1
|
Tripathi AD, Labh Y, Katiyar S, Singh AK, Chaturvedi VK, Mishra A. Folate-Mediated Targeting and Controlled Release: PLGA-Encapsulated Mesoporous Silica Nanoparticles Delivering Capecitabine to Pancreatic Tumor. ACS APPLIED BIO MATERIALS 2024; 7:7838-7851. [PMID: 38530292 DOI: 10.1021/acsabm.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The discovery of specifically tailored therapeutic delivery systems has sparked the interest of pharmaceutical researchers considering improved therapeutic effectiveness and fewer adverse effects. The current study concentrates on the design and characterization of PLGA (polylactic-co-glycolic acid) capped mesoporous silica nanoparticles (MSN)-based systems for drug delivery for pH-sensitive controlled drug release in order to achieve a targeted drug release inside the acidic tumor microenvironment. The physicochemical properties of the nanoformulations were analyzed using TEM, zeta potential, AFM, TGA, FTIR, and BET analyses in addition to DLS size. The final formed PLGA-FoA-MSN-CAP and pure MSN had sizes within the therapeutic ranges of 164.5 ± 1.8 and 110.7 ± 2.2, respectively. Morphological characterization (TEM and AFM) and elemental analysis (FTIR and XPS) confirmed the proper capping and tagging of PLGA and folic acid (FoA). The PLGA-coated FoA-MSN exhibited a pH-dependent controlled release of the CAP (capecitabine) drug, showing efficient release at pH 6.8. Furthermore, the in vitro MTT test on PANC1 and MIAPaCa-2 resulted in an IC50 value of 146.37 μg/ml and 105.90 μg/ml, respectively. Mitochondrial-mediated apoptosis was confirmed from the caspase-3 and annexin V/PI flow cytometry assay, which displayed a cell cycle arrest at the G1 phase. Overall, the results predicted that the designed nanoformulation is a potential therapeutic agent in treating pancreatic cancer.
Collapse
Affiliation(s)
- Abhay Dev Tripathi
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Yamini Labh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Soumya Katiyar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Anurag Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Vivek K Chaturvedi
- Department of Gastroenterology, Institute of Medical Sciences (BHU), Varanasi-221005, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| |
Collapse
|
2
|
Shabnum SS, Siranjeevi R, Raj CK, Saravanan A, Vickram AS, Chopra H, Malik T. Advancements in nanotechnology-driven photodynamic and photothermal therapies: mechanistic insights and synergistic approaches for cancer treatment. RSC Adv 2024; 14:38952-38995. [PMID: 39659608 PMCID: PMC11629304 DOI: 10.1039/d4ra07114j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024] Open
Abstract
Cancer is a disease that involves uncontrolled cell division triggered by genetic damage to the genes that control cell growth and division. Cancer starts as a localized illness, but subsequently spreads to other areas in the human body (metastasis), making it incurable. Cancer is the second most prevalent cause of mortality worldwide. Every year, almost ten million individuals get diagnosed with cancer. Although different cancer treatment options exist, such as chemotherapy, radiation, surgery and immunotherapy, their clinical efficacy is limited due to their significant side effects. New cancer treatment options, such as phototherapy, which employs light for the treatment of cancer, have sparked a growing fascination in the cancer research community. Phototherapies are classified into two types: photodynamic treatment (PDT) and photothermal therapy (PTT). PDT necessitates the use of a photosensitizing chemical and exposure to light at a certain wavelength. Photodynamic treatment (PDT) is primarily based on the creation of singlet oxygen by the stimulation of a photosensitizer, which is then used to kill tumor cells. PDT can be used to treat a variety of malignancies. On the other hand, PTT employs a photothermal molecule that activates and destroys cancer cells at the longer wavelengths of light, making it less energetic and hence less hazardous to other cells and tissues. While PTT is a better alternative to standard cancer therapy, in some irradiation circumstances, it can cause cellular necrosis, which results in pro-inflammatory reactions that can be harmful to therapeutic effectiveness. Latest research has revealed that PTT may be adjusted to produce apoptosis instead of necrosis, which is attractive since apoptosis reduces the inflammatory response.
Collapse
Affiliation(s)
- S Sameera Shabnum
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - R Siranjeevi
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - C Krishna Raj
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS Chennai-602105 Tamil Nadu India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University Rajpura 140401 Punjab India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University 378 Jimma Ethiopia
- Division of Research & Development, Lovely Professional University Phagwara 144411 India
| |
Collapse
|
3
|
Haseeb M, Khan I, Kartal Z, Mahfooz S, Hatiboglu MA. Status Quo in the Liposome-Based Therapeutic Strategies Against Glioblastoma: "Targeting the Tumor and Tumor Microenvironment". Int J Mol Sci 2024; 25:11271. [PMID: 39457052 PMCID: PMC11509082 DOI: 10.3390/ijms252011271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Glioblastoma is the most aggressive and fatal brain cancer, characterized by a high growth rate, invasiveness, and treatment resistance. The presence of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) poses a challenging task for chemotherapeutics, resulting in low efficacy, bioavailability, and increased dose-associated side effects. Despite the rigorous treatment strategies, including surgical resection, radiotherapy, and adjuvant chemotherapy with temozolomide, overall survival remains poor. The failure of current chemotherapeutics and other treatment regimens in glioblastoma necessitates the development of new drug delivery methodologies to precisely and efficiently target glioblastoma. Nanoparticle-based drug delivery systems offer a better therapeutic option in glioblastoma, considering their small size, ease of diffusion, and ability to cross the BBB. Liposomes are a specific category of nanoparticles made up of fatty acids. Furthermore, liposomes can be surface-modified to target a particular receptor and are nontoxic. This review discusses various methods of liposome modification for active/directed targeting and various liposome-based therapeutic approaches in the delivery of current chemotherapeutic drugs and nucleic acids in targeting the glioblastoma and tumor microenvironment.
Collapse
Affiliation(s)
- Mohd Haseeb
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
| | - Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zeynep Kartal
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mustafa Aziz Hatiboglu
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, 34093 Istanbul, Turkey
| |
Collapse
|
4
|
Zhuo Y, Zeng H, Su C, Lv Q, Cheng T, Lei L. Tailoring biomaterials for vaccine delivery. J Nanobiotechnology 2024; 22:480. [PMID: 39135073 PMCID: PMC11321069 DOI: 10.1186/s12951-024-02758-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Biomaterials are substances that can be injected, implanted, or applied to the surface of tissues in biomedical applications and have the ability to interact with biological systems to initiate therapeutic responses. Biomaterial-based vaccine delivery systems possess robust packaging capabilities, enabling sustained and localized drug release at the target site. Throughout the vaccine delivery process, they can contribute to protecting, stabilizing, and guiding the immunogen while also serving as adjuvants to enhance vaccine efficacy. In this article, we provide a comprehensive review of the contributions of biomaterials to the advancement of vaccine development. We begin by categorizing biomaterial types and properties, detailing their reprocessing strategies, and exploring several common delivery systems, such as polymeric nanoparticles, lipid nanoparticles, hydrogels, and microneedles. Additionally, we investigated how the physicochemical properties and delivery routes of biomaterials influence immune responses. Notably, we delve into the design considerations of biomaterials as vaccine adjuvants, showcasing their application in vaccine development for cancer, acquired immunodeficiency syndrome, influenza, corona virus disease 2019 (COVID-19), tuberculosis, malaria, and hepatitis B. Throughout this review, we highlight successful instances where biomaterials have enhanced vaccine efficacy and discuss the limitations and future directions of biomaterials in vaccine delivery and immunotherapy. This review aims to offer researchers a comprehensive understanding of the application of biomaterials in vaccine development and stimulate further progress in related fields.
Collapse
Affiliation(s)
- Yanling Zhuo
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China
| | - Huanxuan Zeng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chunyu Su
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Qizhuang Lv
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China.
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, 537000, China.
| | - Tianyin Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
5
|
Torres-Herrero B, Armenia I, Ortiz C, de la Fuente JM, Betancor L, Grazú V. Opportunities for nanomaterials in enzyme therapy. J Control Release 2024; 372:619-647. [PMID: 38909702 DOI: 10.1016/j.jconrel.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
In recent years, enzyme therapy strategies have rapidly evolved to catalyze essential biochemical reactions with therapeutic potential. These approaches hold particular promise in addressing rare genetic disorders, cancer treatment, neurodegenerative conditions, wound healing, inflammation management, and infectious disease control, among others. There are several primary reasons for the utilization of enzymes as therapeutics: their substrate specificity, their biological compatibility, and their ability to generate a high number of product molecules per enzyme unit. These features have encouraged their application in enzyme replacement therapy where the enzyme serves as the therapeutic agent to rectify abnormal metabolic and physiological processes, enzyme prodrug therapy where the enzyme initiates a clinical effect by activating prodrugs, and enzyme dynamic or starving therapy where the enzyme acts upon host substrate molecules. Currently, there are >20 commercialized products based on therapeutic enzymes, but approval rates are considerably lower than other biologicals. This has stimulated nanobiotechnology in the last years to develop nanoparticle-based solutions that integrate therapeutic enzymes. This approach aims to enhance stability, prevent rapid clearance, reduce immunogenicity, and even enable spatio-temporal activation of the therapeutic catalyst. This comprehensive review delves into emerging trends in the application of therapeutic enzymes, with a particular emphasis on the synergistic opportunities presented by incorporating enzymes into nanomaterials. Such integration holds the promise of enhancing existing therapies or even paving the way for innovative nanotherapeutic approaches.
