1
|
Sun X, Jia X, Tan Z, Fan D, Chen M, Cui N, Liu A, Liu D. Oral Nanoformulations in Cardiovascular Medicine: Advances in Atherosclerosis Treatment. Pharmaceuticals (Basel) 2024; 17:919. [PMID: 39065770 PMCID: PMC11279631 DOI: 10.3390/ph17070919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Atherosclerosis (AS) is the formation of atherosclerotic plaques on the walls of the arteries, causing them to narrow. If this occurs in the coronary arteries, the blood vessels may be completely blocked, resulting in myocardial infarction; if it occurs in the blood vessels of the brain, the blood vessels may be blocked, resulting in cerebral infarction, i.e., stroke. Studies have shown that the pathogenesis of atherosclerosis involves the processes of inflammation, lipid infiltration, oxidative stress, and endothelial damage, etc. SIRT, as a key factor regulating the molecular mechanisms of oxidative stress, inflammation, and aging, has an important impact on the pathogenesis of plaque formation, progression, and vulnerability. Statistics show that AS accounts for about 50 per cent of deaths in Western countries. Currently, oral medication is the mainstay of AS treatment, but its development is limited by side effects, low bioavailability and other unfavourable factors. In recent years, with the rapid development of nano-preparations, researchers have combined statins and natural product drugs within nanopreparations to improve their bioavailability. Based on this, this paper summarises the main pathogenesis of AS and also proposes new oral nanoformulations such as liposomes, nanoparticles, nanoemulsions, and nanocapsules to improve their application in the treatment of AS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aidong Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.S.); (X.J.); (Z.T.); (D.F.); (M.C.); (N.C.)
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.S.); (X.J.); (Z.T.); (D.F.); (M.C.); (N.C.)
| |
Collapse
|
2
|
Zhang C, D'Angelo D, Buttini F, Yang M. Long-acting inhaled medicines: Present and future. Adv Drug Deliv Rev 2024; 204:115146. [PMID: 38040120 DOI: 10.1016/j.addr.2023.115146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Inhaled medicines continue to be an essential part of treatment for respiratory diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis. In addition, inhalation technology, which is an active area of research and innovation to deliver medications via the lung to the bloodstream, offers potential advantages such as rapid onset of action, enhanced bioavailability, and reduced side effects for local treatments. Certain inhaled macromolecules and particles can also end up in different organs via lymphatic transport from the respiratory epithelium. While the majority of research on inhaled medicines is focused on the delivery technology, particle engineering, combination therapies, innovations in inhaler devices, and digital health technologies, researchers are also exploring new pharmaceutical technologies and strategies to prolong the duration of action of inhaled drugs. This is because, in contrast to most inhaled medicines that exert a rapid onset and short duration of action, long-acting inhaled medicines (LAIM) improve not only the patient compliance by reducing the dosing frequency, but also the effectiveness and convenience of inhaled therapies to better manage patients' conditions. This paper reviews the advances in LAIM, the pharmaceutical technologies and strategies for developing LAIM, and emerging new inhaled modalities that possess a long-acting nature and potential in the treatment and prevention of various diseases. The challenges in the development of the future LAIM are also discussed where active research and innovations are taking place.
Collapse
Affiliation(s)
- Chengqian Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Davide D'Angelo
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Mingshi Yang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016, Shenyang, China.
| |
Collapse
|
3
|
Gupta C, Jaipuria A, Gupta N. Inhalable Formulations to Treat Non-Small Cell Lung Cancer (NSCLC): Recent Therapies and Developments. Pharmaceutics 2022; 15:139. [PMID: 36678768 PMCID: PMC9861595 DOI: 10.3390/pharmaceutics15010139] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Cancer has been the leading cause of mortalities, with lung cancer contributing 18% to overall deaths. Non-small cell lung cancer (NSCLC) accounts for about 85% of all lung cancers. The primary form of therapy used to treat lung cancer still includes oral and systemic administration of drugs, radiotherapy, or chemotherapy. Some patients have to go through a regime of combination therapy. Despite being the only available form of therapy, their use is limited due to the adverse effects, toxicity, and development of resistance over prolonged use. This led to a shift and progressive evolution into using pulmonary drug delivery systems. Being a non-invasive method of drug-administration and allowing localized delivery of drugs to cancer cells, inhalable drug delivery systems can lead to lower dosing and fewer systemic toxicities over other conventional routes. In this way, we can increase the actual local concentration of the drug in lungs, which will ultimately lead to better antitumor therapy. Nano-based systems also provide additional diagnostic advantages during lung cancer treatment, including imaging, screening, and tracking. Regardless of the advantages, pulmonary delivery is still in the early stages of development and various factors such as pharmacology, immunology, and toxicology should be taken into consideration for the development of suitable inhalable nano-based chemotherapeutic drugs. They face numerous physiological barriers such as lung retention and efficacy, and could also lead to toxicity due to prolonged exposure. Nano-carriers with a sustained drug release mechanism could help in overcoming these challenges. This review article will focus on the various inhalable formulations for targeted drug delivery, including nano-based delivery systems such as lipids, liposome, polymeric and inorganic nanocarriers, micelles, microparticles and nanoaggregates for lung cancer treatment. Various devices used in pulmonary drug delivery loaded on various nano-carriers are also discussed in detail.
Collapse
Affiliation(s)
- Chetna Gupta
- Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Aadya Jaipuria
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, USA
| | - Nikesh Gupta
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Mahynski NA, Han B, Markiewitz D, Shen VK. Derivable genetic programming for two-dimensional colloidal materials. J Chem Phys 2022; 157:114112. [PMID: 36137809 DOI: 10.1063/5.0106131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We describe a method for deriving surface functionalization patterns for colloidal systems that can induce self-assembly into any chosen periodic symmetry at a planar interface. The result is a sequence of letters, s ∈ {A,T,C,G}, or a gene, that describes the perimeter of the colloidal object and programs its self-assembly. This represents a genome that is finite and can be exhaustively enumerated. These genes derive from symmetry, which may be topologically represented by two-dimensional parabolic orbifolds; since these orbifolds are surfaces that may be derived from first principles, this represents an ab initio route to colloid functionality. The genes are human readable and can be employed to easily design colloidal units. We employ a biological (genetic) analogy to demonstrate this and illustrate their connection to the designs of Maurits Cornelis (M. C.) Escher.
Collapse
Affiliation(s)
- Nathan A Mahynski
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Bliss Han
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Daniel Markiewitz
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Vincent K Shen
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
5
|
Tang Y, Varyambath A, Ding Y, Chen B, Huang X, Zhang Y, Yu DG, Kim I, Song W. Porous organic polymers for drug delivery: hierarchical pore structures, variable morphologies, and biological properties. Biomater Sci 2022; 10:5369-5390. [PMID: 35861101 DOI: 10.1039/d2bm00719c] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Porous organic polymers have received considerable attention in recent years because of their applicability as biomaterials. In particular, their hierarchical pore structures, variable morphologies, and tunable biological properties make them suitable as drug-delivery systems. In this review, the synthetic and post forming/control methods including templated methods, template-free methods, mechanical methods, electrospun methods, and 3D printing methods for controlling the hierarchical structures and morphologies of porous organic polymers are discussed, and the different methods affecting their specific surface areas, hierarchical structures, and unique morphologies are highlighted in detail. In addition, we discuss their applications in drug encapsulation and the development of stimuli (pH, heat, light, and dual-stimuli)-responsive materials, focusing on their use for targeted drug release and as therapeutic agents. Finally, we present an outlook concerning the research directions and applications of porous polymer-based drug delivery systems.
Collapse
Affiliation(s)
- Yunxin Tang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Anuraj Varyambath
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea.
| | - Yuanchen Ding
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Bailiang Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Xinyi Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, P. R. China.
