, whereas polymeric enhancers are not absorbed, and this minimizes the risk of systemic toxicity. The above considerations have warranted the present survey of the studies on polymeric transmucosal penetration-enhancers that have appeared in the literature during the last decade. Studies on intestinal permeation enhancers are also reviewed as they give information on the mechanism of action and safety of polymers. The synthesis and characterization of polymers, their effectiveness in enhancing the absorption of different drugs across different epithelium types, their mechanism of action and structure-efficacy relationship, and the relevant safety issues are reviewed. The active polymers are classified into: polycations (chitosan and its quaternary ammonium derivatives, poly-L-arginine (poly-L-Arg), aminated gelatin), polyanions (N-carboxymethyl chitosan, poly(acrylic acid)), and thiolated polymers (carboxymethyl cellulose-cysteine, polycarbophil (PCP)-cysteine, chitosan-thiobutylamidine, chitosan-thioglycolic acid, chitosan-glutathione conjugates).
Collapse
Affiliation(s)
- Giacomo Di Colo
- Department of Bioorganic Chemistry and Biopharmaceutics, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy.
| | | | | |
Collapse
|
29
|
Makhlof A, Werle M, Takeuchi H. Mucoadhesive drug carriers and polymers for effective drug delivery. J Drug Deliv Sci Technol 2008. [DOI: 10.1016/s1773-2247(08)50075-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Khafagy ES, Morishita M, Onuki Y, Takayama K. Current challenges in non-invasive insulin delivery systems: a comparative review. Adv Drug Deliv Rev 2007; 59:1521-46. [PMID: 17881081 DOI: 10.1016/j.addr.2007.08.019] [Citation(s) in RCA: 281] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 08/16/2007] [Indexed: 11/22/2022]
Abstract
The quest to eliminate the needle from insulin delivery and to replace it with non- or less-invasive alternative routes has driven rigorous pharmaceutical research to replace the injectable forms of insulin. Recently, various approaches have been studied involving many strategies using various technologies that have shown success in delivering insulin, which are designed to overcome the inherent barriers for insulin uptake across the gastrointestinal tract, mucosal membranes and skin. This review examines some of the many attempts made to develop alternative, more convenient routes for insulin delivery to avoid existing long-term dependence on multiple subcutaneous injections and to improve the pharmacodynamic properties of insulin. In addition, this article concentrates on the successes in this new millennium in developing potential non-invasive technologies and devices, and on major new milestones in modern insulin delivery for the effective treatment of diabetes.
Collapse
Affiliation(s)
- El-Sayed Khafagy
- Department of Pharmaceutics, Hoshi University, Ebara 2-4-41, Shinagawa, Tokyo 142-8501, Japan
| | | | | | | |
Collapse
|
31
|
Riske F, Schroeder J, Belliveau J, Kang X, Kutzko J, Menon MK. The use of chitosan as a flocculant in mammalian cell culture dramatically improves clarification throughput without adversely impacting monoclonal antibody recovery. J Biotechnol 2007; 128:813-23. [PMID: 17291617 DOI: 10.1016/j.jbiotec.2006.12.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 11/29/2006] [Accepted: 12/18/2006] [Indexed: 11/28/2022]
Abstract
Flocculants have been employed for many years as aides in the clarification of wastewater, chemicals and food. Flocculants aggregate and agglutinate fine particles resulting in their settling from the liquid phase and a reduction in solution turbidity. These materials have not been widely used in the clarification of mammalian cell culture harvest. In this paper we examined chitosan as a flocculent of cells and cell particulates in NS0 culture harvest and the subsequent further clarification of this material by continuous flow centrifugation followed by depth and absolute filtration. Chitosan is an ideal flocculant for biotechnology applications as it is produced from non-mammalian sources (typically arthropod shells) and is also available in a highly purified form that is low in heavy metals, volatile organics and microbial materials. Chitosan is a polymer of deacetylated chitin. The deacetylation imparts limited solubility on insoluble chitin and the amino groups on the polymer result in a polycationic material at acidic and neutral pH that can interact with polyanions, such as DNA and cell culture debris (typically negatively charged). Likely the interaction of chitosan with cell culture particulate forms a germinal center for further interaction and agglomeration of particulates thereby reducing the solubility of these materials resulting in their settling out into the solid phase. Chitosan improved the clarification throughput six to seven folds without a deleterious effect on monoclonal antibody recovery or purity. The procedure for utilizing chitosan is facile, easily implemented, and highly effective in improving material clarity and increasing material throughput.
Collapse
Affiliation(s)
- Frank Riske
- Purification Development, Genzyme Corporation, Framingham, MA 01701, USA.
| | | | | | | | | | | |
Collapse
|