Collapse
Affiliation(s)
- Beatriz Torres-Herrero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Ilaria Armenia
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Cecilia Ortiz
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Jesús Martinez de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Lorena Betancor
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Valeria Grazú
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
6
|
Liu C, Yang QQ, Zhou YL. Peptides and Wound Healing: From Monomer to Combination. Int J Pept Res Ther 2024; 30:46. [DOI: 10.1007/s10989-024-10627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 01/02/2025]
|
7
|
Kushawaha SK, Ashawat MS, Soni D, Kumar P, Rimpi, Baldi A. Aurothioglucose encapsulated nanoparticles fostered neuroprotection in streptozotocin-induced Alzheimer's disease. Brain Res 2024; 1834:148906. [PMID: 38570152 DOI: 10.1016/j.brainres.2024.148906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/13/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Alzherimer's disease (AD) is an age-dependent ubiquitous ailment worldwide with limited therapies that only alleviate the symptoms of AD but do not cure them entirely because of the restricted blood-brain barrier passage of the drug. Hence with new advanced technology, nanoparticles can offer an opportunity as the active candidate to overcome the above limitations. Aurothioglucose, a synthetic glucose derivative of the gold compound, has been clinically proven to be an effective anti-inflammatory drug for rheumatic arthritis. Recently, several scientific groups have developed gold nanoparticle preparations and tested them for the treatment of dementia. This study was planned to prepare the PLGA nanoparticles of aurothioglucose (ATG) and check the neuroprotective potential against STZ-induced AD in rats. The nanoparticles were prepared using the double emulsion solvent evaporation method and characterized for various parameters such as drug-excipient interaction, particle size, zeta potential, and morphology. Then, rats were injected STZ (3 mg/kg/i.c.v., days 1 and 3) and ATG (5 and 10 mg/kg/s.c.), ATG NPs (2.5 and 5 mg/kg/s.c.) and donepezil (2 mg/kg/p.o) from 15th to 29th day. Behavior parameters were performed using an actophotometer, MWM, and ORT. On the 30th day, all the animals were sacrificed, and the brains were isolated for estimating biochemical, neurochemical, and proinflammatory markers. It was observed that ATG NPs significantly restored all behavior and neurotransmitter alterations caused by STZ. Also, it increased antioxidant levels and decreased inflammatory cytokines significantly, then ATG alone. Thus, the study suggests that ATG loaded PLGA NPs could be used as a novel therapeutic strategy to slow the process of AD.
Collapse
Affiliation(s)
- Shiv Kumar Kushawaha
- Pharma Innovation Lab, Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, India
| | - Mahendra Singh Ashawat
- Department of Pharmaceutics, Laureate Institute of Pharmacy, Kathog, Distt. Kangra, Himanchal Pradesh 176031, India
| | - Divya Soni
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, India.
| | - Rimpi
- Department of Pharmaceutical Sciences, PCTE College, Baddowal, Ludhiana 141021, India
| | - Ashish Baldi
- Pharma Innovation Lab, Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, India.
| |
Collapse
|
8
|
Tang D, Peng X, Wu S, Tang S. Autonomous Nanorobots as Miniaturized Surgeons for Intracellular Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:595. [PMID: 38607129 PMCID: PMC11013175 DOI: 10.3390/nano14070595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/06/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Artificial nanorobots have emerged as promising tools for a wide range of biomedical applications, including biosensing, detoxification, and drug delivery. Their unique ability to navigate confined spaces with precise control extends their operational scope to the cellular or subcellular level. By combining tailored surface functionality and propulsion mechanisms, nanorobots demonstrate rapid penetration of cell membranes and efficient internalization, enhancing intracellular delivery capabilities. Moreover, their robust motion within cells enables targeted interactions with intracellular components, such as proteins, molecules, and organelles, leading to superior performance in intracellular biosensing and organelle-targeted cargo delivery. Consequently, nanorobots hold significant potential as miniaturized surgeons capable of directly modulating cellular dynamics and combating metastasis, thereby maximizing therapeutic outcomes for precision therapy. In this review, we provide an overview of the propulsion modes of nanorobots and discuss essential factors to harness propulsive energy from the local environment or external power sources, including structure, material, and engine selection. We then discuss key advancements in nanorobot technology for various intracellular applications. Finally, we address important considerations for future nanorobot design to facilitate their translation into clinical practice and unlock their full potential in biomedical research and healthcare.
Collapse
Affiliation(s)
- Daitian Tang
- Luohu Clinical Institute, School of Medicine, Shantou University, Shantou 515000, China; (D.T.); (X.P.)
| | - Xiqi Peng
- Luohu Clinical Institute, School of Medicine, Shantou University, Shantou 515000, China; (D.T.); (X.P.)
| | - Song Wu
- Luohu Clinical Institute, School of Medicine, Shantou University, Shantou 515000, China; (D.T.); (X.P.)
| | - Songsong Tang
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
9
|
Ahmadi M, Ritter CA, von Woedtke T, Bekeschus S, Wende K. Package delivered: folate receptor-mediated transporters in cancer therapy and diagnosis. Chem Sci 2024; 15:1966-2006. [PMID: 38332833 PMCID: PMC10848714 DOI: 10.1039/d3sc05539f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/31/2023] [Indexed: 02/10/2024] Open
Abstract
Neoplasias pose a significant threat to aging society, underscoring the urgent need to overcome the limitations of traditional chemotherapy through pioneering strategies. Targeted drug delivery is an evolving frontier in cancer therapy, aiming to enhance treatment efficacy while mitigating undesirable side effects. One promising avenue utilizes cell membrane receptors like the folate receptor to guide drug transporters precisely to malignant cells. Based on the cellular folate receptor as a cancer cell hallmark, targeted nanocarriers and small molecule-drug conjugates have been developed that comprise different (bio) chemistries and/or mechanical properties with individual advantages and challenges. Such modern folic acid-conjugated stimuli-responsive drug transporters provide systemic drug delivery and controlled release, enabling reduced dosages, circumvention of drug resistance, and diminished adverse effects. Since the drug transporters' structure-based de novo design is increasingly relevant for precision cancer remediation and diagnosis, this review seeks to collect and debate the recent approaches to deliver therapeutics or diagnostics based on folic acid conjugated Trojan Horses and to facilitate the understanding of the relevant chemistry and biochemical pathways. Focusing exemplarily on brain and breast cancer, recent advances spanning 2017 to 2023 in conjugated nanocarriers and small molecule drug conjugates were considered, evaluating the chemical and biological aspects in order to improve accessibility to the field and to bridge chemical and biomedical points of view ultimately guiding future research in FR-targeted cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| | - Christoph A Ritter
- Institute of Pharmacy, Section Clinical Pharmacy, University of Greifswald Greifswald Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center Ferdinand-Sauerbruch-Straße 17475 Greifswald Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center Strempelstr. 13 18057 Rostock Germany
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| |
Collapse
|
10
|
Dang-Luong PT, Nguyen HP, Le-Tuan L, Cao XT, Tran-Anh V, Quang HV. Nanocarrier systems loaded with IR780, iron oxide nanoparticles and chlorambucil for cancer theragnostics. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:180-189. [PMID: 38352718 PMCID: PMC10862130 DOI: 10.3762/bjnano.15.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Theragnostics has become a popular term nowadays, since it enables both diagnosis and therapy at the same time while only using one carrier platform. Therefore, formulating a nanocarrier system that could serve as theragnostic agent by using simple techniques would be an advantage during production. In this project, we aimed to develop a nanocarrier that can be loaded with the chemotherapeutic medication chlorambucil and magnetic resonance imaging agents (e.g., iron oxide nanoparticles and near-infrared fluorophore IR780) for theragnostics. Poly(lactic-co-glycolic acid) was combined with the aforementioned ingredients to generate poly(vinyl alcohol)-based nanoparticles (NPs) using the single emulsion technique. Then the NPs were coated with F127 and F127-folate by simple incubation for five days. The nanoparticles have the hydrodynamic size of approx. 250 nm with negative charge. Similar to chlorambucil and IR780, iron oxide loadings were observed for all three kinds of NPs. The release of chlorambucil was quicker at pH 5.4 than at pH 7.4 at 37 °C. The F127@NPs and F127-folate@NPs demonstrated much greater cell uptake and toxicity up to 72 h after incubation. Our in vitro results of F127@NPs and F127-folate@NPs have demonstrated the ability of these systems to serve as medication and imaging agent carriers for cancer treatment and diagnostics, respectively.
Collapse
Affiliation(s)
| | - Hong-Phuc Nguyen
- NTT Hi-tech institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Loc Le-Tuan
- NTT Hi-tech institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Xuan-Thang Cao
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Vy Tran-Anh
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Hieu Vu Quang
- Department of Biotechnology, NTT Hi-tech institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
11
|
Sobhani-Nasab A, Banafshe HR, Atapour A, Khaksary Mahabady M, Akbari M, Daraei A, Mansoori Y, Moradi Hasan-Abad A. The use of nanoparticles in the treatment of infectious diseases and cancer, dental applications and tissue regeneration: a review. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 5:1330007. [PMID: 38323112 PMCID: PMC10844477 DOI: 10.3389/fmedt.2023.1330007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/12/2023] [Indexed: 02/08/2024] Open
Abstract
The emergence of nanotechnology as a field of study can be traced back to the 1980s, at which point the means to artificially produce, control, and observe matter on a nanometer level was made viable. Recent advancements in technology have enabled us to extend our reach to the nanoscale, which has presented an unparalleled opportunity to directly target biomolecular interactions. As a result of these developments, there is a drive to arise intelligent nanostructures capable of overcoming the obstacles that have impeded the progress of conventional pharmacological methodologies. After four decades, the gradual amalgamation of bio- and nanotechnologies is initiating a revolution in the realm of disease detection, treatment, and monitoring, as well as unsolved medical predicaments. Although a significant portion of research in the field is still confined to laboratories, the initial application of nanotechnology as treatments, vaccines, pharmaceuticals, and diagnostic equipment has now obtained endorsement for commercialization and clinical practice. The current issue presents an overview of the latest progress in nanomedical strategies towards alleviating antibiotic resistance, diagnosing and treating cancer, addressing neurodegenerative disorders, and an array of applications, encompassing dentistry and tuberculosis treatment. The current investigation also scrutinizes the deployment of sophisticated smart nanostructured materials in fields of application such as regenerative medicine, as well as the management of targeted and sustained release of pharmaceuticals and therapeutic interventions. The aforementioned concept exhibits the potential for revolutionary advancements within the field of immunotherapy, as it introduces the utilization of implanted vaccine technology to consistently regulate and augment immune functions. Concurrently with the endeavor to attain the advantages of nanomedical intervention, it is essential to enhance the unceasing emphasis on nanotoxicological research and the regulation of nanomedications' safety. This initiative is crucial in achieving the advancement in medicine that currently lies within our reach.