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Il Kim
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China. .,State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
6
|
Ryu BK, Fenton SM, Nguyen TTD, Helgeson M, Zia RN. Modeling colloidal interactions that predict equilibrium and non-equilibrium states. J Chem Phys 2022; 156:224101. [DOI: 10.1063/5.0086650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Modulating the interaction potential between colloids suspended in a fluid can trigger equilibrium phase transitions as well as formation of non-equilibrium 'arrested states' such as gels and glasses. Faithful representation of such interactions are essential for using simulation to interrogate the microscopic details of non-equilibrium behavior, and for extrapolating observations to new regions of phase space that are difficult to explore in experiment. Although the extended law of corresponding states predicts equilibrium phases for systems with short-ranged interactions, it proves inadequate for equilibrium predictions of systems with longer-ranged interactions, and for predicting non-equilibrium phenomena in systems with either short-ranged or long-ranged interactions. These shortcomings highlight the need for new approaches to represent and disambiguate interaction potentials that replicate both equilibrium and non-equilibrium phase behavior. In this work, we use experiments and simulations to study a system with long-ranged thermoresponsive colloidal interactions and explore whether a resolution to this challenge can be found in regions of the phase diagram where temporal effects influence material state. We demonstrate that the conditions for non-equilibrium arrest by colloidal gelation are sensitive to both the shape of the interaction potential and the thermal quench rate. We exploit this sensitivity to propose a kinetics-based algorithm to extract distinct arrest conditions for candidate potentials that accurately selects between potentials that differ in shape but share the same predicted equilibrium structure. The method reveals that each potential has a quantitatively distinct arrest line, providing insight into how the shape of longer-ranged potentials influences the conditions for colloidal gelation.
Collapse
Affiliation(s)
- Brian K Ryu
- Stanford University, United States of America
| | - Scott M Fenton
- University of California Santa Barbara, United States of America
| | | | - Matthew Helgeson
- University of California Santa Barbara, United States of America
| | - Roseanna N. Zia
- Chemical Engineering, Stanford University, United States of America
| |
Collapse
|
7
|
Kishawy ATY, Al-Khalaifah HS, Nada HS, Roushdy EM, Zaglool AW, Ahmed Ismail T, Ibrahim SM, Ibrahim D. Black Pepper or Radish Seed Oils in a New Combination of Essential Oils Modulated Broiler Chickens’ Performance and Expression of Digestive Enzymes, Lipogenesis, Immunity, and Autophagy-Related Genes. Vet Sci 2022; 9:vetsci9020043. [PMID: 35202296 PMCID: PMC8879254 DOI: 10.3390/vetsci9020043] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/15/2022] [Accepted: 01/15/2022] [Indexed: 12/13/2022] Open
Abstract
Optimal combinations of essential oils (EOs) can enhance performance and maintain poultry productivity. The effects of EOs with black pepper oil (BPO) or radish seed oil (RSO) on performance and the expression of digestive enzymes, lipogenesis, immunity, and autophagy-related genes in broiler chickens were explored. Six dietary treatments for 300 one-day-old chicks were allocated as follows: controls were fed a basal diet, one group was fed an EO-supplemented diet (1.5 g/kg diet of parsley, mint, and carrot seed oils (1:1:1)), and other groups received Eos + BPO0.25, Eos + BPO0.5, Eos + RSO0.25, and Eos + RSO0.5 treatments, with a basal diet containing EOs plus BPO or RSO at the level of 0.25 or 0.5 g/kg, respectively. Supplementation with 0.5 g/kg of EOs plus BPO or RSO resulted in the most improved maximum BWG and FCR in broiler chickens. The lactobacilli population was increased in Eos + BPO0.5, followed by EOs + RSO0.5, unlike in the control. The highest expression of the CCK and PNLIP genes was identified in the Eos + BPO group. The FAS and ACC genes were upregulated, while the IgA and IL-10 genes were downregulated, with EOs plus RSO or BPO. The group that received Eos + BPO0.5, followed by Eos + RSO0.5, displayed patterns of higher expression for atg5, atg7, and atg12, with lower expression of mTOR. In summary, a new combination of EOs with 0.5 g/kg BPO had potential growth-promoting and immune-boosting effects in broiler chickens.
Collapse
Affiliation(s)
- Asmaa T. Y. Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
- Correspondence: (A.T.Y.K.); (D.I.)
| | - Hanan S. Al-Khalaifah
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait;
| | - Hend S. Nada
- Departments of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Elshimaa M. Roushdy
- Department of Animal Wealth Development, Animal Breeding and Production, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Asmaa W. Zaglool
- Department of Animal Wealth Development, Genetic and Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Seham M. Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
- Correspondence: (A.T.Y.K.); (D.I.)
| |
Collapse
|
8
|
Micro and nanoemulsions of Carissa spinarum fruit polyphenols, enhances anthocyanin stability and anti-quorum sensing activity: Comparison of degradation kinetics. Food Chem 2021; 359:129876. [PMID: 33940472 DOI: 10.1016/j.foodchem.2021.129876] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 01/09/2023]
Abstract
The low stability of anthocyanins is a constraint in the food industry. The present work has been carried out to overcome this low stability by encapsulating fruit concentrate of underutilized plant Carissa spinarum (CS) with polyphenols in microemulsions (CSME) and nanoemulsions (CSNE). Increasing the amount of CS reduced the particle size from 1154 to 70-300 nm whereas addition of Tween 80 reduced it optimally to 5-25 nm. Degradation of anthocyanins in control and ME/NE proceeded with zero- and first-order reaction rates, respectively, at 28 °C (half-life 6, 25 and 40 days, respectively). The degradation kinetics of phenolics-flavonoids were also studied. CSNE exhibited higher anti-quorum sensing (QS) activity than CSME against Chromobacterium violaceum (73.7%); it inhibited biofilm formation by 70.1 and 64.4% in Pseudomonas aeruginosa, and Yersinia enterocolitica, respectively. This is the first report of using the more stable ME/NE to study anti-QS activity, an alternative to conventional antibiotics.
Collapse
|
9
|
Simon L, Marcotte N, Devoisselle JM, Begu S, Lapinte V. Recent advances and prospects in nano drug delivery systems using lipopolyoxazolines. Int J Pharm 2020; 585:119536. [PMID: 32531447 DOI: 10.1016/j.ijpharm.2020.119536] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 11/29/2022]
Abstract
Facing the growing demand in nano drug delivery systems (nDDS), hybrid excipients based on natural molecules and well-defined synthetic polymers are intensively investigated. Lipopolyoxazolines (LipoPOx) composed of a polyoxazoline block (POx) and a lipid or lipid-like derivative are detailed in this review. The nature of lipids used, the route to synthesize LipoPOx and their advantages for the formulation of drugs are reported. The place of POx family in nanomedicine is discussed compared to PEG, considered as the gold standard of hydrophilic polymers. LipoPOx nanoformulations including liposomes, mixed micelles, lipid nanocapsules are provided alongside discussion of the nDDS for intravenous or topical administration.
Collapse
Affiliation(s)
- L Simon
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - N Marcotte
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - S Begu
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - V Lapinte
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
10
|
Kaiser M, Martinez Y, Schmidt AM, Sánchez PA, Kantorovich SS. Diffusion of single active-dipolar cubes in applied fields. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Pavoni L, Perinelli DR, Bonacucina G, Cespi M, Palmieri GF. An Overview of Micro- and Nanoemulsions as Vehicles for Essential Oils: Formulation, Preparation and Stability. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E135. [PMID: 31940900 PMCID: PMC7023169 DOI: 10.3390/nano10010135] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/10/2023]
Abstract
The interest around essential oils is constantly increasing thanks to their biological properties exploitable in several fields, from pharmaceuticals to food and agriculture. However, their widespread use and marketing are still restricted due to their poor physico-chemical properties; i.e., high volatility, thermal decomposition, low water solubility, and stability issues. At the moment, the most suitable approach to overcome such limitations is based on the development of proper formulation strategies. One of the approaches suggested to achieve this goal is the so-called encapsulation process through the preparation of aqueous nano-dispersions. Among them, micro- and nanoemulsions are the most studied thanks to the ease of formulation, handling and to their manufacturing costs. In this direction, this review intends to offer an overview of the formulation, preparation and stability parameters of micro- and nanoemulsions. Specifically, recent literature has been examined in order to define the most common practices adopted (materials and fabrication methods), highlighting their suitability and effectiveness. Finally, relevant points related to formulations, such as optimization, characterization, stability and safety, not deeply studied or clarified yet, were discussed.
