1
|
Mohammed I, Sagurthi SR. Current Approaches and Strategies Applied in First-in-class Drug Discovery. ChemMedChem 2025; 20:e202400639. [PMID: 39648151 DOI: 10.1002/cmdc.202400639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
First-in-class drug discovery (FICDD) offers novel therapies, new biological targets and mechanisms of action (MOAs) toward targeting various diseases and provides opportunities to understand unexplored biology and to target unmet diseases. Current screening approaches followed in FICDD for discovery of hit and lead molecules can be broadly categorized and discussed under phenotypic drug discovery (PDD) and target-based drug discovery (TBDD). Each category has been further classified and described with suitable examples from the literature outlining the current trends in screening approaches applied in small molecule drug discovery (SMDD). Similarly, recent applications of functional genomics, structural biology, artificial intelligence (AI), machine learning (ML), and other such advanced approaches in FICDD have also been highlighted in the article. Further, some of the current medicinal chemistry strategies applied during discovery of hits and optimization studies such as hit-to-lead (HTL) and lead optimization (LO) have been simultaneously overviewed in this article.
Collapse
Affiliation(s)
- Idrees Mohammed
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, 500007, Telangana, India
| | - Someswar Rao Sagurthi
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, 500007, Telangana, India
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
2
|
Zhao L, He HH, Ou-Yang T, Liu DF, Jiang CH, Yang HP, Wang P, Xie N, Yan SS. Pre-clinical pharmacological profile of QF-036, a potent HIV-1 maturation inhibitor. Basic Clin Pharmacol Toxicol 2021; 128:275-285. [PMID: 33012100 DOI: 10.1111/bcpt.13504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 11/28/2022]
Abstract
QF-036 is an HIV-1 maturation inhibitor in pre-clinical development, and its antiviral activity against a laboratory HIV-1 strain and two drug-resistant strains was determined in the C8166 line. QF-036 was also subjected to absorption, distribution and metabolism (ADM) assessment in vitro, and pharmacokinetic profiles were evaluated in rats and monkeys. The 50% effective concentrations (EC50 ) of QF-036 against the three strains were 20.36 nM, 0.39 μM and 2.11 nM, respectively, demonstrating better antiviral potential than the first-generation antiviral maturation inhibitor bevirimat. QF-036 demonstrated moderate cell permeability, high plasma protein binding ability and good metabolic stability in vitro. After oral QF-036 administration to rats and monkeys, both species exhibited moderate bioavailability, and the plasma drug exposure increased in an approximately dose-proportional manner. When administered orally (30 mg/kg) to monkeys, the QF-036 plasma concentration (Cmax ) peaked at 3671 ng/mL (4.82 μM), 12 to 2410 times higher than the EC50 of laboratory or resistant HIV-1 strains. Moreover, the plasma concentration of QF-036 at 12 hours after administration was 263 ng/mL (0.35 μM), which approximately matched the highest EC50 value of the three test strains. The favourable viral inhibitory activity and pharmacokinetic properties provide critical support for QF-036 as a promising anti-HIV therapeutic candidate.
Collapse
Affiliation(s)
- Li Zhao
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd, Ganzhou, China
- Shanghai Qingrun Pharmaceutical Technology Co., Ltd, Shanghai, China
| | - Hong-Hong He
- Shanghai Qingrun Pharmaceutical Technology Co., Ltd, Shanghai, China
| | - Ting Ou-Yang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd, Ganzhou, China
| | - Di-Fa Liu
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd, Ganzhou, China
| | - Chun-Hong Jiang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd, Ganzhou, China
| | - He-Ping Yang
- Shanghai De Novo Pharmatech Co., Ltd, Shanghai, China
| | - Pei Wang
- Shanghai De Novo Pharmatech Co., Ltd, Shanghai, China
| | - Ning Xie
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd, Ganzhou, China
| | - Shou-Sheng Yan
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd, Ganzhou, China
- Shanghai Qingrun Pharmaceutical Technology Co., Ltd, Shanghai, China
| |
Collapse
|
3
|
Dick A, Cocklin S. Bioisosteric Replacement as a Tool in Anti-HIV Drug Design. Pharmaceuticals (Basel) 2020; 13:ph13030036. [PMID: 32121077 PMCID: PMC7151723 DOI: 10.3390/ph13030036] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
Bioisosteric replacement is a powerful tool for modulating the drug-like properties, toxicity, and chemical space of experimental therapeutics. In this review, we focus on selected cases where bioisosteric replacement and scaffold hopping have been used in the development of new anti-HIV-1 therapeutics. Moreover, we cover field-based, computational methodologies for bioisosteric replacement, using studies from our group as an example. It is our hope that this review will serve to highlight the utility and potential of bioisosteric replacement in the continuing search for new and improved anti-HIV drugs.