Collapse
Affiliation(s)
- Ali Sobhani-Nasab
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Banafshe
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Akbari
- Department of Surgery, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
12
|
Semele R, Grewal S, Jeengar MK, Singh TG, Swami R. From Traditional Medicine to Advanced Therapeutics: The Renaissance of Phyto-nano Interventions in Psoriasis. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:27-42. [PMID: 37921124 DOI: 10.2174/0127722708265612231012080047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 11/04/2023]
Abstract
Psoriasis is an autoimmune systemic chronic inflammatory disease that exhibits characteristic detrimental effects on the skin, often leading to infections or comorbid conditions. The multifaceted nature of psoriasis has made it very challenging to treat, especially with current chemotherapy options. Therefore, it is essential to consider phytoconstituents as novel alternatives. However, despite demonstrating higher anti-inflammatory, anti-psoriasis, and immunomodulatory potential, their clinical usage is hindered due to their poor physicochemical properties. To address these drawbacks, nanoparticulate drug delivery systems have been developed, helping to achieve better permeation of phytoconstituents through topical administration. This has breathed new life into traditional systems of medicine, particularly in the context of treating psoriasis. In this current review, we present a detailed, comprehensive, and up-to-date analysis of the literature, which will contribute to affirming the clinical role of phyto-nano interventions against psoriasis.
Collapse
Affiliation(s)
- Rajneesh Semele
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sonam Grewal
- Maharishi Markandeshwar College of Pharmacy, MMDU, Mullana, Haryana, India
| | - Manish Kumar Jeengar
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | | | - Rajan Swami
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
13
|
Sharma DK, Pattnaik G, Behera A. Recent developments in nanoparticles for the treatment of diabetes. J Drug Target 2023; 31:908-919. [PMID: 37725445 DOI: 10.1080/1061186x.2023.2261077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Changes in the homeostasis of blood sugar levels are a hallmark of diabetes mellitus, an incurable metabolic condition, for which the first-line treatment is the subcutaneous injection of insulin. However, this method of administration is linked to low patient compliance because of the possibility of local infection, discomfort and pain. To enable the administration of the peptide through more palatable paths without requiring an injection, like by oral routes, the use of nanoparticles as insulin carriers has been suggested. The use of nanoparticles usually improves the bioavailability and physicochemical stability of the loaded medicine. The utilisation of several forms of nanoparticles (like lipid and polymeric nanoparticles, micelles, dendrimers, liposomes, niosomes, nanoemulsions and drug nanosuspensions) is discussed in this article as a way to improve the administration of various oral hypoglycaemic medications when compared to conventional treatments.
Collapse
Affiliation(s)
- Dinesh Kumar Sharma
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India
| | - Gurudutta Pattnaik
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India
| | - Amulyaratna Behera
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India
| |
Collapse
|
14
|
Tiwari P, Yadav K, Shukla RP, Gautam S, Marwaha D, Sharma M, Mishra PR. Surface modification strategies in translocating nano-vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy. J Control Release 2023; 363:290-348. [PMID: 37714434 DOI: 10.1016/j.jconrel.2023.09.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Nanovesicles and bio-vesicles (BVs) have emerged as promising tools to achieve targeted cancer therapy due to their ability to overcome many of the key challenges currently being faced with conventional chemotherapy. These challenges include the diverse and often complex pathophysiology involving the progression of cancer, as well as the various biological barriers that circumvent therapeutic molecules reaching their target site in optimum concentration. The scientific evidence suggests that surface-functionalized nanovesicles and BVs camouflaged nano-carriers (NCs) both can bypass the established biological barriers and facilitate fourth-generation targeting for the improved regimen of treatment. In this review, we intend to emphasize the role of surface-functionalized nanovesicles and BVs camouflaged NCs through various approaches that lead to an improved internalization to achieve improved and targeted oncotherapy. We have explored various strategies that have been employed to surface-functionalize and biologically modify these vesicles, including the use of biomolecule functionalized target ligands such as peptides, antibodies, and aptamers, as well as the targeting of specific receptors on cancer cells. Further, the utility of BVs, which are made from the membranes of cells such as mesenchymal stem cells (MSCs), white blood cells (WBCs), red blood cells (RBCs), platelets (PLTs) as well as cancer cells also been investigated. Lastly, we have discussed the translational challenges and limitations that these NCs can encounter and still need to be overcome in order to fully realize the potential of nanovesicles and BVs for targeted cancer therapy. The fundamental challenges that currently prevent successful cancer therapy and the necessity of novel delivery systems are in the offing.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
15
|
Lotfi M, Morshedi Rad D, Mashhadi SS, Ashouri A, Mojarrad M, Mozaffari-Jovin S, Farrokhi S, Hashemi M, Lotfi M, Ebrahimi Warkiani M, Abbaszadegan MR. Recent Advances in CRISPR/Cas9 Delivery Approaches for Therapeutic Gene Editing of Stem Cells. Stem Cell Rev Rep 2023; 19:2576-2596. [PMID: 37723364 PMCID: PMC10661828 DOI: 10.1007/s12015-023-10585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 09/20/2023]
Abstract
Rapid advancement in genome editing technologies has provided new promises for treating neoplasia, cardiovascular, neurodegenerative, and monogenic disorders. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful gene editing tool offering advantages, including high editing efficiency and low cost over the conventional approaches. Human pluripotent stem cells (hPSCs), with their great proliferation and differentiation potential into different cell types, have been exploited in stem cell-based therapy. The potential of hPSCs and the capabilities of CRISPR/Cas9 genome editing has been paradigm-shifting in medical genetics for over two decades. Since hPSCs are categorized as hard-to-transfect cells, there is a critical demand to develop an appropriate and effective approach for CRISPR/Cas9 delivery into these cells. This review focuses on various strategies for CRISPR/Cas9 delivery in stem cells.
Collapse
Affiliation(s)
- Malihe Lotfi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dorsa Morshedi Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Samaneh Sharif Mashhadi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Ashouri
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Farrokhi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Lotfi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia.
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, Australia.
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Bhattacharya T, Preetam S, Ghosh B, Chakrabarti T, Chakrabarti P, Samal SK, Thorat N. Advancement in Biopolymer Assisted Cancer Theranostics. ACS APPLIED BIO MATERIALS 2023; 6:3959-3983. [PMID: 37699558 PMCID: PMC10583232 DOI: 10.1021/acsabm.3c00458] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Applications of nanotechnology have increased the importance of research and nanocarriers, which have revolutionized the method of drug delivery to treat several diseases, including cancer, in the past few years. Cancer, one of the world's fatal diseases, has drawn scientists' attention for its multidrug resistance to various chemotherapeutic drugs. To minimize the side effects of chemotherapeutic agents on healthy cells and to develop technological advancement in drug delivery systems, scientists have developed an alternative approach to delivering chemotherapeutic drugs at the targeted site by integrating it inside the nanocarriers like synthetic polymers, nanotubes, micelles, dendrimers, magnetic nanoparticles, quantum dots (QDs), lipid nanoparticles, nano-biopolymeric substances, etc., which has shown promising results in both preclinical and clinical trials of cancer management. Besides that, nanocarriers, especially biopolymeric nanoparticles, have received much attention from researchers due to their cost-effectiveness, biodegradability, treatment efficacy, and ability to target drug delivery by crossing the blood-brain barrier. This review emphasizes the fabrication processes, the therapeutic and theragnostic applications, and the importance of different biopolymeric nanocarriers in targeting cancer both in vitro and in vivo, which conclude with the challenges and opportunities of future exploration using biopolymeric nanocarriers in onco-therapy with improved availability and reduced toxicity.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Department
of Food and Nutrition, College of Human Ecology, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Republic
of Korea
- Nondestructive
Bio-Sensing Laboratory, Dept. of Biosystems Machinery Engineering,
College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Subham Preetam
- Centre
for Biotechnology, Siksha O Anusandhan (Deemed
to be University), Bhubaneswar 751024, Odisha, India
- Daegu
Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Basab Ghosh
- KIIT
School of Biotechnology, Kalinga Institute
of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Tulika Chakrabarti
- Department
of Chemistry, Sir Padampat Singhania University, Bhatewar, Udaipur 313601, Rajasthan, India
| | | | - Shailesh Kumar Samal
- Section of
Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Nanasaheb Thorat
- Nuffield
Department of Women’s & Reproductive Health, Medical Science
Division, John Radcliffe Hospital University
of Oxford, Oxford OX3 9DU, United Kingdom
- Department
of Physics, Bernal Institute and Limerick Digital Cancer Research
Centre (LDCRC), University of Limerick, Castletroy, Limerick V94T9PX, Ireland
| |
Collapse
|
17
|
Lu Q. Bioresponsive and multifunctional cyclodextrin-based non-viral nanocomplexes in cancer therapy: Building foundations for gene and drug delivery, immunotherapy and bioimaging. ENVIRONMENTAL RESEARCH 2023; 234:116507. [PMID: 37364628 DOI: 10.1016/j.envres.2023.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The interest towards application of nanomaterials in field of cancer therapy is that the drawbacks of conventional therapies including chemoresistance, radio-resistance and lack of specific targeting of tumor cells can be solved by nanotechnology. Cyclodextrins (CDs) are amphiphilic cyclic oligosaccharides that can be present in three forms of α-, β- and γ-CDs, and they can be synthesized from natural sources. The application of CDs in cancer shows an increasing trend due to benefits of these nanocomplexes in improving solubility and bioavailability of current bioactives and therapeutics for cancer. CDs are widely utilized in delivery of drugs and genes in cancer therapy, and by targeted delivery of these therapeutics into target site, they improve anti-proliferative and anti-cancer potential. The blood circulation time and tumor site accumulation of therapeutics can be improved using CD-based nanostructures. More importantly, the stimuli-responsive types of CDs including pH-, redox- and light-sensitive types can accelerate release of bioactive compound at tumor site. Interestingly, the CDs are able to mediate photothermal and photodynamic impact in impairing tumorigenesis in cancer, enhancing cell death and improving response to chemotherapy. In improving the targeting ability of CDs, their surface functionalization with ligands has been conducted. Moreover, CDs can be modified with green products such as chitosan and fucoidan, and they can be embedded in green-based nanostructures to suppress tumorigenesis. The internalization of CDs into tumor cells can occur through endocytosis and this can be clethrin-, caveolae- or receptor-mediated endocytosis. Furthermore, CDs are promising candidates in bioimaging, cancer cell and organelle imaging as well as isolating tumor cells. The main benefits of using CDs in cancer therapy including sustained and low release of drugs and genes, targeted delivery, bioresponsive release of cargo, ease of surface functionalization and complexation with other nanostructures. The application of CDs in overcoming drug resistance requires more investigation.
