1
|
Pandya A, Zhang C, Barata TS, Brocchini S, Howard MJ, Zloh M, Dalby PA. Molecular Dynamics Simulations Reveal How Competing Protein-Surface Interactions for Glycine, Citrate, and Water Modulate Stability in Antibody Fragment Formulations. Mol Pharm 2024; 21:5497-5509. [PMID: 39431440 PMCID: PMC11539065 DOI: 10.1021/acs.molpharmaceut.4c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024]
Abstract
The design of stable formulations remains a major challenge for protein therapeutics, particularly the need to minimize aggregation. Experimental formulation screens are typically based on thermal transition midpoints (Tm), and forced degradation studies at elevated temperatures. Both approaches give limited predictions of long-term storage stability, particularly at low temperatures. Better understanding of the mechanisms of action for formulation of excipients and buffers could lead to improved strategies for formulation design. Here, we identified a complex impact of glycine concentration on the experimentally determined stability of an antibody Fab fragment and then used molecular dynamics simulations to reveal mechanisms that underpin these complex behaviors. Tm values increased monotonically with glycine concentration, but associated ΔSvh measurements revealed more complex changes in the native ensemble dynamics, which reached a maximum at 30 mg/mL. The aggregation kinetics at 65 °C were similar at 0 and 20 mg/mL glycine, but then significantly slower at 50 mg/mL. These complex behaviors indicated changes in the dominant stabilizing mechanisms as the glycine concentration was increased. MD revealed a complex balance of glycine self-interaction, and differentially preferred interactions of glycine with the Fab as it displaced hydration-shell water, and surface-bound water and citrate buffer molecules. As a result, glycine binding to the Fab surface had different effects at different concentrations, and led from preferential interactions at low concentrations to preferential exclusion at higher concentrations. During preferential interaction, glycine displaced water from the Fab hydration shell, and a small number of water and citrate molecules from the Fab surface, which reduced the protein dynamics as measured by root-mean-square fluctuation (RMSF) on the short time scales of MD. By contrast, the native ensemble dynamics increased according to ΔSvh, suggesting increased conformational changes on longer time scales. The aggregation kinetics did not change at low glycine concentrations, and so the opposing dynamics effects either canceled out or were not directly relevant to aggregation. During preferential exclusion at higher glycine concentrations, glycine could only bind to the Fab surface through the displacement of citrate buffer molecules already favorably bound on the Fab surface. Displacement of citrate increased the flexibility (RMSF) of the Fab, as glycine formed fewer bridging hydrogen bonds to the Fab surface. Overall, the slowing of aggregation kinetics coincided with reduced flexibility in the Fab ensemble at the very highest glycine concentrations, as determined by both RMSF and ΔSvh, and occurred at a point where glycine binding displaced neither water nor citrate. These final interactions with the Fab surface were driven by mass action and were the least favorable, leading to a macromolecular crowding effect under the regime of preferential exclusion that stabilized the dynamics of Fab.
Collapse
Affiliation(s)
- Akash Pandya
- Department
of Biochemical Engineering, University College
London, Gower Street, London WC1E
6BT, U.K.
| | - Cheng Zhang
- Department
of Biochemical Engineering, University College
London, Gower Street, London WC1E
6BT, U.K.
| | - Teresa S. Barata
- School
of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Steve Brocchini
- School
of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Mark J. Howard
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Mire Zloh
- School
of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Paul A. Dalby
- Department
of Biochemical Engineering, University College
London, Gower Street, London WC1E
6BT, U.K.
| |
Collapse
|
2
|
Sreenivasan S, Schöneich C, Rathore AS. Aggregation of therapeutic monoclonal antibodies due to thermal and air/liquid interfacial agitation stress: Occurrence, stability assessment strategies, aggregation mechanism, influencing factors, and ways to enhance stability. Int J Pharm 2024; 666:124735. [PMID: 39326478 DOI: 10.1016/j.ijpharm.2024.124735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Therapeutic proteins, such as monoclonal antibodies (mAbs) are known to undergo stability related issues during various stages of product life cycle resulting in the formation of aggregates and fragments. Aggregates of mAb might result in reduced therapeutic activity and could cause various adverse immunogenic responses. Sample containing mAb undergo aggregation due to various types of stress factors, and there is always a continuous interest among researchers and manufacturers to determine the effect of different factors on the stability of mAb. Thermal stress and air/liquid interfacial agitation stress are among two of the common stress factors to which samples containing mAb are exposed to during various stages. Initial part of this review articles aims to provide a generalized understanding of aggregation of mAb such as size ranges of aggregates, aggregate types, stress factors, analytical techniques, permissible aggregate limits, and stability assessment methods. This article further aims to explain different aspects associated with aggregation of mAb in liquid samples due to thermal and air/liquid interfacial agitation stress. Under each stress category, the occurrence of stress during product life cycle, type of aggregates formed, mechanism of aggregation, strategies used by various researchers to expose mAb containing samples to stress, different factors affecting aggregation, fate of aggregates in human body fluids, and strategies used to enhance mAb stability has been explained in detail. The authors hope that this article provides a detailed understanding about stability of mAb due to thermal and air/liquid interfacial stress with relevance to product life cycle from manufacturing to administration into patients.