Collapse
Affiliation(s)
| | | | | | - Marco Cespi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (L.P.); (D.R.P.); (G.B.); (G.F.P.)
| | | |
Collapse
|
12
|
Yang W, Veroniaina H, Qi X, Chen P, Li F, Ke PC. Soft and Condensed Nanoparticles and Nanoformulations for Cancer Drug Delivery and Repurpose. ADVANCED THERAPEUTICS 2020; 3:1900102. [PMID: 34291146 PMCID: PMC8291088 DOI: 10.1002/adtp.201900102] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Indexed: 12/24/2022]
Abstract
Drug repurpose or reposition is recently recognized as a high-performance strategy for developing therapeutic agents for cancer treatment. This approach can significantly reduce the risk of failure, shorten R&D time, and minimize cost and regulatory obstacles. On the other hand, nanotechnology-based delivery systems are extensively investigated in cancer therapy due to their remarkable ability to overcome drug delivery challenges, enhance tumor specific targeting, and reduce toxic side effects. With increasing knowledge accumulated over the past decades, nanoparticle formulation and delivery have opened up a new avenue for repurposing drugs and demonstrated promising results in advanced cancer therapy. In this review, recent developments in nano-delivery and formulation systems based on soft (i.e., DNA nanocages, nanogels, and dendrimers) and condensed (i.e., noble metal nanoparticles and metal-organic frameworks) nanomaterials, as well as their theranostic applications in drug repurpose against cancer are summarized.
Collapse
Affiliation(s)
- Wen Yang
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | | | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Pengyu Chen
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | - Feng Li
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn AL 36849, USA
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| |
Collapse
|
13
|
Pavoni L, Maggi F, Mancianti F, Nardoni S, Ebani VV, Cespi M, Bonacucina G, Palmieri GF. Microemulsions: An effective encapsulation tool to enhance the antimicrobial activity of selected EOs. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
de Boer FY, van Dijk-Moes RJA, Imhof A, Velikov KP. Characterization of the Scattering and Absorption of Colored Zein Colloids in Optically Dense Dispersions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12091-12099. [PMID: 31456405 PMCID: PMC6753648 DOI: 10.1021/acs.langmuir.9b01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/23/2019] [Indexed: 06/10/2023]
Abstract
In this research, we model the color of optically dense colloidal dispersions of dyed and undyed zein particles using results from multiple light scattering theory. These particles, as well as monodisperse silica colloids, were synthesized and characterized to obtain particle properties such as particle size, particle size distribution, refractive index, and absorption spectrum of the dye. This information was used to model the diffuse transmission of concentrated particle dispersions, which was measured using a specially designed variable path length quartz glass cuvette. For the nonabsorbing silica dispersions, a transport mean-free path throughout the visible range was obtained. Results showed a difference of less than 5% from the values calculated with a multiple scattering model using the single-particle properties as an input. For undyed zein particles, which are off-white, the deviation between the model and the experiment was about 30% because of slight absorption at wavelengths below 550 nm but <7% at higher wavelengths. From these results, it was concluded that the model correctly describes diffuse transmission and that the measurements are sensitive to absorption. Finally, this method was applied to dispersions of dyed zein particles. Here, the transport mean-free path was first determined for wavelengths at which there is no absorption, which agreed with the theory better than 4%. The modeled transport mean-free path was then used to extract the reciprocal absorption mean-free path in the remaining parts of the visible spectrum, and a reasonable agreement with the absorption spectrum of the dye solution was obtained.
Collapse
Affiliation(s)
- F. Y. de Boer
- Soft Condensed Matter
& Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - R. J. A. van Dijk-Moes
- Soft Condensed Matter
& Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - A. Imhof
- Soft Condensed Matter
& Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - K. P. Velikov
- Soft Condensed Matter
& Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
- Unilever
R&D Vlaardingen, Olivier van Noortlaan
120, 3133 AT Vlaardingen, The Netherlands
- Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
15
|
Green Micro- and Nanoemulsions for Managing Parasites, Vectors and Pests. NANOMATERIALS 2019; 9:nano9091285. [PMID: 31505756 PMCID: PMC6781030 DOI: 10.3390/nano9091285] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 11/17/2022]
Abstract
The management of parasites, insect pests and vectors requests development of novel, effective and eco-friendly tools. The development of resistance towards many drugs and pesticides pushed scientists to look for novel bioactive compounds endowed with multiple modes of action, and with no risk to human health and environment. Several natural products are used as alternative/complementary approaches to manage parasites, insect pests and vectors due to their high efficacy and often limited non-target toxicity. Their encapsulation into nanosystems helps overcome some hurdles related to their physicochemical properties, for instance limited stability and handling, enhancing the overall efficacy. Among different nanosystems, micro- and nanoemulsions are easy-to-use systems in terms of preparation and industrial scale-up. Different reports support their efficacy against parasites of medical importance, including Leishmania, Plasmodium and Trypanosoma as well as agricultural and stored product insect pests and vectors of human diseases, such as Aedes and Culex mosquitoes. Overall, micro- and nanoemulsions are valid options for developing promising eco-friendly tools in pest and vector management, pending proper field validation. Future research on the improvement of technical aspects as well as chronic toxicity experiments on non-target species is needed.
Collapse
|
16
|
Kubota Y, Musashi M, Nagasawa T, Shimura N, Igarashi R, Yamaguchi Y. Novel nanocapsule of α-lipoic acid reveals pigmentation improvement: α-Lipoic acid stimulates the proliferation and differentiation of keratinocyte in murine skin by topical application. Exp Dermatol 2019; 28 Suppl 1:55-63. [DOI: 10.1111/exd.13828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Yoshiki Kubota
- Department of Research and Development; Nanoegg Research Laboratories, Inc. Advanced Medicine and Healthcare Research Laboratories; Kawasaki-shi Kanagawa Japan
| | - Mina Musashi
- Department of Research and Development; Nanoegg Research Laboratories, Inc. Advanced Medicine and Healthcare Research Laboratories; Kawasaki-shi Kanagawa Japan
| | - Teruaki Nagasawa
- Department of Research and Development; Nanoegg Research Laboratories, Inc. Advanced Medicine and Healthcare Research Laboratories; Kawasaki-shi Kanagawa Japan
| | - Nanako Shimura
- Department of Research and Development; Nanoegg Research Laboratories, Inc. Advanced Medicine and Healthcare Research Laboratories; Kawasaki-shi Kanagawa Japan
| | - Rie Igarashi
- Department of Research and Development; Nanoegg Research Laboratories, Inc. Advanced Medicine and Healthcare Research Laboratories; Kawasaki-shi Kanagawa Japan
- Institute of Medical Science; School of Medicine; St. Marianna University; Kawasaki-shi Kanagawa Japan
| | - Yoko Yamaguchi
- Department of Research and Development; Nanoegg Research Laboratories, Inc. Advanced Medicine and Healthcare Research Laboratories; Kawasaki-shi Kanagawa Japan
- Institute of Medical Science; School of Medicine; St. Marianna University; Kawasaki-shi Kanagawa Japan
| |
Collapse
|
17
|
Liu J, Fan YQ, Zhang QP, Yao H, Zhang YM, Wei TB, Lin Q. Super metal hydrogels constructed from a simple tripodal gelator and rare earth metal ions and its application in highly selective and ultrasensitive detection of histidine. SOFT MATTER 2019; 15:999-1004. [PMID: 30657152 DOI: 10.1039/c8sm02319k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A series of stable super metal hydrogels (TP-Ms, M = Tb3+, Eu3+, La3+ and Ce3+) with a low critical gelation concentration (2.28 × 10-3 M, 0.1%) was successfully constructed by forming hierarchical assemblies of a tripodal gelator (TP) with rare earth metal ions (Tb3+, Eu3+, La3+ and Ce3+). Interestingly, the super metal hydrogels TP-Eu and TP-La show a specific and ultrasensitive response to histidine (His). The addition of a series of amino acids into the metal hydrogels TP-Eu and TP-La showed that only His could induce distinct fluorescent enhancement for TP-Eu and TP-La, while other amino acids did not significantly interfere with the His sensing process. The LODs of super metal-hydrogel TP-Eu and TP-La for His are (1.83-1.94) × 10-9 and (1.83-1.85) × 10-9 M, respectively. In addition, constructing super supramolecular metal hydrogels by hierarchical assemblies of an easily synthesized tripodal gelator and rare earth metal ions is a novel and efficient approach to the design and development of multi-functional super supramolecular metal hydrogel-based materials.