Collapse
Affiliation(s)
- Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
18
|
Shakya AK, Al-Sulaibi M, Naik RR, Nsairat H, Suboh S, Abulaila A. Review on PLGA Polymer Based Nanoparticles with Antimicrobial Properties and Their Application in Various Medical Conditions or Infections. Polymers (Basel) 2023; 15:3597. [PMID: 37688223 PMCID: PMC10490122 DOI: 10.3390/polym15173597] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The rise in the resistance to antibiotics is due to their inappropriate use and the use of a broad spectrum of antibiotics. This has also contributed to the development of multidrug-resistant microorganisms, and due to the unavailability of suitable new drugs for treatments, it is difficult to control. Hence, there is a need for the development of new novel, target-specific antimicrobials. Nanotechnology, involving the synthesis of nanoparticles, may be one of the best options, as it can be manipulated by using physicochemical properties to develop intelligent NPs with desired properties. NPs, because of their unique properties, can deliver drugs to specific targets and release them in a sustained fashion. The chance of developing resistance is very low. Polymeric nanoparticles are solid colloids synthesized using either natural or synthetic polymers. These polymers are used as carriers of drugs to deliver them to the targets. NPs, synthesized using poly-lactic acid (PLA) or the copolymer of lactic and glycolic acid (PLGA), are used in the delivery of controlled drug release, as they are biodegradable, biocompatible and have been approved by the USFDA. In this article, we will be reviewing the synthesis of PLGA-based nanoparticles encapsulated or loaded with antibiotics, natural products, or metal ions and their antibacterial potential in various medical applications.
Collapse
Affiliation(s)
- Ashok K Shakya
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Mazen Al-Sulaibi
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Rajashri R Naik
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Hamdi Nsairat
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Sara Suboh
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | | |
Collapse
|
19
|
Ali MK, Javaid S, Afzal H, Zafar I, Fayyaz K, Ain Q, Rather MA, Hossain MJ, Rashid S, Khan KA, Sharma R. Exploring the multifunctional roles of quantum dots for unlocking the future of biology and medicine. ENVIRONMENTAL RESEARCH 2023; 232:116290. [PMID: 37295589 DOI: 10.1016/j.envres.2023.116290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
With recent advancements in nanomedicines and their associated research with biological fields, their translation into clinically-applicable products is still below promises. Quantum dots (QDs) have received immense research attention and investment in the four decades since their discovery. We explored the extensive biomedical applications of QDs, viz. Bio-imaging, drug research, drug delivery, immune assays, biosensors, gene therapy, diagnostics, their toxic effects, and bio-compatibility. We unravelled the possibility of using emerging data-driven methodologies (bigdata, artificial intelligence, machine learning, high-throughput experimentation, computational automation) as excellent sources for time, space, and complexity optimization. We also discussed ongoing clinical trials, related challenges, and the technical aspects that should be considered to improve the clinical fate of QDs and promising future research directions.
Collapse
Affiliation(s)
- Muhammad Kashif Ali
- Deparment of Physiology, Rashid Latif Medical College, Lahore, Punjab, 54700, Pakistan.
| | - Saher Javaid
- KAM School of Life Sciences, Forman Christian College (a Chartered University) Lahore, Punjab, Pakistan.
| | - Haseeb Afzal
- Department of ENT, Ameer Ud Din Medical College, Lahore, Punjab, 54700, Pakistan.
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University, Punjab, 54700, Pakistan.
| | - Kompal Fayyaz
- Department of National Centre for Bioinformatics, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Quratul Ain
- Department of Chemistry, Government College Women University Faisalabad (GCWUF), Punjab, 54700, Pakistan.
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, Rangil- Gandarbal (SKAUST-K), India.
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh.
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia.
| | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Applied College, King Khalid University, P. O. Box 9004, Abha, 61413, Saudi Arabia.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
20
|
Stabilization of Antioxidant and Anti-Inflammatory Activities of Nano-Selenium Using Anoectochilus burmannicus Extract as a Potential Novel Functional Ingredient. Nutrients 2023; 15:nu15041018. [PMID: 36839375 PMCID: PMC9962956 DOI: 10.3390/nu15041018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Anoectochilus burmannicus is an orchid that contains phenolic compounds and exhibits antioxidant and anti-inflammation properties. This study aimed to investigate whether its ethanolic extract (ABE) can be used as a reducing agent and/or a stabilizer of nano-selenium (SeNP) synthesis. SeNPs exhibited higher antioxidant activity than ABE-SeNPs. In contrast, ABE-SeNP (4 µM Se) had greater anti-inflammatory activity in LPS-induced macrophages than SeNPs. Interestingly, ABE acted as a stabilizer for SeNPs by preventing particle aggregation and preserving its antioxidant activity after long-term storage (90 days). Moreover, after the freeze-drying process, ABE-SeNPs could be completely reconstituted to suspension with significantly stable antioxidant and anti-inflammatory activities compared to freshly prepared particles, suggesting the cryoprotectant and/or lyoprotectant role of ABE. The present study shows the potential of ABE as an effective stabilizer for nanoparticles and provides evidence for the development of ABE-SeNPs as a food supplement or novel functional ingredient for health benefits.
Collapse
|
21
|
Mohammad SN, Choi YS, Chung JY, Cedrone E, Neun BW, Dobrovolskaia MA, Yang X, Guo W, Chew YC, Kim J, Baek S, Kim IS, Fruman DA, Kwon YJ. Nanocomplexes of doxorubicin and DNA fragments for efficient and safe cancer chemotherapy. J Control Release 2023; 354:91-108. [PMID: 36572154 DOI: 10.1016/j.jconrel.2022.12.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]
Abstract
Cancer-targeted therapy by a chemotherapeutic agent formulated in a nanoscale platform has been challenged by complex and inefficient manufacturing, low drug loading, difficult characterization, and marginally improved therapeutic efficacy. This study investigated facile-to-produce nanocomplexes of doxorubicin (DOX), a widely used cancer drug, and clinically approved DNA fragments that are extracted from a natural source. DOX was found to self-assemble DNA fragments into relatively monodispersed nanocomplexes with a diameter of ∼70 nm at 14.3% (w/w) drug loading by simple and scalable mixing. The resulting DOX/DNA nanocomplexes showed sustained DOX release, unlike overly stable Doxil®, cellular uptake via multiple endocytosis pathways, and high hematological and immunological compatibility. DOX/DNA nanocomplexes eradicated EL4 T lymphoma cells in a time-dependent manner, eventually surpassing free DOX. Extended circulation of DOX/DNA nanocomplexes, while avoiding off-target accumulation in the lung and being cleared from the liver, resulted in rapid accumulation in tumor and lowered cardio toxicity. Finally, tumor growth of EL4-challenged C57BL/6 mice (syngeneic model) and OPM2-challenged NSG mice (human xenograft model) were efficiently inhibited by DOX/DNA nanocomplexes with enhanced overall survival, in comparison with free DOX and Doxil®, especially upon repeated administrations. DOX/DNA nanocomplexes are a promising chemotherapeutics delivery platform for their ease of manufacturing, high biocompatibility, desired drug release and accumulation, efficient tumor eradication with improved safety, and further engineering versatility for extended therapeutic applications.
Collapse
Affiliation(s)
- Saad N Mohammad
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States
| | - Yeon Su Choi
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States
| | - Jee Young Chung
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States
| | - Edward Cedrone
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States
| | - Barry W Neun
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States
| | - Xiaojing Yang
- Zymo Research Corporation, Irvine, CA 92604, United States
| | - Wei Guo
- Zymo Research Corporation, Irvine, CA 92604, United States
| | - Yap Ching Chew
- Zymo Research Corporation, Irvine, CA 92604, United States
| | - Juwan Kim
- Pharma Research, Co, Ltd., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Seunggul Baek
- Pharma Research, Co, Ltd., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Ik Soo Kim
- Pharma Research, Co, Ltd., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States; Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States; Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, United States.
| |
Collapse
|
22
|
Miao YB, Zhao W, Renchi G, Gong Y, Shi Y. Customizing delivery nano-vehicles for precise brain tumor therapy. J Nanobiotechnology 2023; 21:32. [PMID: 36707835 PMCID: PMC9883977 DOI: 10.1186/s12951-023-01775-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/09/2023] [Indexed: 01/29/2023] Open
Abstract
Although some tumor has become a curable disease for many patients, involvement of the central nervous system (CNS) is still a major concern. The blood-brain barrier (BBB), a special structure in the CNS, protects the brain from bloodborne pathogens via its excellent barrier properties and hinders new drug development for brain tumor. Recent breakthroughs in nanotechnology have resulted in various nanovehicless (NPs) as drug carriers to cross the BBB by different strategys. Here, the complex compositions and special characteristics of causes of brain tumor formation and BBB are elucidated exhaustively. Additionally, versatile drug nanovehicles with their recent applications and their pathways on different drug delivery strategies to overcome the BBB obstacle for anti-brain tumor are briefly discussed. Customizing nanoparticles for brain tumor treatments is proposed to improve the efficacy of brain tumor treatments via drug delivery from the gut to the brain. This review provides a broad perspective on customizing delivery nano-vehicles characteristics facilitate drug distribution across the brain and pave the way for the creation of innovative nanotechnology-based nanomaterials for brain tumor treatments.