Collapse
Affiliation(s)
- Shravan Sreenivasan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India
| | | | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India.
| |
Collapse
|
3
|
Schön A, Kwon YD, Bender MF, Freire E. Extrapolating differential scanning calorimetry data for monoclonal antibodies to low temperatures. Anal Biochem 2024; 691:115533. [PMID: 38642818 PMCID: PMC11268162 DOI: 10.1016/j.ab.2024.115533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
For irreversible denaturation transitions such as those exhibited by monoclonal antibodies, differential scanning calorimetry provides the denaturation temperature, Tm, the rate of denaturation at Tm, and the activation energy at Tm. These three quantities are essential but not sufficient for an accurate extrapolation of the rate of denaturation to temperatures of 25 °C and below. We have observed that the activation energy is not constant but temperature dependent due to the existence of an activation heat capacity, Cp,a. It is shown in this paper that a model that incorporates Cp,a is able to account for previous observations like, for example, that increasing the Tm does not always improve the stability at low temperatures; that some antibodies exhibit lower stabilities at 5 °C than at 25 °C; or that low temperature stabilities do not follow the rank order derived from Tm values. Most importantly, the activation heat capacity model is able to reproduce time dependent stabilities measured by size exclusion chromatography at low temperatures.
Collapse
Affiliation(s)
- Arne Schön
- Department of Biology, Johns Hopkins University, 3400 North Charles, Baltimore, MD, 21218, USA
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael F Bender
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ernesto Freire
- Department of Biology, Johns Hopkins University, 3400 North Charles, Baltimore, MD, 21218, USA.
| |
Collapse
|
4
|
Boro N, Alexandrino Fernandes P, Mukherjee AK. Computational analysis to comprehend the structure-function properties of fibrinolytic enzymes from Bacillus spp for their efficient integration into industrial applications. Heliyon 2024; 10:e33895. [PMID: 39055840 PMCID: PMC11269858 DOI: 10.1016/j.heliyon.2024.e33895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Background The fibrinolytic enzymes from Bacillus sp. are proposed as therapeutics in preventing thrombosis. Computational-based analyses of these enzymes' amino acid composition, basic physiological properties, presence of functional domain and motifs, and secondary and tertiary structure analyses can lead to developing a specific enzyme with improved catalytic activity and other properties that may increase their therapeutic potential. Methods The nucleotide sequences of fibrinolytic enzymes produced by the genus Bacillus and its corresponding protein sequences were retrieved from the NCBI database and aligned using the PRALINE programme. The varied physiochemical parameters and structural and functional analysis of the enzyme sequences were carried out with the ExPASy-ProtParam tool, MEME server, SOPMA, PDBsum tool, CYS-REC tool, SWISS-MODEL, SAVES servers, TMHMM program, GlobPlot, and peptide cutter software. The assessed in-silico data were compared with the published experimental results for validation. Results The alignment of sixty fibrinolytic serine protease enzymes (molecular mass 12-86 kDa) sequences showed 49 enzymes possess a conserved domain with a catalytic triad of Asp196, His242, and Ser569. The predicted instability and aliphatic indexes were 1.94-37.77, and 68.9-93.41, respectively, indicating high thermostability. The random coil means value suggested the predominance of this secondary structure in these proteases. A set of 50 amino acid residues representing motif 3 signifies the Peptidase S8/S53 domain that was invariably observed in 56 sequences. Additionally, 28 sequences have transmembrane helices, with two having the most disordered areas, and they pose 25 enzyme cleavage sites. A comparative analysis of the experimental work with the results of in-silico study put forward the characteristics of the enzyme sequences JF739176.1 and MF677779.1 to be considered when creating a potential mutant enzyme as these sequences are stable at high pH with thermostability and to exhibit αβ-fibrinogenase activity in both experimental and in-silico studies.
Collapse
Affiliation(s)
- Nitisha Boro
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Pedro Alexandrino Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade De Ciências, Universidade do Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Ashis K. Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
- Microbial Biotechnology and Protein Research Laboratory, Division of Life Sciences, Institute of Advanced Studies in Science and Technology, Vigyan Path, Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| |
Collapse
|
5
|
Sun NN, Xu QF, Yang MD, Li YN, Liu H, Tantai W, Shu GW, Li GL. A high-throughput differential scanning fluorimetry method for rapid detection of thermal stability and iron saturation in lactoferrin. Int J Biol Macromol 2024; 267:131285. [PMID: 38583841 DOI: 10.1016/j.ijbiomac.2024.131285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
Thermal stability and iron saturation of lactoferrin (LF) are of great significance not only for the evaluation of the biological activities of LF but also for the optimization of the isolation and drying process parameters. Differential scanning calorimetry (DSC) is a well-established and efficient method for thermal stability and iron saturation detection in LF. However, multiple DSC measurements are typically performed sequentially, thus time-consuming and low throughput. Herein, we introduced the differential scanning fluorimetry (DSF) approach to overcome such limitations. The DSF can monitor LF thermal unfolding with a commonly available real-time PCR instrument and a fluorescent dye (SYPRO orange or Glomelt), and the measured melting temperature of LF is consistent with that determined by DSC. On the basis of that, a new quantification method was established for determination of iron saturation levels using the linear correlation of the degree of ion saturation of LF with DSF measurements. Such DSF method is simple, inexpensive, rapid (<15 min), and high throughput (>96 samples per experiment), and provides a valuable alternative tool for thermal stability detection of LF and other whey proteins.