Collapse
Affiliation(s)
- Juan Liu
- College of Chemical Engineering, Northwest Minzu University (Northwest University for Nationalities), Lanzhou 730070, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Fan YQ, Huang Q, Zhang YM, Wang J, Guan XW, Chen YY, Yao H, Wei TB, Lin Q. Forming a water-soluble supramolecular polymer and an AIEE hydrogel: two novel approaches for highly sensitive detection and efficient adsorption of aldehydes. Polym Chem 2019. [DOI: 10.1039/c9py00705a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two novel approaches for highly sensitive detection and efficient adsorption of aldehydes by forming a water-soluble supramolecular polymer and an AIEE hydrogel.
Collapse
Affiliation(s)
- Yan-Qing Fan
- College of Chemistry and Chemical Engineering
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- Northwest Normal University
- Lanzhou
- P.R. China 730070
| | - Qing Huang
- College of Chemistry and Chemical Engineering
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- Northwest Normal University
- Lanzhou
- P.R. China 730070
| | - You-Ming Zhang
- College of Chemistry and Chemical Engineering
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- Northwest Normal University
- Lanzhou
- P.R. China 730070
| | - Jiao Wang
- College of Chemistry and Chemical Engineering
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- Northwest Normal University
- Lanzhou
- P.R. China 730070
| | - Xiao-Wen Guan
- College of Chemistry and Chemical Engineering
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- Northwest Normal University
- Lanzhou
- P.R. China 730070
| | - Yan-Yan Chen
- College of Chemistry and Chemical Engineering
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- Northwest Normal University
- Lanzhou
- P.R. China 730070
| | - Hong Yao
- College of Chemistry and Chemical Engineering
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- Northwest Normal University
- Lanzhou
- P.R. China 730070
| | - Tai-Bao Wei
- College of Chemistry and Chemical Engineering
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- Northwest Normal University
- Lanzhou
- P.R. China 730070
| | - Qi Lin
- College of Chemistry and Chemical Engineering
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- Northwest Normal University
- Lanzhou
- P.R. China 730070
| |
Collapse
|
19
|
Basic principles of drug delivery systems - the case of paclitaxel. Adv Colloid Interface Sci 2019; 263:95-130. [PMID: 30530177 DOI: 10.1016/j.cis.2018.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/15/2023]
Abstract
Cancer is the second cause of death worldwide, exceeded only by cardiovascular diseases. The prevalent treatment currently used against metastatic cancer is chemotherapy. Among the most studied drugs that inhibit neoplastic cells from acquiring unlimited replicative ability (a hallmark of cancer) are the taxanes. They operate via a unique molecular mechanism affecting mitosis. In this review, we show this mechanism for one of them, paclitaxel, and for other (non-taxanes) anti-mitotic drugs. However, the use of paclitaxel is seriously limited (its bioavailability is <10%) due to several long-standing challenges: its poor water solubility (0.3 μg/mL), its being a substrate for the efflux multidrug transporter P-gp, and, in the case of oral delivery, its first-pass metabolism by certain enzymes. Adequate delivery methods are therefore required to enhance the anti-tumor activity of paclitaxel. Thus, we have also reviewed drug delivery strategies in light of the various physical, chemical, and enzymatic obstacles facing the (especially oral) delivery of drugs in general and paclitaxel in particular. Among the powerful and versatile platforms that have been developed and achieved unprecedented opportunities as drug carriers, microemulsions might have great potential for this aim. This is due to properties such as thermodynamic stability (leading to long shelf-life), increased drug solubilization, and ease of preparation and administration. In this review, we define microemulsions and nanoemulsions, analyze their pertinent properties, and review the results of several drug delivery carriers based on these systems.
Collapse
|
20
|
Pippa N, Perinelli DR, Pispas S, Bonacucina G, Demetzos C, Forys A, Trzebicka B. Studying the colloidal behavior of chimeric liposomes by cryo-TEM, micro-differential scanning calorimetry and high-resolution ultrasound spectroscopy. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Georgiev VN, Grafmüller A, Bléger D, Hecht S, Kunstmann S, Barbirz S, Lipowsky R, Dimova R. Area Increase and Budding in Giant Vesicles Triggered by Light: Behind the Scene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800432. [PMID: 30128249 PMCID: PMC6096984 DOI: 10.1002/advs.201800432] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Biomembranes are constantly remodeled and in cells, these processes are controlled and modulated by an assortment of membrane proteins. Here, it is shown that such remodeling can also be induced by photoresponsive molecules. The morphological control of giant vesicles in the presence of a water-soluble ortho-tetrafluoroazobenzene photoswitch (F-azo) is demonstrated and it is shown that the shape transformations are based on an increase in membrane area and generation of spontaneous curvature. The vesicles exhibit budding and the buds can be retracted by using light of a different wavelength. In the presence of F-azo, the membrane area can increase by more than 5% as assessed from vesicle electrodeformation. To elucidate the underlying molecular mechanism and the partitioning of F-azo in the membrane, molecular dynamics simulations are employed. Comparison with theoretically calculated shapes reveals that the budded shapes are governed by curvature elasticity, that the spontaneous curvature can be decomposed into a local and a nonlocal contribution, and that the local spontaneous curvature is about 1/(2.5 µm). The results show that exo- and endocytotic events can be controlled by light and that these photoinduced processes provide an attractive method to change membrane area and morphology.