Collapse
Affiliation(s)
- Yang-Bao Miao
- grid.410646.10000 0004 1808 0950Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000 China ,Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan China
| | - Wang Zhao
- grid.410646.10000 0004 1808 0950Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000 China ,Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan China
| | - Gao Renchi
- grid.410646.10000 0004 1808 0950Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000 China ,Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan China
| | - Ying Gong
- grid.263901.f0000 0004 1791 7667School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 People’s Republic of China
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan China ,grid.9227.e0000000119573309Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, 610072 Sichuan China ,grid.410646.10000 0004 1808 0950Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, 610072 Sichuan China
| |
Collapse
|
23
|
Sharma A, Shambhwani D, Pandey S, Singh J, Lalhlenmawia H, Kumarasamy M, Singh SK, Chellappan DK, Gupta G, Prasher P, Dua K, Kumar D. Advances in Lung Cancer Treatment Using Nanomedicines. ACS OMEGA 2023; 8:10-41. [PMID: 36643475 PMCID: PMC9835549 DOI: 10.1021/acsomega.2c04078] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/13/2022] [Indexed: 06/01/2023]
Abstract
Carcinoma of the lungs is among the most menacing forms of malignancy and has a poor prognosis, with a low overall survival rate due to delayed detection and ineffectiveness of conventional therapy. Therefore, drug delivery strategies that may overcome undesired damage to healthy cells, boost therapeutic efficacy, and act as imaging tools are currently gaining much attention. Advances in material science have resulted in unique nanoscale-based theranostic agents, which provide renewed hope for patients suffering from lung cancer. Nanotechnology has vastly modified and upgraded the existing techniques, focusing primarily on increasing bioavailability and stability of anti-cancer drugs. Nanocarrier-based imaging systems as theranostic tools in the treatment of lung carcinoma have proven to possess considerable benefits, such as early detection and targeted therapeutic delivery for effectively treating lung cancer. Several variants of nano-drug delivery agents have been successfully studied for therapeutic applications, such as liposomes, dendrimers, polymeric nanoparticles, nanoemulsions, carbon nanotubes, gold nanoparticles, magnetic nanoparticles, solid lipid nanoparticles, hydrogels, and micelles. In this Review, we present a comprehensive outline on the various types of overexpressed receptors in lung cancer, as well as the various targeting approaches of nanoparticles.
Collapse
Affiliation(s)
- Akshansh Sharma
- Department
of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | | | - Sadanand Pandey
- Department
of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Jay Singh
- Department
of Chemistry, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Hauzel Lalhlenmawia
- Department
of Pharmacy, Regional Institute of Paramedical
and Nursing Sciences, Zemabawk, Aizawl, Mizoram 796017, India
| | - Murali Kumarasamy
- Department
of Biotechnology, National Institute of
Pharmaceutical Education and Research, Hajipur 844102, India
| | - Sachin Kumar Singh
- School
of Pharmaceutical Sciences, Lovely Professional
University, Phagwara 144411, India
- Faculty
of Health, Australian Research Centre in Complementary and Integrative
Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department
of Life Sciences, School of Pharmacy, International
Medical University, Kuala Lumpur 57000, Malaysia
| | - Gaurav Gupta
- Department
of Pharmacology, School of Pharmacy, Suresh
Gyan Vihar University, Jaipur 302017, India
- Department
of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical
and Technical Sciences, Saveetha University, Chennai 602117, India
- Uttaranchal
Institute of Pharmaceutical Sciences, Uttaranchal
University, Dehradun 248007, India
| | - Parteek Prasher
- Department
of Chemistry, University of Petroleum &
Energy Studies, Dehradun 248007, India
| | - Kamal Dua
- Faculty
of Health, Australian Research Centre in Complementary and Integrative
Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- Discipline
of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Deepak Kumar
- Department
of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| |
Collapse
|
24
|
pH-Responsive Delivery of Platinum-based Drugs through the Surface Modification of Heparin on Mesoporous Silica Nanoparticles. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Chattha GM, Arshad S, Kamal Y, Chattha MA, Asim MH, Raza SA, Mahmood A, Manzoor M, Dar UI, Arshad A. Nanorobots: An innovative approach for DNA-based cancer treatment. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
26
|
Tajnšek TK, Zabukovec Logar N, Mazaj M. Tuning Size and Properties of Zinc Ascorbate Metal-Organic Framework via Acid Modulation. Molecules 2022; 28:253. [PMID: 36615446 PMCID: PMC9822160 DOI: 10.3390/molecules28010253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
One of the biggest advantages of MOFs is the possibility of modifying their properties and tuning their inherent activity (i.e., sorption, storage, catalytic activity etc.). Textural properties can be tuned by manipulating process and compositional parameters, among which, the effect of additives can be even further distinguished among them based on the way they affect these properties. Beyond the effect that additives have on the size and morphology of nanoMOFs, there is also an effect on properties via creating point defects-missing linker and missing node defects. In this study, we investigated the effect of four monotopic acid modulators-formic, acetic, dichloroacetic and propionic acid, their concentration and the heating type (conventional and microwave-MW) on the size, morphology and textural properties of a recently discovered bioNICS1. It was confirmed that the proposed seesaw model for the controlled size of nanoMOF crystals is less applicable in the case of MW-assisted synthesis, in comparison to conventional heating. In the case of formic acid- and propionic acid-modified materials, we demonstrated that the type of additive plays a different role in crystal growth and generation of defects, implying high tunability being crucial for a material's structure-property performance optimization.
Collapse
Affiliation(s)
- Tia Kristian Tajnšek
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty of Inorganic Chemistry and Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Nataša Zabukovec Logar
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- School of Science, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia
| | - Matjaž Mazaj
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
27
|
Sohrabi M, Babaei Z, Haghpanah V, Larijani B, Abbasi A, Mahdavi M. Recent advances in gene therapy-based cancer monotherapy and synergistic bimodal therapy using upconversion nanoparticles: Structural and biological aspects. Biomed Pharmacother 2022; 156:113872. [DOI: 10.1016/j.biopha.2022.113872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/02/2022] Open
|
28
|
Advances in polysaccharide-based nano/microcapsules for biomedical applications: A review. Int J Biol Macromol 2022; 220:878-891. [PMID: 36007696 DOI: 10.1016/j.ijbiomac.2022.08.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/06/2023]
Abstract
Biocompatible and biodegradable polysaccharides are abundant and renewable natural materials. Polysaccharides and their derivatives are developed into various carrier materials for biomedical applications. In particular, advanced polysaccharide-based nano/microcapsules have received extensive attention in biomedical applications due to their good encapsulation ability and tunability. In recent years, polysaccharide-based nano/microcapsules have been widely used in drug carriers, gene carriers, antigen carriers, wound dressings, bioimaging and biosensors. Numerous research results have confirmed the feasibility, safety, and effectiveness of polysaccharide-based nano/microcapsules in the above-mentioned biomedical applications. This review discussed and analyzed the latest research strategies and design considerations for these applications in detail. The preparation methods, application strategies, and design considerations of polysaccharide-based nano/microcapsules are summarized and analyzed, and their challenges and future research prospects in biomedicine are further discussed. It is expected to provide researchers with inspiration and design ideas.
Collapse
|
29
|
Grilli F, Hajimohammadi Gohari P, Zou S. Characteristics of Graphene Oxide for Gene Transfection and Controlled Release in Breast Cancer Cells. Int J Mol Sci 2022; 23:6802. [PMID: 35743245 PMCID: PMC9224565 DOI: 10.3390/ijms23126802] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022] Open
Abstract
Functionalized graphene oxide (GO) nanoparticles are being increasingly employed for designing modern drug delivery systems because of their high degree of functionalization, high surface area with exceptional loading capacity, and tunable dimensions. With intelligent controlled release and gene silencing capability, GO is an effective nanocarrier that permits the targeted delivery of small drug molecules, antibodies, nucleic acids, and peptides to the liquid or solid tumor sites. However, the toxicity and biocompatibility of GO-based formulations should be evaluated, as these nanomaterials may introduce aggregations or may accumulate in normal tissues while targeting tumors or malignant cells. These side effects may potentially be impacted by the dosage, exposure time, flake size, shape, functional groups, and surface charges. In this review, the strategies to deliver the nucleic acid via the functionalization of GO flakes are summarized to describe the specific targeting of liquid and solid breast tumors. In addition, we describe the current approaches aimed at optimizing the controlled release towards a reduction in GO accumulation in non-specific tissues in terms of the cytotoxicity while maximizing the drug efficacy. Finally, the challenges and future research perspectives are briefly discussed.
Collapse
Affiliation(s)
- Francesca Grilli
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada; (F.G.); (P.H.G.)
- Ottawa-Carleton Institute for Biomedical Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON K1N 6N5, Canada
| | - Parisa Hajimohammadi Gohari
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada; (F.G.); (P.H.G.)
- Ottawa-Carleton Institute for Biomedical Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON K1N 6N5, Canada
| | - Shan Zou
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada; (F.G.); (P.H.G.)