Collapse
Affiliation(s)
- Na-Na Sun
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Qin-Feng Xu
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Meng-di Yang
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yan-Ni Li
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Hao Liu
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Wei Tantai
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guo-Wei Shu
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guo-Liang Li
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
6
|
Li L, Liu X, Bai Y, Yao B, Luo H, Tu T. High-Throughput Screening Techniques for the Selection of Thermostable Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3833-3845. [PMID: 38285533 DOI: 10.1021/acs.jafc.3c07554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The acquisition of a thermostable enzyme is an indispensable prerequisite for its successful implementation in industrial applications and the development of novel functionalities. Various protein engineering approaches, including rational design, semirational design, and directed evolution, have been employed to enhance thermostability. However, all of these approaches require sensitive and reliable high-throughput screening (HTS) technologies to efficiently and rapidly identify variants with improved properties. While numerous reviews focus on modification strategies for enhancing enzyme thermostability, there is a dearth of literature reviewing HTS methods specifically aimed at this objective. Herein, we present a comprehensive overview of various HTS methods utilized for modifying enzyme thermostability across different screening platforms. Additionally, we highlight significant recent examples that demonstrate the successful application of these methods. Furthermore, we address the technical challenges associated with HTS technologies used for screening thermostable enzyme variants and discuss valuable perspectives to promote further advancements in this field. This review serves as an authoritative reference source offering theoretical support for selecting appropriate screening strategies tailored to specific enzymes with the aim of improving their thermostability.
Collapse
Affiliation(s)
- Lanxue Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Pirrone GF, Munsell EV, Ferguson HM, Al-Sayah MA, Luthra SA, Makarov AA. Automated High-Throughput Matrix Assisted Laser Desorption Ionization Mass Spectrometry Methodology for Formulation Assessment of Polyethylene-Glycol-Conjugated Cytokine Proteins. J Pharm Sci 2023; 112:2778-2782. [PMID: 37478972 DOI: 10.1016/j.xphs.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Biological therapeutics are major contributors to the pharmaceutical pipeline and continue to grow in sales and scope. Additionally, the field's understanding of cancer biology has advanced such that biopharmaceuticals can harness the power of the immune system for oncology treatments. Several of these novel therapeutics are engineered versions of naturally occurring proteins designed to improve therapeutic properties including potency, target engagement and half-life extension. Cytokines, such as interferons and interleukins, are a broad class of signaling proteins which modulate the body's immune response; engineered cytokines have entered the clinic as promising new immuno-oncology therapies. While these therapies hold great promise, their additional structural complexity introduces analytical challenges, and traditional analytical platforms may be ill-suited to effectively assess product development risks. Further, the pharmaceutical industry relies on streamlining approaches for high-throughput experimentation to achieve speed and efficiency for the discovery and development of new modalities. These demands necessitate the use of state-of-the-art techniques to rapidly characterize these new modalities and guide process development and optimization. Matrix Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) is a rapid, sensitive and automatable technique amenable for high-throughput analysis of proteins. In this work, we have developed an automated MALDI-MS platform to prepare, acquire and analyze molecular degradation in engineered PEGylated cytokines formulation samples. This orthogonal technique integrated seamlessly with current developability risk assessment workflows, ultimately enabling selection of a final formulation strategy for clinical development.
Collapse
Affiliation(s)
- Gregory F Pirrone
- Merck & Co., Inc., Analytical Research & Development, 33 Avenue Louis Pasteur, Boston, MA, USA.
| | - Erik V Munsell
- Merck & Co., Inc., Discovery Pharmaceutical Sciences, 33 Avenue Louis Pasteur, Boston, MA, USA
| | - Heidi M Ferguson
- Merck & Co., Inc., Discovery Pharmaceutical Sciences, 33 Avenue Louis Pasteur, Boston, MA, USA
| | - Mohammad A Al-Sayah
- Merck & Co., Inc., Analytical Research & Development, 33 Avenue Louis Pasteur, Boston, MA, USA
| | - Suman A Luthra
- Merck & Co., Inc., Discovery Pharmaceutical Sciences, 33 Avenue Louis Pasteur, Boston, MA, USA
| | - Alexey A Makarov
- Merck & Co., Inc., Analytical Research & Development, 33 Avenue Louis Pasteur, Boston, MA, USA.