Collapse
Affiliation(s)
- Vasil N. Georgiev
- Department of Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesScience Park Golm14424PotsdamGermany
| | - Andrea Grafmüller
- Department of Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesScience Park Golm14424PotsdamGermany
| | - David Bléger
- Department of Chemistry & IRIS AdlershofHumboldt‐Universität zu BerlinBrook‐Taylor‐Str. 212489BerlinGermany
| | - Stefan Hecht
- Department of Chemistry & IRIS AdlershofHumboldt‐Universität zu BerlinBrook‐Taylor‐Str. 212489BerlinGermany
| | - Sonja Kunstmann
- Department of Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesScience Park Golm14424PotsdamGermany
- Physikalische BiochemieUniversität PotsdamKarl‐Liebknecht‐Str. 24‐2514476PotsdamGermany
| | - Stefanie Barbirz
- Physikalische BiochemieUniversität PotsdamKarl‐Liebknecht‐Str. 24‐2514476PotsdamGermany
| | - Reinhard Lipowsky
- Department of Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesScience Park Golm14424PotsdamGermany
| | - Rumiana Dimova
- Department of Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesScience Park Golm14424PotsdamGermany
| |
Collapse
|
22
|
Tziveleka LA, Pippa N, Georgantea P, Ioannou E, Demetzos C, Roussis V. Marine sulfated polysaccharides as versatile polyelectrolytes for the development of drug delivery nanoplatforms: Complexation of ulvan with lysozyme. Int J Biol Macromol 2018; 118:69-75. [PMID: 29906535 DOI: 10.1016/j.ijbiomac.2018.06.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/17/2018] [Accepted: 06/11/2018] [Indexed: 11/26/2022]
Abstract
Ulvan, a marine sulfated polysaccharide isolated from green algae, has been recently recognized as a natural biopolymer of biomedical interest. A series of lysozyme/ulvan complexes prepared under various charge ratios at physiological pH were studied. The resulting complexes were examined with light scattering techniques in order to characterize the size, the distribution and the ζ-potential of the nanocarriers, which were found to depend on the charge ratio employed. Increased complexation efficiency of lysozyme was observed for certain charge ratios, while ATR-FTIR data suggested that the protein structure after complexation was retained. Bacterial growth studies showed that lysozyme once complexed with ulvan not only retains its antibacterial activity against the Gram positive strain Staphylococcus aureus, but actually exhibits increased levels of activity. In this model study, the results highlight the potential of ulvan as a promising nanocarrier for positively charged bioactive molecules.
Collapse
Affiliation(s)
- Leto-Aikaterini Tziveleka
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Panagiota Georgantea
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| |
Collapse
|
23
|
Comparative Study of PEGylated and Conventional Liposomes as Carriers for Shikonin. FLUIDS 2018. [DOI: 10.3390/fluids3020036] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Spectroscopic Investigation of the Interaction of the Anticancer Drug Mitoxantrone with Sodium Taurodeoxycholate (NaTDC) and Sodium Taurocholate (NaTC) Bile Salts. Molecules 2017; 22:molecules22071079. [PMID: 28657593 PMCID: PMC6152313 DOI: 10.3390/molecules22071079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/14/2017] [Accepted: 06/21/2017] [Indexed: 12/25/2022] Open
Abstract
The focus of the present work was to investigate the interaction of the anticancer drug mitoxantrone with two bile salts, sodium taurodeoxycholate (NaTDC) and sodium taurocholate (NaTC). Ultraviolet-visible (UV-Vis) absorption and electron paramagnetic resonance (EPR) spectroscopy were used to quantify the interaction and to obtain information on the location of mitoxantrone in bile salt micelles. The presence of submicellar concentrations of both bile salts induces mitoxantrone aggregation and the extent of drug aggregation in NaTDC is higher than in NaTC. For micellar bile salts concentrations, mitoxantrone monomers are entrapped in the micellar core. Binding constants, micelle/water partition coefficients and the corresponding thermodynamic parameters for binding and partitioning processes were estimated using the changes in monomer absorbance in the presence of bile salts. Binding interaction of mitoxantrone is stronger for NaTDC than NaTC micelles, whereas partitioning efficiency is higher for NaTC micelles for all investigated temperatures. Thermodynamic parameters indicate that both binding and partitioning processes are spontaneous and entropy controlled. The spectral behavior and thermodynamic parameters indicate distinct types of mitoxantrone interaction with NaTDC and NaTC micelles supported by the differences in nature and structure of bile salts micelles.
Collapse
|
25
|
Shin YJ, Shin MJ, Shin JS. Permeation-induced chromatic change of a polydiacetylene vesicle with nonionic surfactant. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Jiang J, Deng Y, Lou J, Wang R, Yi X, Dong X, Liu J. Facile synthesis of tunable core-shell particles via one-step copolymerization. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4034-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Trinetta V, Morgan MT, Coupland JN, Yucel U. Essential Oils Against Pathogen and Spoilage Microorganisms of Fruit Juices: Use of Versatile Antimicrobial Delivery Systems. J Food Sci 2017; 82:471-476. [PMID: 28071802 DOI: 10.1111/1750-3841.13614] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/01/2016] [Accepted: 12/12/2016] [Indexed: 11/30/2022]
Abstract
Essential oils (EO) are increasingly used as natural antimicrobial compounds, however the effect of delivery system to enhance their antimicrobial activity has not been widely studied. Limonene (0 to 10 μL/mL) was added to microbial suspensions (∼105 CFU/mL) of selected foodborne pathogens (Listeria monocytogenes Scott A, Salmonella enterica Typhimurium, Escherichia coli and Staphylococcus aureus), and spoilage microorganisms (Lactobacillus plantarum, Saccharomyces cerevisiae, and Candida albicans). S. aureus was found to be the most sensitive foodborne pathogen while Salmonella enterica showed continued growth under all concentrations. Stable nanoemulsions and solid lipid nanoparticles (SLN) (d ∼ 170 nm) were prepared using an alkane carrier oil (n-tetradecane and n-eicosane, respectively). Interfacial effects and homogenous distribution of limonene in nanoemulsions improved its (8 and 12 μL/mL) antimicrobial effect against S. aureus. Higher aqueous concentrations as a result of expulsion from SLN further enhanced the antimicrobial activity pronounced at higher limonene concentrations. Therefore, our findings confirm that the emulsion-based delivery systems are able to effectively distribute limonene inside a microbial suspension to improve its antimicrobial activity.
Collapse
Affiliation(s)
- Valentina Trinetta
- Food Science Inst., Kansas State Univ., 1530 Mid-Campus Drive North, Manhattan, Kans., 66506, U.S.A
| | - Mark T Morgan
- Dept. of Food Science and Technology, The Univ. of Tennessee, 2605 RiverDrive, Knoxville, Tenn., 37996, U.S.A
| | - John N Coupland
- Dept. of Food Science, The Pennsylvania State Univ., University Park, PA, 16802, U.S.A
| | - Umut Yucel
- Food Science Inst., Kansas State Univ., 1530 Mid-Campus Drive North, Manhattan, Kans., 66506, U.S.A
| |
Collapse
|
28
|
Geng S, Wang Y, Wang L, Kouyama T, Gotoh T, Wada S, Wang JY. A Light-Responsive Self-Assembly Formed by a Cationic Azobenzene Derivative and SDS as a Drug Delivery System. Sci Rep 2017; 7:39202. [PMID: 28051069 PMCID: PMC5209711 DOI: 10.1038/srep39202] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/21/2016] [Indexed: 11/23/2022] Open
Abstract
The structure of a self-assembly formed from a cationic azobenzene derivative, 4-cholesterocarbonyl-4'-(N,N,N-triethylamine butyloxyl bromide) azobenzene (CAB) and surfactant sodium dodecyl sulfate (SDS) in aqueous solution was studied by cryo-TEM and synchrotron radiation small-angle X-ray scattering (SAXS). Both unilamellar and multilamellar vesicles could be observed. CAB in vesicles were capable to undergo reversible trans-to-cis isomerization upon UV or visible light irradiation. The structural change upon UV light irradiation could be catched by SAXS, which demonstrated that the interlamellar spacing of the cis-multilamellar vesicles increased by 0.2-0.3 nm. Based on this microstructural change, the release of rhodamine B (RhB) and doxorubicin (DOX) could be triggered by UV irradiation. When incubated NIH 3T3 cells and Bel 7402 cells with DOX-loaded CAB/SDS vesicles, UV irradiation induced DOX release decreased the viability of both cell lines significantly compared with the non-irradiated cells. The in vitro experiment indicated that CAB/SDS vesicles had high efficiency to deliver loaded molecules into cells. The in vivo experiment showed that CAB/SDS vesicles not only have high drug delivery efficiency into rat retinas, but also could maintain high drug concentration for a longer time. CAB/SDS catanionic vesicles may find potential applications as a smart drug delivery system for controlled release by light.