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
30
|
Sattar R, Shahzad F, Ishaq T, Mukhtar R, Naz A. Nano‐Drug Carriers: A Potential Approach towards Drug Delivery Methods. ChemistrySelect 2022. [DOI: 10.1002/slct.202200884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rabia Sattar
- Department of Chemistry The University of Lahore Sargodha Campus 40100 Sargodha Pakistan
| | - Faisal Shahzad
- Department of Chemistry The University of Lahore Sargodha Campus 40100 Sargodha Pakistan
| | - Tehmeena Ishaq
- Department of Chemistry The University of Lahore Sargodha Campus 40100 Sargodha Pakistan
| | - Rubina Mukhtar
- Department of Chemistry The University of Lahore Sargodha Campus 40100 Sargodha Pakistan
| | - Asima Naz
- Department of Chemistry Mirpur University of Science & Technology (MUST) 10250 Mirpur, Azad Jammu & Kashmir Pakistan
| |
Collapse
|
31
|
Hong C, Alser O, Gebran A, He Y, Joo W, Kokoroskos N, Velmahos G, Olsen BD, Hammond PT. Modulating Nanoparticle Size to Understand Factors Affecting Hemostatic Efficacy and Maximize Survival in a Lethal Inferior Vena Cava Injury Model. ACS NANO 2022; 16:2494-2510. [PMID: 35090344 PMCID: PMC9989960 DOI: 10.1021/acsnano.1c09108] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Intravenous nanoparticle hemostats offer a potentially attractive approach to promote hemostasis, in particular for inaccessible wounds such as noncompressible torso hemorrhage (NCTH). In this work, particle size was tuned over a range of <100-500 nm, and its effect on nanoparticle-platelet interactions was systematically assessed using in vitro and in vivo experiments. Smaller particles bound a larger percentage of platelets per mass of particle delivered, while larger particles resulted in higher particle accumulation on a surface of platelets and collagen. Intermediate particles led to the greatest platelet content in platelet-nanoparticle aggregates, indicating that they may be able to recruit more platelets to the wound. In biodistribution studies, smaller and intermediate nanoparticles exhibited longer circulation lifetimes, while larger nanoparticles resulted in higher pulmonary accumulation. The particles were then challenged in a 2 h lethal inferior vena cava (IVC) puncture model, where intermediate nanoparticles significantly increased both survival and injury-specific targeting relative to saline and unfunctionalized particle controls. An increase in survival in the second hour was likewise observed in the smaller nanoparticles relative to saline controls, though no significant increase in survival was observed in the larger nanoparticle size. In conjunction with prior in vitro and in vivo experiments, these results suggest that platelet content in aggregates and extended nanoparticle circulation lifetimes are instrumental to enhancing hemostasis. Ultimately, this study elucidates the role of particle size in platelet-particle interactions, which can be a useful tool for engineering the performance of particulate hemostats and improving the design of these materials.
Collapse
Affiliation(s)
- Celestine Hong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Osaid Alser
- Division of Trauma, Emergency Surgery and Surgical Critical Care, Department of Surgery, Massachusetts General Hospital & Harvard Medical School, Boston, Massachusetts 02144, USA
| | - Anthony Gebran
- Division of Trauma, Emergency Surgery and Surgical Critical Care, Department of Surgery, Massachusetts General Hospital & Harvard Medical School, Boston, Massachusetts 02144, USA
| | - Yanpu He
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wontae Joo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Nikolaos Kokoroskos
- Division of Trauma, Emergency Surgery and Surgical Critical Care, Department of Surgery, Massachusetts General Hospital & Harvard Medical School, Boston, Massachusetts 02144, USA
| | - George Velmahos
- Division of Trauma, Emergency Surgery and Surgical Critical Care, Department of Surgery, Massachusetts General Hospital & Harvard Medical School, Boston, Massachusetts 02144, USA
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Paula T. Hammond
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
32
|
PLGA-Based Composites for Various Biomedical Applications. Int J Mol Sci 2022; 23:ijms23042034. [PMID: 35216149 PMCID: PMC8876940 DOI: 10.3390/ijms23042034] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Polymeric materials have been extensively explored in the field of nanomedicine; within them, poly lactic-co-glycolic acid (PLGA) holds a prominent position in micro- and nanotechnology due to its biocompatibility and controllable biodegradability. In this review we focus on the combination of PLGA with different inorganic nanomaterials in the form of nanocomposites to overcome the polymer’s limitations and extend its field of applications. We discuss their physicochemical properties and a variety of well-established synthesis methods for the preparation of different PLGA-based materials. Recent progress in the design and biomedical applications of PLGA-based materials are thoroughly discussed to provide a framework for future research.
Collapse
|
33
|
Zhang Z, Wang Y, Rizk MM, Liang R, Wells CJ, Gurnani P, Zhou F, Davies GL, Williams GR. Thermo-responsive nano-in-micro particles for MRI-guided chemotherapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112716. [DOI: 10.1016/j.msec.2022.112716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/12/2022] [Accepted: 02/09/2022] [Indexed: 12/19/2022]
|
34
|
Rich J, Tian Z, Huang TJ. Sonoporation: Past, Present, and Future. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2100885. [PMID: 35399914 PMCID: PMC8992730 DOI: 10.1002/admt.202100885] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Indexed: 05/09/2023]
Abstract
A surge of research in intracellular delivery technologies is underway with the increased innovations in cell-based therapies and cell reprogramming. Particularly, physical cell membrane permeabilization techniques are highlighted as the leading technologies because of their unique features, including versatility, independence of cargo properties, and high-throughput delivery that is critical for providing the desired cell quantity for cell-based therapies. Amongst the physical permeabilization methods, sonoporation holds great promise and has been demonstrated for delivering a variety of functional cargos, such as biomolecular drugs, proteins, and plasmids, to various cells including cancer, immune, and stem cells. However, traditional bubble-based sonoporation methods usually require special contrast agents. Bubble-based sonoporation methods also have high chances of inducing irreversible damage to critical cell components, lowering the cell viability, and reducing the effectiveness of delivered cargos. To overcome these limitations, several novel non-bubble-based sonoporation mechanisms are under development. This review will cover both the bubble-based and non-bubble-based sonoporation mechanisms being employed for intracellular delivery, the technologies being investigated to overcome the limitations of traditional platforms, as well as perspectives on the future sonoporation mechanisms, technologies, and applications.
Collapse
Affiliation(s)
- Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Zhenhua Tian
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
35
|
Kazemi-Andalib F, Mohammadikish M, Divsalar A, Sahebi U. Hollow microcapsule with pH-sensitive chitosan/polymer shell for in vitro delivery of curcumin and gemcitabine. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110887] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Gavas S, Quazi S, Karpiński TM. Nanoparticles for Cancer Therapy: Current Progress and Challenges. NANOSCALE RESEARCH LETTERS 2021; 16:173. [PMID: 34866166 PMCID: PMC8645667 DOI: 10.1186/s11671-021-03628-6] [Citation(s) in RCA: 324] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/19/2021] [Indexed: 05/04/2023]
Abstract
Cancer is one of the leading causes of death and morbidity with a complex pathophysiology. Traditional cancer therapies include chemotherapy, radiation therapy, targeted therapy, and immunotherapy. However, limitations such as lack of specificity, cytotoxicity, and multi-drug resistance pose a substantial challenge for favorable cancer treatment. The advent of nanotechnology has revolutionized the arena of cancer diagnosis and treatment. Nanoparticles (1-100 nm) can be used to treat cancer due to their specific advantages such as biocompatibility, reduced toxicity, more excellent stability, enhanced permeability and retention effect, and precise targeting. Nanoparticles are classified into several main categories. The nanoparticle drug delivery system is particular and utilizes tumor and tumor environment characteristics. Nanoparticles not only solve the limitations of conventional cancer treatment but also overcome multidrug resistance. Additionally, as new multidrug resistance mechanisms are unraveled and studied, nanoparticles are being investigated more vigorously. Various therapeutic implications of nanoformulations have created brand new perspectives for cancer treatment. However, most of the research is limited to in vivo and in vitro studies, and the number of approved nanodrugs has not much amplified over the years. This review discusses numerous types of nanoparticles, targeting mechanisms, and approved nanotherapeutics for oncological implications in cancer treatment. Further, we also summarize the current perspective, advantages, and challenges in clinical translation.
Collapse
Affiliation(s)
- Shreelaxmi Gavas
- Department of Life Sciences, GenLab Biosolutions Private Limited, Bangalore, Karnataka 560043 India
| | - Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore, Karnataka 560043 India
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
| |
Collapse
|
37
|
Abdel-Moneim A, Ramadan H. Novel strategies to oral delivery of insulin: Current progress of nanocarriers for diabetes management. Drug Dev Res 2021; 83:301-316. [PMID: 34859477 DOI: 10.1002/ddr.21903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/30/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus is one of the most serious public health problems in the world. Repeated daily injections of subcutaneous insulin is the standard treatment for patients with type 1 diabetes mellitus; however, subcutaneous insulin injections can potentially cause local discomfort, patient noncompliance, hypoglycemia, failure to regulate glucose homeostasis, infections, and fat deposits at the injection sites. In recent years, numerous attempts have been made to produce safe and efficient nanoparticles for oral insulin delivery. Oral administration is considered the most effective alternative route to insulin injection, but it is accompanied by several challenges related to enzymatic proteolysis, digestive breakdown, and absorption barriers. A number of natural and synthetic polymeric, lipid-based, and inorganic nanoparticles have been investigated for use. Although improvements have recently been made in potential oral insulin delivery systems, these require further investigation before clinical trials are conducted. In this review, new approaches to oral insulin delivery for diabetes treatment are discussed, including polymeric, lipid-based, and inorganic nanoparticles, as well as the clinical trials performed for this purpose.
Collapse
Affiliation(s)
- Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hanaa Ramadan
- Histology and Molecular Cytology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
38
|
Roy SM, Garg V, Barman S, Ghosh C, Maity AR, Ghosh SK. Kinetics of Nanomedicine in Tumor Spheroid as an In Vitro Model System for Efficient Tumor-Targeted Drug Delivery With Insights From Mathematical Models. Front Bioeng Biotechnol 2021; 9:785937. [PMID: 34926430 PMCID: PMC8671936 DOI: 10.3389/fbioe.2021.785937] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022] Open
Abstract
Numerous strategies have been developed to treat cancer conventionally. Most importantly, chemotherapy shows its huge promise as a better treatment modality over others. Nonetheless, the very complex behavior of the tumor microenvironment frequently impedes successful drug delivery to the tumor sites that further demands very urgent and effective distribution mechanisms of anticancer drugs specifically to the tumor sites. Hence, targeted drug delivery to tumor sites has become a major challenge to the scientific community for cancer therapy by assuring drug effects to selective tumor tissue and overcoming undesired toxic side effects to the normal tissues. The application of nanotechnology to the drug delivery system pays heed to the design of nanomedicine for specific cell distribution. Aiming to limit the use of traditional strategies, the adequacy of drug-loaded nanocarriers (i.e., nanomedicine) proves worthwhile. After systemic blood circulation, a typical nanomedicine follows three levels of disposition to tumor cells in order to exhibit efficient pharmacological effects induced by the drug candidates residing within it. As a result, nanomedicine propounds the assurance towards the improved bioavailability of anticancer drug candidates, increased dose responses, and enhanced targeted efficiency towards delivery and distribution of effective therapeutic concentration, limiting toxic concentration. These aspects emanate the proficiency of drug delivery mechanisms. Understanding the potential tumor targeting barriers and limiting conditions for nanomedicine extravasation, tumor penetration, and final accumulation of the anticancer drug to tumor mass, experiments with in vivo animal models for nanomedicine screening are a key step before it reaches clinical translation. Although the study with animals is undoubtedly valuable, it has many associated ethical issues. Moreover, individual experiments are very expensive and take a longer time to conclude. To overcome these issues, nowadays, multicellular tumor spheroids are considered a promising in vitro model system that proposes better replication of in vivo tumor properties for the future development of new therapeutics. In this review, we will discuss how tumor spheroids could be used as an in vitro model system to screen nanomedicine used in targeted drug delivery, aiming for better therapeutic benefits. In addition, the recent proliferation of mathematical modeling approaches gives profound insight into the underlying physical principles and produces quantitative predictions. The hierarchical tumor structure is already well decorous to be treated mathematically. To study targeted drug delivery, mathematical modeling of tumor architecture, its growth, and the concentration gradient of oxygen are the points of prime focus. Not only are the quantitative models circumscribed to the spheroid, but also the role of modeling for the nanoparticle is equally inevitable. Abundant mathematical models have been set in motion for more elaborative and meticulous designing of nanomedicine, addressing the question regarding the objective of nanoparticle delivery to increase the concentration and the augmentative exposure of the therapeutic drug molecule to the core. Thus, to diffuse the dichotomy among the chemistry involved, biological data, and the underlying physics, the mathematical models play an indispensable role in assisting the experimentalist with further evaluation by providing the admissible quantitative approach that can be validated. This review will provide an overview of the targeted drug delivery mechanism for spheroid, using nanomedicine as an advantageous tool.