| |
Collapse
|
8
|
Mills BJ, Godamudunage MP, Ren S, Laha M. Predictive Nature of High-Throughput Assays in ADC Formulation Screening. J Pharm Sci 2023; 112:1821-1831. [PMID: 37037342 DOI: 10.1016/j.xphs.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/12/2023]
Abstract
Utilization of high-throughput biophysical screening techniques during early screening studies is warranted due to the limited amount of material and large number of samples. But the predictability of the data to longer-term storage stability is critical as the high-throughput methods assist in defining the design space for the longer-term studies. In this study, the biophysical properties of two ADCs in 16 formulation conditions were evaluated using high-throughput techniques. Conformational stability and colloidal stability were evaluated by determining Tm values, kD, B22, and Tagg. In addition, the samples were placed on stability and the extent of aggregate formation over the 8-week interval was determined. The rank order of the 16 different formulations in the high-throughput assays was compared to the rank order observed during the stability studies to assess the predictive capabilities of the screening methods. It was demonstrated that similar rank orders can be expected between high-throughput physical stability indicating assays such as Tagg and B22 and traditional aggregation by SEC data, whereas conformational stability read-outs (Tm) are less predictive. In addition, the high-throughput assays appropriately identified the poor performing formulation conditions, which is ultimately what is desired of screening assays.
Collapse
Affiliation(s)
- Brittney J Mills
- Biologics CMC Drug Product Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, IL 60064, United States.
| | - Malika P Godamudunage
- Biologics CMC Drug Product Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, IL 60064, United States
| | - Siyuan Ren
- Biologics CMC Drug Product Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, IL 60064, United States
| | - Malabika Laha
- Biologics CMC Drug Product Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, IL 60064, United States
| |
Collapse
|
9
|
Rojekar S, Pallapati AR, Gimenez-Roig J, Korkmaz F, Sultana F, Sant D, Haeck C, Macdonald A, Kim SM, Rosen CJ, Barak O, Meseck M, Caminis J, Lizneva D, Yuen T, Zaidi M. Development and Biophysical Characterization of a Humanized FSH-Blocking Monoclonal Antibody Therapeutic Formulated at an Ultra-High Concentration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540323. [PMID: 37214886 PMCID: PMC10197643 DOI: 10.1101/2023.05.11.540323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Highly concentrated antibody formulations are oftentimes required for subcutaneous, self-administered biologics. Here, we report the creation of a unique formulation for our first-in- class FSH-blocking humanized antibody, MS-Hu6, which we propose to move to the clinic for osteoporosis, obesity, and Alzheimer's disease. The studies were carried out using our Good Laboratory Practice (GLP) platform, compliant with the Code of Federal Regulations (Title 21, Part 58). We first used protein thermal shift, size exclusion chromatography, and dynamic light scattering to examine MS-Hu6 concentrations between 1 and 100 mg/mL. We found that thermal, monomeric, and colloidal stability of formulated MS-Hu6 was maintained at a concentration of 100 mg/mL. The addition of the antioxidant L-methionine and chelating agent disodium EDTA improved the formulation's long-term colloidal and thermal stability. Thermal stability was further confirmed by Nano differential scanning calorimetry (DSC). Physiochemical properties of formulated MS-Hu6, including viscosity, turbidity, and clarity, conformed with acceptable industry standards. That the structural integrity of MS-Hu6 in formulation was maintained was proven through Circular Dichroism (CD) and Fourier Transform Infrared (FTIR) spectroscopy. Three rapid freeze-thaw cycles at -80°C/25°C or -80°C/37°C further revealed excellent thermal and colloidal stability. Furthermore, formulated MS-Hu6, particularly its Fab domain, displayed thermal and monomeric storage stability for more than 90 days at 4°C and 25°C. Finally, the unfolding temperature (T m ) for formulated MS-Hu6 increased by >4.80°C upon binding to recombinant FSH, indicating highly specific ligand binding. Overall, we document the feasibility of developing a stable, manufacturable and transportable MS-Hu6 formulation at a ultra-high concentration at industry standards. The study should become a resource for developing biologic formulations in academic medical centers.
Collapse
|
10
|
Rembert KB, Zhang J, Lee YJ. Effects of Salts and Surface Charge on the Biophysical Stability of a Low pI Monoclonal Antibody. J Pharm Sci 2023; 112:947-953. [PMID: 36395898 DOI: 10.1016/j.xphs.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
The impact of five representative Hofmeister salts (NaCl, KCl, MgCl2, Na2SO4, and NaSCN) on the thermal stability and aggregation kinetics of a slightly acidic monoclonal antibody (mAb) were investigated under different pH conditions. The thermal stability of the mAb was assessed by measuring the lowest unfolding transition temperature, Tm, with differential scanning fluorimetry. MgCl2 and NaSCN significantly decreased Tm at all three charged states of the mAb, but to the greatest extent when the mAb surface charge was net positive. Non-native aggregation kinetics was monitored by measuring Rayleigh light scattering. When the mAb surface charge was net positive or net neutral, the nucleation rate increased non-monotonically with MgCl2 and NaSCN but decreased monotonically with NaCl, KCl, and Na2SO4. By contrast, when the mAb surface was negatively charged, there were only minor changes in the nucleation rate with all salts tested. Furthermore, there was less structural perturbation and slower aggregation rates when the mAb was net negatively charged than when it was net neutrally or positively charged. The observed salt effects on thermal unfolding are consistent with ion-specific mechanisms dominated by short-range amide backbone binding. On the other hand, the salt effects on nucleation rates appear to be influenced by both amide backbone binding and long-range electrostatic binding of ions to charged amino acid side chains.