Collapse
Affiliation(s)
| | - Simon Cocklin
- Correspondence: ; Tel.: +215-762-7234 or +215-762-4979
| |
Collapse
|
4
|
Kinetic Characterization of Novel HIV-1 Entry Inhibitors: Discovery of a Relationship between Off-Rate and Potency. Molecules 2018; 23:molecules23081940. [PMID: 30081466 PMCID: PMC6222832 DOI: 10.3390/molecules23081940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 11/18/2022] Open
Abstract
The entry of HIV-1 into permissible cells remains an extremely attractive and underexploited therapeutic intervention point. We have previously demonstrated the ability to extend the chemotypes available for optimization in the entry inhibitor class using computational means. Here, we continue this effort, designing and testing three novel compounds with the ability to inhibit HIV-1 entry. We demonstrate that alteration of the core moiety of these entry inhibitors directly influences the potency of the compounds, despite common proximal and distal groups. Moreover, by establishing for the first time a surface plasmon resonance (SPR)-based interaction assay with soluble recombinant SOSIP Env trimers, we demonstrate that the off-rate (kd) parameter shows the strongest correlation with potency in an antiviral assay. Finally, we establish an underappreciated relationship between the potency of a ligand and its degree of electrostatic complementarity (EC) with its target, the Env complex. These findings not only broaden the chemical space in this inhibitor class, but also establish a rapid and simple assay to evaluate future HIV-1 entry inhibitors.
Collapse
|
5
|
Nguyen HH, Kim MB, Wilson RJ, Butch CJ, Kuo KM, Miller EJ, Tahirovic YA, Jecs E, Truax VM, Wang T, Sum CS, Cvijic ME, Schroeder GM, Wilson LJ, Liotta DC. Design, Synthesis, and Pharmacological Evaluation of Second-Generation Tetrahydroisoquinoline-Based CXCR4 Antagonists with Favorable ADME Properties. J Med Chem 2018; 61:7168-7188. [DOI: 10.1021/acs.jmedchem.8b00450] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Huy H. Nguyen
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Michelle B. Kim
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Robert J. Wilson
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Christopher J. Butch
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Katie M. Kuo
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Eric J. Miller
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Yesim A. Tahirovic
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Edgars Jecs
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Valarie M. Truax
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Tao Wang
- Research & Development, Bristol-Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Chi S. Sum
- Research & Development, Bristol-Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Mary E. Cvijic
- Research & Development, Bristol-Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Gretchen M. Schroeder
- Research & Development, Bristol-Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Lawrence J. Wilson
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Dennis C. Liotta
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
Wang T, Ueda Y, Zhang Z, Yin Z, Matiskella J, Pearce BC, Yang Z, Zheng M, Parker DD, Yamanaka GA, Gong YF, Ho HT, Colonno RJ, Langley DR, Lin PF, Meanwell NA, Kadow JF. Discovery of the Human Immunodeficiency Virus Type 1 (HIV-1) Attachment Inhibitor Temsavir and Its Phosphonooxymethyl Prodrug Fostemsavir. J Med Chem 2018; 61:6308-6327. [PMID: 29920093 DOI: 10.1021/acs.jmedchem.8b00759] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The optimization of the 4-methoxy-6-azaindole series of HIV-1 attachment inhibitors (AIs) that originated with 1 to deliver temsavir (3, BMS-626529) is described. The most beneficial increases in potency and pharmacokinetic (PK) properties were attained by incorporating N-linked, sp2-hybridized heteroaryl rings at the 7-position of the heterocyclic nucleus. Compounds that adhered to a coplanarity model afforded targeted antiviral potency, leading to the identification of 3 with characteristics that provided for targeted exposure and PK properties in three preclinical species. However, the physical properties of 3 limited plasma exposure at higher doses, both in preclinical studies and in clinical trials as the result of dissolution- and/or solubility-limited absorption, a deficiency addressed by the preparation of the phosphonooxymethyl prodrug 4 (BMS-663068, fostemsavir). An extended-release formulation of 4 is currently in phase III clinical trials where it has shown promise as part of a drug combination therapy in highly treatment-experienced HIV-1 infected patients.