Collapse
Affiliation(s)
- Shengyong Geng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Photonics Control Technology Team, Advanced Photonics Technology Development Group, Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yuzhu Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Liping Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tsutomu Kouyama
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Toshiaki Gotoh
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Satoshi Wada
- Photonics Control Technology Team, Advanced Photonics Technology Development Group, Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198, Japan
| | - Jin-Ye Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Cespi M, Quassinti L, Perinelli DR, Bramucci M, Iannarelli R, Papa F, Ricciutelli M, Bonacucina G, Palmieri GF, Maggi F. Microemulsions enhance the shelf‐life and processability of
Smyrnium olusatrum
L. essential oil. FLAVOUR FRAG J 2016. [DOI: 10.1002/ffj.3367] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Marco Cespi
- School of Pharmacy University of Camerino Camerino (MC) Italy
| | - Luana Quassinti
- School of Pharmacy University of Camerino Camerino (MC) Italy
| | | | | | | | - Fabrizio Papa
- School of Pharmacy University of Camerino Camerino (MC) Italy
| | | | | | | | - Filippo Maggi
- School of Pharmacy University of Camerino Camerino (MC) Italy
| |
Collapse
|
30
|
Cho YS. Synthesis of polymeric particles by seeded growth technique for the applications of particle self-assembly. J DISPER SCI TECHNOL 2016. [DOI: 10.1080/01932691.2016.1149714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Young-Sang Cho
- Department of Chemical Engineering and Biotechnology, Korea Polytechnic University, Gyeonggi-do, Republic of Korea
| |
Collapse
|
31
|
Morais ARDV, Alencar ÉDN, Xavier Júnior FH, Oliveira CMD, Marcelino HR, Barratt G, Fessi H, Egito ESTD, Elaissari A. Freeze-drying of emulsified systems: A review. Int J Pharm 2016; 503:102-14. [DOI: 10.1016/j.ijpharm.2016.02.047] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/16/2016] [Accepted: 02/29/2016] [Indexed: 12/13/2022]
|
32
|
Bonacucina G, Perinelli DR, Cespi M, Casettari L, Cossi R, Blasi P, Palmieri GF. Acoustic spectroscopy: A powerful analytical method for the pharmaceutical field? Int J Pharm 2016; 503:174-95. [PMID: 26976503 DOI: 10.1016/j.ijpharm.2016.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/13/2016] [Accepted: 03/09/2016] [Indexed: 11/29/2022]
Abstract
Acoustics is one of the emerging technologies developed to minimize processing, maximize quality and ensure the safety of pharmaceutical, food and chemical products. The operating principle of acoustic spectroscopy is the measurement of the ultrasound pulse intensity and phase after its propagation through a sample. The main goal of this technique is to characterise concentrated colloidal dispersions without dilution, in such a way as to be able to analyse non-transparent and even highly structured systems. This review presents the state of the art of ultrasound-based techniques in pharmaceutical pre-formulation and formulation steps, showing their potential, applicability and limits. It reports in a simplified version the theory behind acoustic spectroscopy, describes the most common equipment on the market, and finally overviews different studies performed on systems and materials used in the pharmaceutical or related fields.
Collapse
Affiliation(s)
- Giulia Bonacucina
- University of Camerino, School of Pharmacy, 62032 Camerino, MC, Italy
| | - Diego R Perinelli
- University of Camerino, School of Pharmacy, 62032 Camerino, MC, Italy
| | - Marco Cespi
- University of Camerino, School of Pharmacy, 62032 Camerino, MC, Italy
| | - Luca Casettari
- University of Urbino, Department of Biomolecular Sciences, 61029 Urbino, PU, Italy
| | | | - Paolo Blasi
- University of Camerino, School of Pharmacy, 62032 Camerino, MC, Italy
| | | |
Collapse
|
33
|
Rozman B, Gosenca M, Falson F, Gašperlin M. The influence of microemulsion structure on their skin irritation and phototoxicity potential. Int J Pharm 2016; 499:228-235. [PMID: 26757147 DOI: 10.1016/j.ijpharm.2015.12.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/23/2015] [Accepted: 12/26/2015] [Indexed: 01/16/2023]
Abstract
The purpose of this study was to examine skin irritation and phototoxicity potentials of several microemulsions (ME), all comprising approximately the same percentage of surfactant mixture, but varying oil/water content and consequently inner structure being either droplet-like (o/w ME, o/w ME carbomer, w/o ME and w/o ME white wax) or lamellar (gel-like ME). Two different in vitro methods were used: MTT assay (performed either on reconstructed human epidermis (RHE) or NCTC 2544 cells) and pig ear test. Neither assay revealed the difference among ME with droplet-like structure. Then again, pig ear test and MTT assay performed on RHE indicated that gel-like ME is more irritant compared to other tested ME, whereas no difference among formulations were observed by MTT assay on NCTC 2544 cells. The reasonable explanation is destruction and consequently uniform structure of ME upon dilution that is inevitable for testing on cell cultures. The results of phototoxicity test again indicated the increased potential of gel-like ME to cause adverse effects on skin. It can be concluded that for ME consisting of the same amount of identical surfactants but having different structure the latter represent a crucial factor that determines their dermal toxicity.
Collapse
Affiliation(s)
- Branka Rozman
- Faculty of pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Mirjam Gosenca
- Faculty of pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Françoise Falson
- Laboratoire de Recherche et Développement de Pharmacie Galénique Industrielle, EA 4169 Fonctions physiologiques et pathologiques de la barrière cutanée, Faculté de Pharmacie, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, F-69373 Lyon Cedex 08, France
| | - Mirjana Gašperlin
- Faculty of pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
34
|
Pandey R, Conrad JC. Gelation in mixtures of polymers and bidisperse colloids. Phys Rev E 2016; 93:012610. [PMID: 26871125 DOI: 10.1103/physreve.93.012610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Indexed: 06/05/2023]
Abstract
We investigated the effects of varying the volume fraction of large particles (r) on the linear rheology and microstructure of mixtures of polymers and bidisperse colloids, in which the ratio of the small and large particle diameters was α=0.31 or α=0.45. Suspensions formulated at a total volume fraction of ϕ_{T}=0.15 and a constant concentration of polymer in the free volume c/c^{*}≈0.7 contained solid-like gels for small r and fluids or fluids of clusters at large r. The solid-like rheology and microstructure of these suspensions changed little with r when r was small, and fluidized only when r>0.8. By contrast, dense suspensions with ϕ_{T}=0.40 and α=0.31 contained solid-like gels at all concentrations of large particles and exhibited only modest rheological and microstructural changes upon varying the volume fraction of large particles. These results suggest that the effect of particle-size dispersity on the properties of colloid-polymer mixtures are asymmetric in particle size and are most pronounced near a gelation boundary.
Collapse
Affiliation(s)
- Rahul Pandey
- Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, USA
| | - Jacinta C Conrad
- Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, USA
| |
Collapse
|
35
|
Alkhatib MH, Alkhayyal NS. The Apoptotic Effect of Gemcitabine-Loaded-Microemulsion (Isopropyl Myristate/Tween 80/Span 20/Water/Ethanol) on A549 Non-Small Cell Lung Cancer Cells. CYTOLOGIA 2016. [DOI: 10.1508/cytologia.81.423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mayson H. Alkhatib
- Department of Biochemistry, College of Science, King Abdulaziz University
| | - Norah S. Alkhayyal
- Department of Biochemistry, College of Science, King Abdulaziz University
| |
Collapse
|
36
|
Wang X, Sun Y, Peng C, Luo H, Wang R, Zhang D. Transitional Suspensions Containing Thermosensitive Dispersant for Three-Dimensional Printing. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26131-26136. [PMID: 26552611 DOI: 10.1021/acsami.5b07913] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tailoring the rheology of suspensions is an essential and persistent issue form many applications, especially three-dimensional (3D) printing. Colloidal suspensions of ceramic powder (Al2O3) dispersed by a special thermosensitive dispersant (poly(acrylic acid)-poly(N-isopropylacrylamide), PAA-PNIPAM) were designed, which underwent a remarkable fluid-gel transition in response to thermal stimulus due to the phase transition of the graft chains (-PNIPAM). 3D periodic structures with a fine size of 100 μm were assembled by 3D printing.