Collapse
Affiliation(s)
- Kelvin B Rembert
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Jifeng Zhang
- Department of Drug Delivery and Device Development, Medimmune-AstraZeneca, Gaithersburg, MD 20878, United States.
| | - Young Jong Lee
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States.
| |
Collapse
|
11
|
Structural mechanism of Fab domain dissociation as a measure of interface stability. J Comput Aided Mol Des 2023; 37:201-215. [PMID: 36918473 PMCID: PMC10049950 DOI: 10.1007/s10822-023-00501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/23/2023] [Indexed: 03/16/2023]
Abstract
Therapeutic antibodies should not only recognize antigens specifically, but also need to be free from developability issues, such as poor stability. Thus, the mechanistic understanding and characterization of stability are critical determinants for rational antibody design. In this study, we use molecular dynamics simulations to investigate the melting process of 16 antigen binding fragments (Fabs). We describe the Fab dissociation mechanisms, showing a separation in the VH-VL and in the CH1-CL domains. We found that the depths of the minima in the free energy curve, corresponding to the bound states, correlate with the experimentally determined melting temperatures. Additionally, we provide a detailed structural description of the dissociation mechanism and identify key interactions in the CDR loops and in the CH1-CL interface that contribute to stabilization. The dissociation of the VH-VL or CH1-CL domains can be represented by conformational changes in the bend angles between the domains. Our findings elucidate the melting process of antigen binding fragments and highlight critical residues in both the variable and constant domains, which are also strongly germline dependent. Thus, our proposed mechanisms have broad implications in the development and design of new and more stable antigen binding fragments.
Collapse
|
12
|
Zhang W, Wang H, Feng N, Li Y, Gu J, Wang Z. Developability assessment at early-stage discovery to enable development of antibody-derived therapeutics. Antib Ther 2022; 6:13-29. [PMID: 36683767 PMCID: PMC9847343 DOI: 10.1093/abt/tbac029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Developability refers to the likelihood that an antibody candidate will become a manufacturable, safe and efficacious drug. Although the safety and efficacy of a drug candidate will be well considered by sponsors and regulatory agencies, developability in the narrow sense can be defined as the likelihood that an antibody candidate will go smoothly through the chemistry, manufacturing and control (CMC) process at a reasonable cost and within a reasonable timeline. Developability in this sense is the focus of this review. To lower the risk that an antibody candidate with poor developability will move to the CMC stage, the candidate's developability-related properties should be screened, assessed and optimized as early as possible. Assessment of developability at the early discovery stage should be performed in a rapid and high-throughput manner while consuming small amounts of testing materials. In addition to monoclonal antibodies, bispecific antibodies, multispecific antibodies and antibody-drug conjugates, as the derivatives of monoclonal antibodies, should also be assessed for developability. Moreover, we propose that the criterion of developability is relative: expected clinical indication, and the dosage and administration route of the antibody could affect this criterion. We also recommend a general screening process during the early discovery stage of antibody-derived therapeutics. With the advance of artificial intelligence-aided prediction of protein structures and features, computational tools can be used to predict, screen and optimize the developability of antibody candidates and greatly reduce the risk of moving a suboptimal candidate to the development stage.
Collapse
Affiliation(s)
- Weijie Zhang
- Biologicals Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Hao Wang
- Biologicals Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Nan Feng
- Biologicals Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Yifeng Li
- Technology and Process Development, WuXi Biologicals, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jijie Gu
- Biologicals Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Zhuozhi Wang
- To whom correspondence should be addressed. Biologics Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China, Phone number: +86-21-50518899
| |
Collapse
|
13
|
Stange C, Sánchez-Reyes G, Graalfs H, Frech C. Influence of ligand density variations on the two peak elution behavior of a monoclonal antibody in cation exchange chromatography. J Chromatogr A 2022; 1680:463410. [PMID: 35994780 DOI: 10.1016/j.chroma.2022.463410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Cation exchange chromatography, as part of the monoclonal antibody purification train, is known as a mild polishing technique. However, in the last couple of years, more and more publications have shown unusual elution behavior, resulting from e.g. on-column (reversible) unfolding and aggregation of the predominantly mAb molecules. The stability of the investigated protein seems to play a significant role in this phenomenon. We have used a glycosylated IgG1 antibody as a model protein and investigated several influencing factors, including pH value and ligand density variations of three prototype Fractogel® cation exchange resins. Ligand density, pH and salt concentration are the main contributing factors in the Donnan effect, i.e. distribution of ions, between resin pore volume and bulk volume. This leads to a significantly lower pH value the protein is subjected to during the on-column hold time and therefore influences the conformational stability of our protein. Nano-DSF and kinetic SEC measurements show that the protein is destabilized at low pH values, but also, that the binding to the CEX resin and the elution with increasing salt concentration is responsible for the resulting two-peak elution behavior and partially reversible unfolding and aggregation.