Collapse
|
7
|
Miller EJ, Jecs E, Truax VM, Katzman BM, Tahirovic YA, Wilson RJ, Kuo KM, Kim MB, Nguyen HH, Saindane MT, Zhao H, Wang T, Sum CS, Cvijic ME, Schroeder GM, Wilson LJ, Liotta DC. Discovery of Tetrahydroisoquinoline-Containing CXCR4 Antagonists with Improved in Vitro ADMET Properties. J Med Chem 2018; 61:946-979. [PMID: 29350534 DOI: 10.1021/acs.jmedchem.7b01420] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CXCR4 is a seven-transmembrane receptor expressed by hematopoietic stem cells and progeny, as well as by ≥48 different cancers types. CXCL12, the only chemokine ligand of CXCR4, is secreted within the tumor microenvironment, providing sanctuary for CXCR4+ tumor cells from immune surveillance and chemotherapeutic elimination by (1) stimulating prosurvival signaling and (2) recruiting CXCR4+ immunosuppressive leukocytes. Additionally, distant CXCL12-rich niches attract and support CXCR4+ metastatic growths. Accordingly, CXCR4 antagonists can potentially obstruct CXCR4-mediated prosurvival signaling, recondition the CXCR4+ leukocyte infiltrate from immunosuppressive to immunoreactive, and inhibit CXCR4+ cancer cell metastasis. Current small molecule CXCR4 antagonists suffer from poor oral bioavailability and off-target liabilities. Herein, we report a series of novel tetrahydroisoquinoline-containing CXCR4 antagonists designed to improve intestinal absorption and off-target profiles. Structure-activity relationships regarding CXCR4 potency, intestinal permeability, metabolic stability, and cytochrome P450 inhibition are presented.
Collapse
Affiliation(s)
- Eric J Miller
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Edgars Jecs
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Valarie M Truax
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Brooke M Katzman
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Yesim A Tahirovic
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Robert J Wilson
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Katie M Kuo
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Michelle B Kim
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huy H Nguyen
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Manohar T Saindane
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huanyu Zhao
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Tao Wang
- Bristol-Myers Squibb Research & Development , Princeton, New Jersey 08543, United States
| | - Chi S Sum
- Bristol-Myers Squibb Research & Development , Princeton, New Jersey 08543, United States
| | - Mary E Cvijic
- Bristol-Myers Squibb Research & Development , Princeton, New Jersey 08543, United States
| | - Gretchen M Schroeder
- Bristol-Myers Squibb Research & Development , Princeton, New Jersey 08543, United States
| | - Lawrence J Wilson
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Dennis C Liotta
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
8
|
Meanwell NA, Krystal MR, Nowicka-Sans B, Langley DR, Conlon DA, Eastgate MD, Grasela DM, Timmins P, Wang T, Kadow JF. Inhibitors of HIV-1 Attachment: The Discovery and Development of Temsavir and its Prodrug Fostemsavir. J Med Chem 2017; 61:62-80. [PMID: 29271653 DOI: 10.1021/acs.jmedchem.7b01337] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) infection currently requires lifelong therapy with drugs that are used in combination to control viremia. The indole-3-glyoxamide 6 was discovered as an inhibitor of HIV-1 infectivity using a phenotypic screen and derivatives of this compound were found to interfere with the HIV-1 entry process by stabilizing a conformation of the virus gp120 protein not recognized by the host cell CD4 receptor. An extensive optimization program led to the identification of temsavir (31), which exhibited an improved antiviral and pharmacokinetic profile compared to 6 and was explored in phase 3 clinical trials as the phosphonooxymethyl derivative fostemsavir (35), a prodrug designed to address dissolution- and solubility-limited absorption issues. In this drug annotation, we summarize the structure-activity and structure-liability studies leading to the discovery of 31 and the clinical studies conducted with 35 that entailed the development of an extended release formulation suitable for phase 3 clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - David A Conlon
- Chemical and Synthetic Development, Bristol-Myers Squibb Research and Development , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Martin D Eastgate
- Chemical and Synthetic Development, Bristol-Myers Squibb Research and Development , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Dennis M Grasela
- Innovative Medicines Development, Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Peter Timmins
- Drug Product Science and Technology, Bristol-Myers Squibb , Reeds Lane, Moreton, Merseyside CH46 1QW, United Kingdom
| | | | | |
Collapse
|
9
|
Abstract
Viruses are major pathogenic agents causing a variety of serious diseases in humans, other animals, and plants. Drugs that combat viral infections are called antiviral drugs. There are no effective antiviral drugs for many viral infections. However, there are several drugs for influenza, a couple of drugs for herpesviruses, and some new antiviral drugs for treatment of HIV and hepatitis C infections. The arsenal of antivirals is complex. As of March 2014, it consists of approximately 50 drugs approved by the FDA, approximately half of which are directed against HIV. Antiviral drug creation strategies are focused on two different approaches: targeting the viruses themselves or targeting host cell factors. Direct virus-targeting antiviral drugs include attachment inhibitors, entry inhibitors, uncoating inhibitors, protease inhibitors, polymerase inhibitors, nucleoside and nucleotide reverse transcriptase inhibitors, nonnucleoside reverse-transcriptase inhibitors, and integrase inhibitors. Protease inhibitors (darunavir, atazanavir, and ritonavir), viral DNA polymerase inhibitors (acyclovir, valacyclovir, valganciclovir, and tenofovir), and an integrase inhibitor (raltegravir) are included in the list of Top 200 Drugs by sales for the 2010s.