Collapse
Affiliation(s)
- Xiaofeng Wang
- School of Materials Science and Engineering, Central South University , Changsha 410083, China
| | - Yuehua Sun
- School of Materials Science and Engineering, Central South University , Changsha 410083, China
| | - Chaoqun Peng
- School of Materials Science and Engineering, Central South University , Changsha 410083, China
| | - Hang Luo
- State Key Laboratory of Powder Metallurgy, Central South University , Changsha 410083, China
| | - Richu Wang
- School of Materials Science and Engineering, Central South University , Changsha 410083, China
| | - Dou Zhang
- State Key Laboratory of Powder Metallurgy, Central South University , Changsha 410083, China
| |
Collapse
|
37
|
Ruiz CC, Hierrezuelo JM, Molina-Bolivar JA. Analysis of the Photophysical Behavior and Rotational-Relaxation Dynamics of Coumarin 6 in Nonionic Micellar Environments: The Effect of Temperature. Molecules 2015; 20:19343-60. [PMID: 26512635 PMCID: PMC6332106 DOI: 10.3390/molecules201019343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/08/2015] [Accepted: 10/16/2015] [Indexed: 12/25/2022] Open
Abstract
The photodynamics of Coumarin 6 have been investigated in three nonionic micellar assemblies, i.e., n-dodecyl-β-D-maltoside (β-C12G₂), p-tert-octyl-phenoxy polyethylene (9.5) ether (Triton X-100 or TX100) and n-dodecyl-hexaethylene-glycol (C12E₆), to assess their potential use as encapsulation vehicles for hydrophobic drugs. To evaluate the effect of the micellar size and hydration, the study used a broad temperature range (293.15-323.15 K). The data presented here include steady-state absorption and emission spectra of the probe, dynamic light scattering, together with fluorescence lifetimes and both steady-state, as well as time-resolved fluorescence anisotropies. The time-resolved fluorescence anisotropy data were analyzed on the basis of the well-established two-step model. Our data reveal that the molecular probe in all of the cases is solubilized in the hydration layer of micelles, where it would sense a relatively polar environment. However, the probe was found to undergo a slower rotational reorientation when solubilized in the alkylpolyglycoside surfactant, as a result of a more compact microenvironment around the probe. The behavior of the parameters of the reorientation dynamics with temperature was analyzed on the basis of both micellar hydration and the head-group flexibility of the surfactants.
Collapse
Affiliation(s)
- Cristóbal Carnero Ruiz
- Department of Applied Physics II, Engineering School, University of Malaga, Malaga 29071, Spain.
| | - José Manuel Hierrezuelo
- Department of Applied Physics II, Engineering School, University of Malaga, Malaga 29071, Spain.
| | | |
Collapse
|
38
|
Liau JJ, Hook S, Prestidge CA, Barnes TJ. A lipid based multi-compartmental system: Liposomes-in-double emulsion for oral vaccine delivery. Eur J Pharm Biopharm 2015; 97:15-21. [PMID: 26455337 DOI: 10.1016/j.ejpb.2015.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 08/27/2015] [Accepted: 09/30/2015] [Indexed: 01/28/2023]
Abstract
The gastric mucosa provides the entry point for the majority of pathogens, as well as being the induction site for protective immunity; however, there remain few examples of oral vaccines due to the challenges presented by the gastrointestinal route. In this study, we develop a lipid-based multi-compartmental system for oral vaccine delivery. Specifically, we have optimised the formulation of a water-in-oil-in-water double emulsion prepared from a triglyceride - soya bean oil, using surfactants Span 80/Tween 80 and Pluronic F127 to stabilise the internal and external water phases, respectively. Into the internal water phase, we also incorporated a PEGylated liposome, prepared using hydrogenated phosphatidyl choline as a carrier for our model protein, FITC-labelled ovalbumin. We demonstrated the successful incorporation of intact liposomes into the internal water phase of the double emulsion using imaging techniques including cryo-SEM and confocal microscopy. Finally, we use in vitro release studies of FITC-ovalbumin, to provide further confirmation of the multi-compartmental structure of the double emulsion system and demonstrate significant extended release of the entrapped model antigen compared with PEG-liposomes; these characteristics are attractive for oral vaccine delivery.
Collapse
Affiliation(s)
- Jin Jau Liau
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, SA 5000, Australia.
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin, New Zealand.
| | - Clive A Prestidge
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, SA 5000, Australia.
| | - Timothy J Barnes
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
39
|
Enache M, Ionescu S, Volanschi E. Studies on the anticancer drug mitoxantrone–DNA–sodium dodecyl sulfate system. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Hidalgo A, Cruz A, Pérez-Gil J. Barrier or carrier? Pulmonary surfactant and drug delivery. Eur J Pharm Biopharm 2015; 95:117-27. [PMID: 25709061 DOI: 10.1016/j.ejpb.2015.02.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/28/2015] [Accepted: 02/06/2015] [Indexed: 11/29/2022]
Abstract
To consider the lung as a target for drug delivery and to optimise strategies directed at the pulmonary route, it is essential to consider the role of pulmonary surfactant, a thin lipid-protein film lining the respiratory surface of mammalian lungs. Membrane-based surfactant multilayers are essential for reducing the surface tension at the respiratory air-liquid interface to minimise the work of breathing. Different components of surfactant are also responsible for facilitating the removal of potentially pathological entities such as microorganisms, allergens or environmental pollutants and particles. Upon inhalation, drugs or nanoparticles first contact the surfactant layer, and these interactions critically affect their lifetime and fate in the airways. This review summarises the current knowledge on the possible role and effects of the pulmonary surfactant system in drug delivery strategies. It also summarises the evidence that suggests that pulmonary surfactant is far from being an insuperable barrier and could be used as an efficient shuttle for delivering hydrophobic and hydrophilic compounds deep into the lung and the organism.
Collapse
Affiliation(s)
- Alberto Hidalgo
- Dept. of Biochemistry, Fac. of Biology, and Research Institute Hospital 12 Octubre, Universidad Complutense, Madrid, Spain
| | - Antonio Cruz
- Dept. of Biochemistry, Fac. of Biology, and Research Institute Hospital 12 Octubre, Universidad Complutense, Madrid, Spain
| | - Jesús Pérez-Gil
- Dept. of Biochemistry, Fac. of Biology, and Research Institute Hospital 12 Octubre, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
41
|
Large amplitude oscillatory shear studies on the strain-stiffening behavior of gelatin gels. CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-015-1559-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
42
|
Maity B, Chatterjee A, Ahmed SA, Seth D. Supramolecular interactions of nonsteroidal anti-inflammatory drug in nanochannels of molecular containers: a spectroscopic, thermogravimetric and microscopic investigation. Chemphyschem 2014; 15:3502-14. [PMID: 25146319 DOI: 10.1002/cphc.201402419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Indexed: 11/11/2022]
Abstract
Supramolecular host-guest complexation between the nonsteroidal anti-inflammatory drug indomethacin (IMC) and molecular containers were investigated. The weakly fluorescent drug molecule becomes highly fluorescent on complexation with different molecular containers, and time-resolved fluorescence emission spectroscopy reveals that the lifetime components of IMC significantly increase in the presence of molecular containers, compared with the lifetimes in neat water. The respective solid host-guest complexes were synthesised and characterised by Fourier transform infrared and (1) H nuclear magnetic resonance spectroscopic analysis. Microscopy techniques were used to analyse modifications of the surface morphology, owing to the formation of supramolecular complexes. The effect of the molecular container on the optical properties of IMC has also been investigated to determine the effect of nanochannels of different size and structure.