Collapse
Affiliation(s)
| | - Vrinda Garg
- Department of Physics, National Institute of Technology, Warangal, India
| | - Sourav Barman
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Chitrita Ghosh
- Department of Pharmacology, Burdwan Medical College and Hospital, Burdwan, India
| | | | - Surya K. Ghosh
- Department of Physics, National Institute of Technology, Warangal, India
| |
Collapse
|
39
|
Hu X, Jazani AM, Oh JK. Recent advances in development of imine-based acid-degradable polymeric nanoassemblies for intracellular drug delivery. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Shute T, Amiel E, Alam N, Yates JL, Mohrs K, Dudley E, Salas B, Mesa C, Serrata A, Angel D, Vincent BK, Weyers A, Lanthier PA, Vomhof-Dekrey E, Fromme R, Laughlin M, Durham O, Miao J, Shipp D, Linhardt RJ, Nash K, Leadbetter EA. Glycolipid-Containing Nanoparticle Vaccine Engages Invariant NKT Cells to Enhance Humoral Protection against Systemic Bacterial Infection but Abrogates T-Independent Vaccine Responses. THE JOURNAL OF IMMUNOLOGY 2021; 206:1806-1816. [PMID: 33811104 DOI: 10.4049/jimmunol.2001283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
CD4+ T cells enable the critical B cell humoral immune protection afforded by most effective vaccines. We and others have recently identified an alternative source of help for B cells in mice, invariant NK T (iNKT) cells. iNKT cells are innate glycolipid-specific T cells restricted to the nonpolymorphic Ag-presenting molecule CD1d. As such, iNKT cells respond to glycolipids equally well in all people, making them an appealing adjuvant for universal vaccines. We tested the potential for the iNKT glycolipid agonist, α-galactosylceramide (αGC), to serve as an adjuvant for a known human protective epitope by creating a nanoparticle that delivers αGC plus antigenic polysaccharides from Streptococcus pneumoniae αGC-embedded nanoparticles activate murine iNKT cells and B cells in vitro and in vivo, facilitate significant dose sparing, and avoid iNKT anergy. Nanoparticles containing αGC plus S. pneumoniae polysaccharides elicits robust IgM and IgG in vivo and protect mice against lethal systemic S. pneumoniae However, codelivery of αGC via nanoparticles actually eliminated Ab protection elicited by a T-independent S. pneumoniae vaccine. This is consistent with previous studies demonstrating iNKT cell help for B cells following acute activation, but negative regulation of B cells during chronic inflammation. αGC-containing nanoparticles represent a viable platform for broadly efficacious vaccines against deadly human pathogens, but their potential for eliminating B cells under certain conditions suggests further clarity on iNKT cell interactions with B cells is warranted.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Daniel Angel
- Department of Astronomy and Physics, The University of Texas at San Antonio, San Antonio, TX
| | - Brandy K Vincent
- Department of Astronomy and Physics, The University of Texas at San Antonio, San Antonio, TX
| | | | | | | | - Rachel Fromme
- Center for Advanced Material Processing, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699
| | - Mitchell Laughlin
- Center for Advanced Material Processing, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699
| | - Olivia Durham
- Center for Advanced Material Processing, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699
| | | | - Devon Shipp
- Center for Advanced Material Processing, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699
| | | | - Kelly Nash
- Department of Astronomy and Physics, The University of Texas at San Antonio, San Antonio, TX
| | | |
Collapse
|
41
|
Jazani AM, Shetty C, Movasat H, Bawa KK, Oh JK. Imidazole-Mediated Dual Location Disassembly of Acid-Degradable Intracellular Drug Delivery Block Copolymer Nanoassemblies. Macromol Rapid Commun 2021; 42:e2100262. [PMID: 34050688 DOI: 10.1002/marc.202100262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/14/2021] [Indexed: 11/10/2022]
Abstract
Acid-degradable (or acid-cleavable) polymeric nanoassemblies have witnessed significant progress in anti-cancer drug delivery. However, conventional nanoassemblies designed with acid-cleavable linkages at a single location have several challenges, such as, sluggish degradation, undesired aggregation of degraded products, and difficulty in controlled and on-demand drug release. Herein, a strategy that enables the synthesis of acid-cleavable nanoassemblies labeled with acetaldehyde acetal groups in both hydrophobic cores and at core/corona interfaces, exhibiting synergistic response to acidic pH at dual locations and thus inducing rapid drug release is reported. The systematic analyses suggest that the acid-catalyzed degradation and disassembly are further enhanced by decreasing copolymer concentration (i.e., increasing proton/acetal mole ratio). Moreover, incorporation of acid-ionizable imidazole pendants in the hydrophobic cores improve the encapsulation of doxorubicin, the anticancer drug, through π-π interactions and enhance the acid-catalyzed hydrolysis of acetal linkages situated in the dual locations. Furthermore, the presence of the imidazole pendants induce the occurrence of core-crosslinking that compensates the kinetics of acetal hydrolysis and drug release. These results, combined with in vitro cell toxicity and cellular uptake, suggest the versatility of the dual location acid-degradation strategy in the design and development of effective intracellular drug delivery nanocarriers.
Collapse
Affiliation(s)
- Arman Moini Jazani
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Chaitra Shetty
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Hourieh Movasat
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Kamaljeet Kaur Bawa
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
42
|
Hosseinzadeh R, Khorsandi K, Esfahani HS, Habibi M, Hosseinzadeh G. Preparation of cerium-curcumin and cerium-quercetin complexes and their LEDs irradiation assisted anticancer effects on MDA-MB-231 and A375 cancer cell lines. Photodiagnosis Photodyn Ther 2021; 34:102326. [PMID: 33971331 DOI: 10.1016/j.pdpdt.2021.102326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 11/15/2022]
Abstract
Cancer remains common and often is difficult to eradicate. In particular resistant forms like triple negative breast cancer and melanoma generally allow for very short survival. Curcumin and quercetin as two important polyphenols from plants which have different biological roles, potentially including anti-cancer effect. But their clinical application is limited due to poor solubility in aqueous medium. Photodynamic therapy (PDT) is a cancer treatment using select chemical compounds as photosensitizers, which when activated by light create toxic singlet oxygen. Studies done on plant based photosensitizers such as curcumin and quercetin have shown the ability to ablate tumors. Here we discuss using them as improved PS by making their complex with cerium ions as a delivery system for MDA-MB-231 and A375 cancer cell lines treatment. For this purpose, the MDA-MB-231 human breast cancer cell line exposed to red light irradiation (as pretreatment) then treated with curcumin and quercetin alone and also their complex with cerium. In another study the cells treated with curcumin-cerium and quercetin-cerium complex and then irradiated with blue light (photodynamic treatment). Cell survival and apoptosis were determined using MTT and fluorescence microscopy. The result showed that curcumin and quercetin in complex with cerium ions have better toxic effect against both breast and melanoma cancer cells as compared to each compound alone. The finding revealed that curcumin and quercetin in cerium complex could be considered as a new approach in the photodynamic treatment of breast and melanoma cancer cells.
Collapse
Affiliation(s)
- Reza Hosseinzadeh
- Department of Medical Laser, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran.
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran
| | - Homa Sadat Esfahani
- Department of Photodynamic, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran
| | - Masoud Habibi
- Department of Medical Laser, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran
| | | |
Collapse
|
43
|
Nanotechnology-based approaches for emerging and re-emerging viruses: Special emphasis on COVID-19. Microb Pathog 2021; 156:104908. [PMID: 33932543 PMCID: PMC8079947 DOI: 10.1016/j.micpath.2021.104908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022]
Abstract
In recent decades, the major concern of emerging and re-emerging viral diseases has become an increasingly important area of public health concern, and it is of significance to anticipate future pandemic that would inevitably threaten human lives. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerged virus that causes mild to severe pneumonia. Coronavirus disease (COVID-19) became a very much concerned issue worldwide after its super-spread across the globe and emerging viral diseases have not got specific and reliable diagnostic and treatments. As the COVID-19 pandemic brings about a massive life-loss across the globe, there is an unmet need to discover a promising and typically effective diagnosis and treatment to prevent super-spreading and mortality from being decreased or even eliminated. This study was carried out to overview nanotechnology-based diagnostic and treatment approaches for emerging and re-emerging viruses with the current treatment of the disease and shed light on nanotechnology's remarkable potential to provide more effective treatment and prevention to a special focus on recently emerged coronavirus.