Collapse
|
10
|
Core chemotype diversification in the HIV-1 entry inhibitor class using field-based bioisosteric replacement. Bioorg Med Chem Lett 2015; 26:228-34. [PMID: 26531151 DOI: 10.1016/j.bmcl.2015.10.080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 11/20/2022]
Abstract
Demand remains for new inhibitors of HIV-1 replication and the inhibition of HIV-1 entry is an extremely attractive therapeutic approach. Using field-based bioisosteric replacements, we have further extended the chemotypes available for development in the HIV-1 entry inhibitor class. Moreover, using field-based disparity analysis of the compounds, 3D structure-activity relationships were derived that will be useful in the further development of these inhibitors towards clinical utility.
Collapse
|
11
|
Discovery and optimization of novel small-molecule HIV-1 entry inhibitors using field-based virtual screening and bioisosteric replacement. Bioorg Med Chem Lett 2015; 24:5439-45. [PMID: 25454268 DOI: 10.1016/j.bmcl.2014.10.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 11/22/2022]
Abstract
With the emergence of drug-resistant strains and the cumulative toxicities associated with current therapies, demand remains for new inhibitors of HIV-1 replication. The inhibition of HIV-1 entry is an attractive, yet underexploited therapeutic approach with implications for salvage and preexposure prophylactic regimens, as well as topical microbicides. Using the combination of a field-derived bioactive conformation template to perform virtual screening and iterative bioisosteric replacements, coupled with in silico predictions of absorption, distribution, metabolism, and excretion, we have identified new leads for HIV-1 entry inhibitors.
Collapse
|
12
|
Timmins P, Brown J, Meanwell NA, Hanna GJ, Zhu L, Kadow JF. Enabled clinical use of an HIV-1 attachment inhibitor through drug delivery. Drug Discov Today 2014; 19:1288-93. [DOI: 10.1016/j.drudis.2014.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/11/2014] [Accepted: 03/28/2014] [Indexed: 12/01/2022]
|
13
|
Lv H, Zhang X, Sharma J, Reddy MVR, Reddy EP, Gallo JM. Integrated pharmacokinetic-driven approach to screen candidate anticancer drugs for brain tumor chemotherapy. AAPS JOURNAL 2012. [PMID: 23180160 DOI: 10.1208/s12248-012-9428-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The goal of the study was to develop an effective screening strategy to select new agents for brain tumor chemotherapy from a series of low molecular weight anticancer agents [ON123x] by the combined use of in silico, in vitro cytotoxicity, and in vitro ADME profiling studies. The results of these studies were cast into a pipeline of tier 1 and tier 2 procedures that resulted in the identification of ON123300 as the lead compound. Of the 154 ON123xx compounds, 13 met tier 1 screening criteria based on physicochemical properties [i.e., MW < 450 Da, predicted log P between 2 and 3.5] and in vitro glioma cell cytotoxicity [i.e., IC50 < 10 μM] and were further tested in tier 2 assays. The tier 2 profiling studies consisted of metabolic stability, MDCK-MDR1 cell permeability and plasma and brain protein binding that were combined to globally assess whether favorable pharmacokinetic properties and brain penetration could be achieved in vivo. In vivo cassette dosing studies were conducted in mice for 12 compounds that permitted examination of in vitro/in vivo relationships that confirmed the suitability of the in vitro assays. A parameter derived from the in vitro assays accurately predicted the extent of drug accumulation in the brain based on the area under the drug concentration-time curve in brain measured in the cassette dosing study (r (2) = 0.920). Overall, the current studies demonstrated the value of an integrated pharmacokinetic-driven approach to identify potentially efficacious agents for brain tumor chemotherapy.