Collapse
Affiliation(s)
- Banibrata Maity
- Department of Chemistry, Indian Institute of Technology Patna, Patliputra Colony, Patna 800013, Bihar (India), Fax: 91-612-2277383
| | | | | | | |
Collapse
|
43
|
The self-crosslinked ufasome of conjugated linoleic acid: Investigation of morphology, bilayer membrane and stability. Colloids Surf B Biointerfaces 2014; 123:8-14. [DOI: 10.1016/j.colsurfb.2014.08.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 08/05/2014] [Accepted: 08/22/2014] [Indexed: 01/01/2023]
|
44
|
Cipolla D, Wu H, Gonda I, Chan HK. Aerosol performance and long-term stability of surfactant-associated liposomal ciprofloxacin formulations with modified encapsulation and release properties. AAPS PharmSciTech 2014; 15:1218-27. [PMID: 24889736 PMCID: PMC4179662 DOI: 10.1208/s12249-014-0155-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 05/14/2014] [Indexed: 01/12/2023] Open
Abstract
Previously, we showed that the encapsulation and release properties of a liposomal ciprofloxacin formulation could be modified post manufacture, by addition of surfactant in concert with osmotic swelling of the liposomes. This strategy may provide more flexibility and convenience than the alternative of manufacturing multiple batches of liposomes differing in composition to cover a wide range of release profiles. The goal of this study was to develop a surfactant-associated liposomal ciprofloxacin (CFI) formulation possessing good long-term stability which could be delivered as an inhaled aerosol. Preparations of 12.5 mg/ml CFI containing 0.4% polysorbate 20 were formulated between pH 4.7 and 5.5. These formulations, before and after mesh nebulization, and after refrigerated storage for up to 2 years, were characterized in terms of liposome structure by cryogenic transmission electron microscopy (cryo-TEM) imaging, vesicle size by dynamic light scattering, pH, drug encapsulation by centrifugation-filtration, and in vitro release (IVR) performance. Within the narrower pH range of 4.9 to 5.2, these formulations retained their physicochemical stability after 2-year refrigerated storage, were robust to mesh nebulization, and formed respirable aerosols with a volume mean diameter (VMD) of 3.7 μm and a geometric standard deviation (GSD) of 1.7. This study demonstrates that it may be possible to provide a range of release profiles by simple addition of surfactant to a liposomal formulation post manufacture, and that these formulations may retain their physicochemical properties after long-term refrigerated storage and following aerosolization by mesh nebulizer.
Collapse
|
45
|
Demetzos C, Pippa N. Fractal analysis as a complementary approach to predict the stability of drug delivery nano systems in aqueous and biological media: A regulatory proposal or a dream? Int J Pharm 2014; 473:213-8. [DOI: 10.1016/j.ijpharm.2014.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/27/2014] [Accepted: 07/08/2014] [Indexed: 02/02/2023]
|
46
|
Papachristos A, Pippa N, Ioannidis K, Sivolapenko G, Demetzos C. Liposomal forms of anticancer agents beyond anthracyclines: present and future perspectives. J Liposome Res 2014; 25:166-73. [PMID: 25148295 DOI: 10.3109/08982104.2014.950277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Liposomes are widely used as delivery systems of cytotoxic drugs. The encapsulation into liposomes improves pharmacological properties and as a result therapeutic index and outcomes. To date, liposomal vincristine and cytarabine are approved and marketed for intravenous and intrathecal administration, respectively. The main goal of this review is to examine the clinical use and pharmacological properties, as well as the safety of liposomal forms of less widely used liposomal forms of anticancer agents compared to their conventional forms and to present data regarding clinical development of other liposomal agents. Liposomal forms of cytarabine and vincristine are less widely used and unknown compared to liposomal anthracyclines, because they are approved only for specific indications and only in the United States.
Collapse
|
47
|
Agarwal R, Iezhitsa I, Agarwal P, Abdul Nasir NA, Razali N, Alyautdin R, Ismail NM. Liposomes in topical ophthalmic drug delivery: an update. Drug Deliv 2014; 23:1075-91. [DOI: 10.3109/10717544.2014.943336] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Renu Agarwal
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia,
- Brain & Neuroscience, Communities of Research (Core), Research Management Institute (RMI), Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan, Malaysia,
| | - Igor Iezhitsa
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia,
- Brain & Neuroscience, Communities of Research (Core), Research Management Institute (RMI), Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan, Malaysia,
- Research Institute of Pharmacology, Volgograd State Medical University, Volgograd, Russian Federation, and
| | - Puneet Agarwal
- Department of Ophthalmology, IMU Clinical School, International Medical University, Jalan Rasah, Seremban, Malaysia
| | - Nurul Alimah Abdul Nasir
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia,
- Brain & Neuroscience, Communities of Research (Core), Research Management Institute (RMI), Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan, Malaysia,
| | - Norhafiza Razali
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia,
- Brain & Neuroscience, Communities of Research (Core), Research Management Institute (RMI), Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan, Malaysia,
| | - Renad Alyautdin
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia,
| | - Nafeeza Mohd Ismail
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia,
- Brain & Neuroscience, Communities of Research (Core), Research Management Institute (RMI), Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan, Malaysia,
| |
Collapse
|
48
|
Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev 2014; 75:81-91. [PMID: 24915637 DOI: 10.1016/j.addr.2014.05.017] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/15/2014] [Accepted: 05/28/2014] [Indexed: 01/09/2023]
Abstract
Drug delivery to the lungs by inhalation offers a targeted drug therapy for respiratory diseases. However, the therapeutic efficacy of inhaled drugs is limited by their rapid clearance in the lungs. Carriers providing sustained drug release in the lungs can improve therapeutic outcomes of inhaled medicines because they can retain the drug load within the lungs and progressively release the drug locally at therapeutic levels. This review presents the different formulation strategies developed to control drug release in the lungs including microparticles and the wide array of nanomedicines. Large and porous microparticles offer excellent aerodynamic properties. Their large geometric size reduces their uptake by alveolar macrophages, making them a suitable carrier for sustained drug release in the lungs. Similarly, nanocarriers present significant potential for prolonged drug release in the lungs because they largely escape uptake by lung-surface macrophages and can remain in the pulmonary tissue for weeks. They can be embedded in large and porous microparticles in order to facilitate their delivery to the lungs. Conjugation of drugs to polymers as polyethylene glycol can be particularly beneficial to sustain the release of proteins in the lungs as it allows high protein loading. Drug conjugates can be readily delivered to respiratory airways by any current nebulizer device. Nonetheless, liposomes represent the formulation most advanced in clinical development. Liposomes can be prepared with lipids endogenous to the lungs and are particularly safe. Their composition can be adjusted to modulate drug release and they can encapsulate both hydrophilic and lipophilic compounds with high drug loading.
Collapse
Affiliation(s)
- Cristina Loira-Pastoriza
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Julie Todoroff
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Rita Vanbever
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
49
|
Sun Z, Dong X, Zhai Y, Li Z, Huang Y. 2,5-Dialkoxylphenyl-1,3,4-oxadiazoles as efficient organogelators and their self-assembling property. Front Chem Sci Eng 2014. [DOI: 10.1007/s11705-014-1418-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
50
|
Wang Q, Zhang X, Zheng J, Liu D. Self-assembled peptide nanotubes as potential nanocarriers for drug delivery. RSC Adv 2014. [DOI: 10.1039/c4ra03304c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|