Collapse
Affiliation(s)
- Carolin Stange
- Institute for Biochemistry, University of Applied Sciences Mannheim, Paul-Wittsack-Straße 10, 68163 Mannheim, Germany
| | - Gabriela Sánchez-Reyes
- Institute for Biochemistry, University of Applied Sciences Mannheim, Paul-Wittsack-Straße 10, 68163 Mannheim, Germany
| | - Heiner Graalfs
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Christian Frech
- Institute for Biochemistry, University of Applied Sciences Mannheim, Paul-Wittsack-Straße 10, 68163 Mannheim, Germany.
| |
Collapse
|
14
|
Stolzke T, Brandenbusch C. Simplified choice of suitable excipients within biologics formulation design using protein-protein interaction- and water activity-maps. Eur J Pharm Biopharm 2022; 176:153-167. [DOI: 10.1016/j.ejpb.2022.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 01/17/2023]
|
15
|
Schmidt D, Hakeem Said I, Ohl N, Sharifii M, Cotrell P, Kuhnert N. Investigating the interaction between dietary polyphenols, the SARS CoV-2 spike protein and the ACE-2 receptor. Food Funct 2022; 13:8038-8046. [PMID: 35734946 DOI: 10.1039/d2fo00394e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has called for an urgent need for the identification of compounds able to control, prevent or slow down the global pandemic. Several dietary polyphenols were assayed against binding to the SARS CoV-2 S1 spike protein and the human ACE-2 receptor, the target of the SARS CoV-2 virus using nano differential scanning fluorimetry, suggesting interaction of dietary polyphenols with both proteins. Following this initial screening the two dietary polyphenols with the strongest affinity were evaluated in a second functional binding assay. The assay was based on the thermophoresis of a fluorescently labelled spike protein and the ACE-2 receptor in the presence of dietary concentrations of the polyphenol in question. It could be experimentally shown that 5-caffeoyl quinic acid and epicatechin reduce the binding constant between SARS CoV-2 spike protein of the alpha variant and the ACE-2 receptor by a factor of ten. The finding could as well be applied to black tea and a coffee beverage with dietary 5-CQA concentrations for the alpha variant Spike protein. Hence it can be speculated that a cup of coffee reduces binding of the virus to its human target, therefore reducing the likelihood of infection with SARS CoV-2, acting as a virus entry-inhibitor.
Collapse
Affiliation(s)
- Dorothea Schmidt
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campusring 8, 28759 Bremen, Germany.
| | - Inamullah Hakeem Said
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campusring 8, 28759 Bremen, Germany.
| | - Nicholas Ohl
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campusring 8, 28759 Bremen, Germany.
| | - Mobinasaddat Sharifii
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campusring 8, 28759 Bremen, Germany.
| | - Paula Cotrell
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campusring 8, 28759 Bremen, Germany.
| | - Nikolai Kuhnert
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campusring 8, 28759 Bremen, Germany.
| |
Collapse
|
16
|
Nie M, Liu Y, Huang X, Zhang Z, Zhao Q. Microtiter plate-based differential scanning fluorimetry: a high-throughput method for efficient formulation development. J Pharm Sci 2022; 111:2397-2403. [DOI: 10.1016/j.xphs.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
|
17
|
Discovery of compounds with viscosity-reducing effects on biopharmaceutical formulations with monoclonal antibodies. Comput Struct Biotechnol J 2022; 20:5420-5429. [PMID: 36212536 PMCID: PMC9529560 DOI: 10.1016/j.csbj.2022.09.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Computational screening yielded 44 new viscosity-reducing agents on two model mAbs. Dual excipients for viscosity reduction and solution buffering were discovered. Compounds with three or more charges reduce the viscosity of model mAb formulations. Filtering based on physicochemical properties can be applied to other mAb formulations.
For the development of concentrated monoclonal antibody formulations for subcutaneous administration, the main challenge is the high viscosity of the solutions. To compensate for this, viscosity reducing agents are commonly used as excipients. Here, we applied two computational chemistry approaches to discover new viscosity-reducing agents: fingerprint similarity searching, and physicochemical property filtering. In total, 94 compounds were selected and experimentally evaluated on two model monoclonal antibodies, which led to the discovery of 44 new viscosity-reducing agents. Analysis of the results showed that using a simple filter that selects only compounds with three or more charge groups is a good ‘rule of thumb’ for selecting potential viscosity-reducing agents for two model monoclonal antibody formulations.