Collapse
Affiliation(s)
- Hua Lv
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
14
|
Sergienko E, Xu J, Liu WH, Dahl R, Critton DA, Su Y, Brown BT, Chan X, Yang L, Bobkova EV, Vasile S, Yuan H, Rascon J, Colayco S, Sidique S, Cosford NDP, Chung TDY, Mustelin T, Page R, Lombroso PJ, Tautz L. Inhibition of hematopoietic protein tyrosine phosphatase augments and prolongs ERK1/2 and p38 activation. ACS Chem Biol 2012; 7:367-77. [PMID: 22070201 DOI: 10.1021/cb2004274] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hematopoietic protein tyrosine phosphatase (HePTP) is implicated in the development of blood cancers through its ability to negatively regulate the mitogen-activated protein kinases (MAPKs) ERK1/2 and p38. Small-molecule modulators of HePTP activity may become valuable in treating hematopoietic malignancies such as T cell acute lymphoblastic leukemia (T-ALL) and acute myelogenous leukemia (AML). Moreover, such compounds will further elucidate the regulation of MAPKs in hematopoietic cells. Although transient activation of MAPKs is crucial for growth and proliferation, prolonged activation of these important signaling molecules induces differentiation, cell cycle arrest, cell senescence, and apoptosis. Specific HePTP inhibitors may promote the latter and thereby may halt the growth of cancer cells. Here, we report the development of a small molecule that augments ERK1/2 and p38 activation in human T cells, specifically by inhibiting HePTP. Structure-activity relationship analysis, in silico docking studies, and mutagenesis experiments reveal how the inhibitor achieves selectivity for HePTP over related phosphatases by interacting with unique amino acid residues in the periphery of the highly conserved catalytic pocket. Importantly, we utilize this compound to show that pharmacological inhibition of HePTP not only augments but also prolongs activation of ERK1/2 and, especially, p38. Moreover, we present similar effects in leukocytes from mice intraperitoneally injected with the inhibitor at doses as low as 3 mg/kg. Our results warrant future studies with this probe compound that may establish HePTP as a new drug target for acute leukemic conditions.
Collapse
Affiliation(s)
| | | | | | | | - David A. Critton
- Department
of Molecular Biology,
Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Rebecca Page
- Department
of Molecular Biology,
Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, United States
| | | | | |
Collapse
|
15
|
Antiviral activity, pharmacokinetics, and safety of BMS-488043, a novel oral small-molecule HIV-1 attachment inhibitor, in HIV-1-infected subjects. Antimicrob Agents Chemother 2010; 55:722-8. [PMID: 21078951 DOI: 10.1128/aac.00759-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BMS-488043 is a novel and unique oral small-molecule inhibitor of the attachment of human immunodeficiency virus type 1 (HIV-1) to CD4(+) lymphocytes. The antiviral activity, pharmacokinetics, viral susceptibility, and safety of BMS-488043 were evaluated in an 8-day monotherapy trial. Thirty HIV-1-infected study subjects were randomly assigned to sequential, safety-guided dose panels of 800 and 1,800 mg BMS-488043 or a matched placebo in a 4:1 ratio, and the drug was administered every 12 h with a high-fat meal for 7 days and on the morning of day 8. Dose-related, albeit less-than-dose-proportional, increases in plasma BMS-488043 concentrations were observed. Mean plasma HIV-1 RNA decreases from the baseline for the BMS-488043 800- and 1,800-mg dose groups on day 8 were 0.72 and 0.96 log(10) copies/ml, respectively, compared with 0.02 log(10) copies/ml for the placebo group. A lower baseline BMS-488043 50% effective concentration (EC(50)) in the active-treatment groups was predictive of a greater antiviral response. Although absolute drug exposure was not associated with an antiviral response, the trough concentration (C(trough)), adjusted by the baseline EC(50) (C(trough)/EC(50)), was associated with antiviral activity. During dosing, four subjects experienced >10-fold reductions in viral susceptibility to BMS-488043, providing further support of the direct antiviral mechanism of BMS-488043. BMS-488043 was generally safe and well tolerated. These results suggest that further development of this novel class of oral HIV-1 attachment inhibitors is warranted.
Collapse
|