Collapse
|
44
|
Shrestha SC, Ghebremeskel K, White K, Minelli C, Tewfik I, Thapa P, Tewfik S. Formulation and Characterization of Phytostanol Ester Solid Lipid Nanoparticles for the Management of Hypercholesterolemia: An ex vivo Study. Int J Nanomedicine 2021; 16:1977-1992. [PMID: 33727810 PMCID: PMC7955784 DOI: 10.2147/ijn.s276301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/04/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Phytostanols are naturally occurring compounds that reduce blood cholesterol levels significantly. However, their aqueous insolubility poses formulation challenges. AIM To formulate and characterize solid lipid nanoparticle carriers for phytostanol esters to enhance the bioavailability of phytostanols. METHODS Phytostanol ester solid lipid nanoparticles were formulated by the microemulsion method. They were characterized for particle size distribution, polydispersity index, shape, surface charge, entrapment efficiency, stability, chemical structure, and thermal properties. The uptake of the formulation by cell lines, HepG2 and HT-29, and its effect on cell viability were evaluated. RESULTS The formulation of solid lipid nanoparticles was successfully optimised by varying the type of lipids and their concentration relative to that of surfactants in the present study. The optimised formulation had an average diameter of (171 ± 9) nm, a negative surface charge of (-23.0 ± 0.8) mV and was generally spherical in shape. We report high levels of drug entrapment at (89 ± 5)% in amorphous form, drug loading of (9.1 ± 0.5)%, nanoparticle yield of (67 ± 4)% and drug excipient compatibility. The biological safety and uptake of the formulations were demonstrated on hepatic and intestinal cell lines. CONCLUSION Phytostanol ester solid lipid nanoparticles were successfully formulated and characterized. The formulation has the potential to provide an innovative drug delivery system for phytostanols which reduce cholesterol and have a potentially ideal safety profile. This can contribute to better management of one of the main risk factors of cardiovascular diseases.
Collapse
Affiliation(s)
- Sony Chandi Shrestha
- School of Human Sciences, London Metropolitan University, London, UK
- Surface Technology, National Physical Laboratory, London, UK
| | | | - Kenneth White
- School of Human Sciences, London Metropolitan University, London, UK
| | | | - Ihab Tewfik
- Life Sciences, University of Westminster, London, UK
| | - Panna Thapa
- Department of Pharmacy, Kathmandu University, Dhulikhel, Nepal
| | - Sundus Tewfik
- Department of Applied Nanomolecules, Bloomsnano Limited, London, UK
| |
Collapse
|
45
|
Almalki M, Lai EP, Ko R, Li C. Facile preparation of liposome-encapsulated Zn–DTPA from soy lecithin for decorporation of radioactive actinides. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diethylenetriaminepentaacetic acid (DTPA) is an attractive decorporation agent that can enhance the excretion of radioactive actinides such as plutonium, americium, and curium after a radiological incident. However, DTPA is excreted in a short period of time after administration. Several formulations have been developed to improve DTPA pharmacokinetics properties. In this project, liposomes were prepared facilely from soy lecithin as a nanocarrier for pulmonary delivery of Zn–DTPA. Lipid hydration, reverse phase evaporation, and mechanical sonication were three methods evaluated for the preparation of liposome-encapsulated Zn-DTPA (lipo-Zn-DTPA). Mechanical sonication was the method of choice due to simple apparatus and facile preparation. Lipo-Zn–DTPA exhibited a hydrodynamic diameter of 178 ± 2 nm and a spherical shape. The loading capacity and encapsulation efficiency of Zn–DTPA were 41 ± 5 mg/g and 10% ± 1%, respectively. Lyophilization of lipo-Zn–DTPA for extended storage did not affect the amount of encapsulated drug or damage the structure of liposomes. An in vivo cytotoxicity test confirmed no serious adverse effect of Zn–DTPA encapsulated lecithin liposomes in rats.
Collapse
Affiliation(s)
- Manal Almalki
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Edward P.C. Lai
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Raymond Ko
- Radiation Protection Bureau, Health Canada, Ottawa, ON K1A 1C1, Canada
| | - Chunsheng Li
- Radiation Protection Bureau, Health Canada, Ottawa, ON K1A 1C1, Canada
| |
Collapse
|
46
|
Thiolated chitosan nanoparticles for augmented oral bioavailability of gemcitabine: Preparation, optimization, in vitro and in vivo study. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Elsewedy HS, Aldhubiab BE, Mahdy MA, Elnahas HM. Brucine PEGylated nanoemulsion: In vitro and in vivo evaluation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125618] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Tajau R, Rohani R, Abdul Hamid SS, Adam Z, Mohd Janib SN, Salleh MZ. Surface functionalisation of poly-APO-b-polyol ester cross-linked copolymers as core-shell nanoparticles for targeted breast cancer therapy. Sci Rep 2020; 10:21704. [PMID: 33303818 PMCID: PMC7729971 DOI: 10.1038/s41598-020-78601-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
Polymeric nanoparticles (NPs) are commonly used as nanocarriers for drug delivery, whereby their sizes can be altered for a more efficient delivery of therapeutic active agents with better efficacy. In this work, cross-linked copolymers acted as core-shell NPs from acrylated palm olein (APO) with polyol ester were synthesized via gamma radiation-induced reversible addition-fragmentation chain transfer (RAFT) polymerisation. The particle diameter of the copolymerised poly(APO-b-polyol ester) core-shell NPs was found to be less than 300 nm, have a low molecular weight (MW) of around 24 kDa, and showed a controlled MW distribution of a narrow polydispersity index (PDI) of 1.01. These properties were particularly crucial for further use in designing targeted NPs, with inclusion of peptide for the targeted delivery of paclitaxel. Moreover, the characterisation of the synthesised NPs using Fourier Transform-Infrared (FTIR) and Neutron Magnetic Resonance (NMR) analyses confirmed the possession of biodegradable hydrolysed ester in its chemical structures. Therefore, it can be concluded that the synthesised NPs produced may potentially contribute to better development of a nano-structured drug delivery system for breast cancer therapy.
Collapse
Affiliation(s)
- Rida Tajau
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Division of Radiation Processing Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| | - Rosiah Rohani
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Siti Selina Abdul Hamid
- Division of Medical Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| | - Zainah Adam
- Division of Medical Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| | - Siti Najila Mohd Janib
- Division of Medical Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| | - Mek Zah Salleh
- Division of Radiation Processing Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
49
|
Kumar V, Yadavilli S, Kannan R. A review on RNAi therapy for NSCLC: Opportunities and challenges. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1677. [PMID: 33174364 DOI: 10.1002/wnan.1677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the primary cause of cancer death worldwide. Despite developments in chemotherapy and targeted therapies, the 5-year survival rate has remained at approximately 16% for the last four decades. NSCLC is a heterogeneous group of tumors that, through mutations and drivers, also demonstrate intra-tumor heterogeneity. Thus, current treatment approaches revolve around targeting these oncogenes, often using small molecule inhibitors and chemotherapeutics. However, the efficacy of these therapies has been crippled by acquired and inherent drug-resistance in the tumor, accompanied by increased therapeutic dosages and subsequent devastating off-target effects for patients. Evidently, there is a critical need for developing treatment methodologies more effective than the current standard of care. Fortunately, RNA interference, particularly small interfering RNA (siRNA), presents an alternative of silencing specific oncogenes to control tumor growth. Although siRNA therapy is subject to rapid degradation and poor internalization in vivo, nanoparticles can serve as nontoxic and efficient delivery vehicles, even introducing combinational delivery of multiple therapeutic agents. Indeed, siRNA-nanoconstructs possess extraordinary potential as an innovative modality to address clinical needs. This state-of-the-art review summarizes the recent advancements in the development of novel nanosystems for delivering siRNA to NSCLC tumors and analyzes the efficacy of representative examples. By illuminating the most promising biomarkers for silencing, we hope to streamline current therapeutic efforts and highlight powerful translational opportunities to combat NSCLC. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Vignesh Kumar
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
| | - Sairam Yadavilli
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
| | - Raghuraman Kannan
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
50
|
Abo Mansour HE, El-Batsh MM, Badawy NS, Mehanna ET, Mesbah NM, Abo-Elmatty DM. Ginger Extract Loaded into Chitosan Nanoparticles Enhances Cytotoxicity and Reduces Cardiotoxicity of Doxorubicin in Hepatocellular Carcinoma in Mice. Nutr Cancer 2020; 73:2347-2362. [PMID: 32972241 DOI: 10.1080/01635581.2020.1823436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/27/2020] [Accepted: 09/05/2020] [Indexed: 02/08/2023]
Abstract
This study aimed to investigate the impact of ginger extract (GE) loaded into chitosan nanoparticles (CNPs) in enhancing cytotoxicity and reducing cardiotoxicity of doxorubicin (DXN) in hepatocellular carcinoma (HCC) induced mice. DXN and GE were loaded into CNPs and cytotoxicity of loaded and unloaded drugs against HepG2 cells was evaluated. HCC was induced in male albino mice by injection of diethylnitrosamine (DINA). Mice were divided into eight groups (n = 15): (1) normal control, (2) DINA, (3) CNPs, (4) free DXN, (5) CNPs DXN, (6) free GE, (7) CNPs GE, and (8) CNPs DXN + CNPs GE. Both GE and DXN loaded into CNPs showed a greater decline in cell viability of HepG2 cells than the unloaded forms. GE CNPs displayed pronounced anticancer activity In Vivo through apoptosis, greater down-regulation of multidrug resistance 1, enhancement of anti-oxidant activity and depletion of vascular endothelial growth factor content in liver tissues. GE CNPs in combination with DXN CNPs showed nearly normal hepatic lobule architecture and the greatest increase in apoptotic cell count. Co-treatment group had decreased cardiac malondialdehyde, tumor necrosis factor-α and serum activity of creatine kinase and lactate dehydrogenase. Combination of GE CNPs and DXN CNPs might be a potentially effective therapeutic approach for HCC.
Collapse
Affiliation(s)
- Hend E Abo Mansour
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Shebeen El-Kom, Egypt
| | - Maha M El-Batsh
- Department of Clinical Pharmacology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Nadia S Badawy
- Department of Histology and Cell Biology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Noha M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Dina M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|