Collapse
|
18
|
Johann F, Wöll S, Winzer M, Snell J, Valldorf B, Gieseler H. Miniaturized Forced Degradation of Therapeutic Proteins and ADCs by Agitation-Induced Aggregation Using Orbital Shaking of Microplates. J Pharm Sci 2021; 111:1401-1413. [PMID: 34563536 DOI: 10.1016/j.xphs.2021.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
Microplate-based formulation screening is a powerful approach to identify stabilizing excipients for therapeutic proteins while reducing material requirements. However, this approach is sometimes not representative of studies conducted in relevant container closures. The present study aimed to identify critical parameters for a microplate-based orbital shaking method to screen biotherapeutic formulations by agitation-induced aggregation. For this purpose, an in-depth methodological study was conducted using different shakers, microplates, and plate seals. Aggregation was monitored by size exclusion chromatography, turbidity, and backgrounded membrane imaging. Both shaker quality and liquid-seal contact had substantial impacts on aggregation during shaking and resulted in non-uniform sample treatment when parameters were not suitably selected. The well volume to fill volume ratio (Vwell/Vfill) was identified as an useful parameter for achieving comparable aggregation levels between different microplate formats. An optimized method (2400 rpm [ac 95 m/s2], Vfill 60-100 µL [Vwell/Vfill 6-3.6], 24 h, RT, heat-sealed) allowed for uniform sample treatment independent of surface tension and good agreement with vial shaking results. This study provides valuable guidance for miniaturization of shaking stress studies in biopharmaceutical drug development, facilitating method transfer and comparability between laboratories.
Collapse
Affiliation(s)
- Florian Johann
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Department of Pharmaceutics, Freeze Drying Focus Group (FDFG), Cauerstraße 4, 91058 Erlangen, Germany; Merck KGaA, Department of Pharmaceutical Technologies, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Steffen Wöll
- Merck KGaA, Department of Pharmaceutical Technologies, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Matthias Winzer
- Merck KGaA, Department of Pharmaceutical Technologies, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Jared Snell
- EMD Serono Research and Development Institute, Department of Pharmaceutical Technologies, 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Bernhard Valldorf
- Merck KGaA, Department of Pharmaceutical Technologies, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Henning Gieseler
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Department of Pharmaceutics, Freeze Drying Focus Group (FDFG), Cauerstraße 4, 91058 Erlangen, Germany; GILYOS GmbH, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany.
| |
Collapse
|
19
|
Starr CG, Makowski EK, Wu L, Berg B, Kingsbury JS, Gokarn YR, Tessier PM. Ultradilute Measurements of Self-Association for the Identification of Antibodies with Favorable High-Concentration Solution Properties. Mol Pharm 2021; 18:2744-2753. [PMID: 34105965 DOI: 10.1021/acs.molpharmaceut.1c00280] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is significant interest in formulating antibody therapeutics as concentrated liquid solutions, but early identification of developable antibodies with optimal manufacturability, stability, and delivery attributes remains challenging. Traditional methods of identifying developable mAbs with low self-association in common antibody formulations require relatively concentrated protein solutions (>1 mg/mL), and this single challenge has frustrated early-stage and large-scale identification of antibody candidates with drug-like colloidal properties. Here, we describe charge-stabilized self-interaction nanoparticle spectroscopy (CS-SINS), an affinity-capture nanoparticle assay that measures colloidal self-interactions at ultradilute antibody concentrations (0.01 mg/mL), and is predictive of antibody developability issues of high viscosity and opalescence that manifest at four orders of magnitude higher concentrations (>100 mg/mL). CS-SINS enables large-scale, high-throughput selection of developable antibodies during early discovery.
Collapse
Affiliation(s)
- Charles G Starr
- Biologics Development, Sanofi, Framingham, Massachusetts 01701, United States
| | | | | | | | | | - Yatin R Gokarn
- Biologics Development, Sanofi, Framingham, Massachusetts 01701, United States
| | | |
Collapse
|
20
|
Atsavapranee B, Stark CD, Sunden F, Thompson S, Fordyce PM. Fundamentals to function: Quantitative and scalable approaches for measuring protein stability. Cell Syst 2021; 12:547-560. [PMID: 34139165 DOI: 10.1016/j.cels.2021.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/16/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Folding a linear chain of amino acids into a three-dimensional protein is a complex physical process that ultimately confers an impressive range of diverse functions. Although recent advances have driven significant progress in predicting three-dimensional protein structures from sequence, proteins are not static molecules. Rather, they exist as complex conformational ensembles defined by energy landscapes spanning the space of sequence and conditions. Quantitatively mapping the physical parameters that dictate these landscapes and protein stability is therefore critical to develop models that are capable of predicting how mutations alter function of proteins in disease and informing the design of proteins with desired functions. Here, we review the approaches that are used to quantify protein stability at a variety of scales, from returning multiple thermodynamic and kinetic measurements for a single protein sequence to yielding indirect insights into folding across a vast sequence space. The physical parameters derived from these approaches will provide a foundation for models that extend beyond the structural prediction to capture the complexity of conformational ensembles and, ultimately, their function.
Collapse
Affiliation(s)
| | - Catherine D Stark
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA; ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Fanny Sunden
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Samuel Thompson
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Polly M Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94110, USA.
| |
Collapse
|
21
|
Chi B, De Oliveira G, Gallagher T, Mitchell L, Knightley L, Gonzalez CC, Russell S, Germaschewski V, Pearce C, Sellick CA. Pragmatic mAb lead molecule engineering from a developability perspective. Biotechnol Bioeng 2021; 118:3733-3743. [PMID: 33913507 DOI: 10.1002/bit.27802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/26/2021] [Accepted: 04/15/2021] [Indexed: 01/08/2023]
Abstract
As the number of antibody drugs being approved and marketed increases, our knowledge of what makes potential drug candidates a successful product has increased tremendously. One of the critical parameters that have become clear in the field is the importance of mAb "developability." Efforts are being increasingly focused on simultaneously selecting molecules that exhibit both desirable biological potencies and manufacturability attributes. In the current study mutations to improve the developability profile of a problematic antibody that inconsistently precipitates in a batch scale-dependent fashion using a standard platform purification process are described. Initial bioinformatic analysis showed the molecule has no obvious sequence or structural liabilities that might lead it to precipitate. Subsequent analysis of the molecule revealed the presence of two unusual positively charged mutations on the light chain at the interface of VH and VL domains, which were hypothesized to be the primary contributor to molecule precipitation during process development. To investigate this hypothesis, straightforward reversion to the germline of these residues was carried out. The resulting mutants have improved expression titers and recovered stability within a forced precipitation assay, without any change to biological activity. Given the time pressures of drug development in industry, process optimization of the lead molecule was carried out in parallel to the "retrospective" mutagenesis approach. Bespoke process optimization for large-scale manufacturing was successful. However, we propose that such context-dependent sequence liabilities should be included in the arsenal of in silico developability screening early in development; particularly since this specific issue can be efficiently mitigated without the requirement for extensive screening of lead molecule variants.
Collapse
Affiliation(s)
| | | | - Tom Gallagher
- Kymab Ltd., Cambridge, UK.,F-star Therapeutics Ltd., Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Dauer K, Kamm W, Wagner KG, Pfeiffer-Marek S. High-Throughput Screening for Colloidal Stability of Peptide Formulations Using Dynamic and Static Light Scattering. Mol Pharm 2021; 18:1939-1955. [PMID: 33789055 DOI: 10.1021/acs.molpharmaceut.0c01028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Selection of an appropriate formulation to stabilize therapeutic proteins against aggregation is one of the most challenging tasks in early-stage drug product development. The amount of aggregates is more difficult to quantify in the case of peptides due to their small molecular size. Here, we investigated the suitability of diffusion self-interaction parameters (kD) and osmotic second virial coefficients (B22) for high-throughput (HT) screening of peptide formulations regarding their aggregation risk. These parameters were compared to the effect of thermal stress on colloidal stability. The formulation matrix comprised six buffering systems at two selected pH values, four tonicity agents, and a common preservative. The results revealed that electrostatic interactions are the main driver to control colloidal stability. Preferred formulations consisted of acetate and succinate buffer at pH 4.5 combined with glycerol or mannitol and optional m-cresol. kD proved to be a suitable surrogate for B22 as an indicator of high colloidal stability in the case of peptides as was previously described for globular proteins and antibodies. Formulation assessment solely based on kD obtained by HT methods offers important insights into the optimization of colloidal stability during the early development of peptide-based liquid formulations and can be performed with a limited amount of peptide (∼360 mg).
Collapse
Affiliation(s)
- Katharina Dauer
- Department of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.,Pharmaceutical Development Platform, Tides Drug Product Pre-Development Sciences, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Walter Kamm
- Pharmaceutical Development Platform, Tides Drug Product Pre-Development Sciences, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Karl Gerhard Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Stefania Pfeiffer-Marek
- Pharmaceutical Development Platform, Tides Drug Product Pre-Development Sciences, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
23
|
Kellner R, Malempré R, Vandenameele J, Brans A, Hennen AF, Rochus N, Di Paolo A, Vandevenne M, Matagne A. Protein formulation through automated screening of pH and buffer conditions, using the Robotein® high throughput facility. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:473-490. [PMID: 33611612 DOI: 10.1007/s00249-021-01510-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 12/30/2022]
Abstract
Among various factors, the direct environment (e.g. pH, buffer components, salts, additives, etc.…) is known to have a crucial effect on both the stability and activity of proteins. In particular, proper buffer and pH conditions can improve their stability and function significantly during purification, storage and handling, which is highly relevant for both academic and industrial applications. It can also promote data reproducibility, support the interpretation of experimental results and, finally, contribute to our general understanding of the biophysical properties of proteins. In this study, we have developed a high throughput screen of 158 different buffers/pH conditions in which we evaluated: (i) the protein stability, using differential scanning fluorimetry and (ii) the protein function, using either enzymatic assays or binding activity measurements, both in an automated manner. The modular setup of the screen allows for easy implementation of other characterization methods and parameters, as well as additional test conditions. The buffer/pH screen was validated with five different proteins used as models, i.e. two active-site serine β-lactamases, two metallo-β-lactamases (one of which is only active as a tetramer) and a single-domain dromedary antibody fragment (VHH or nanobody). The formulation screen allowed automated and fast determination of optimum buffer and pH profiles for the tested proteins. Besides the determination of the optimum buffer and pH, the collection of pH profiles of many different proteins may also allow to delineate general concepts to understand and predict the relationship between pH and protein properties.
Collapse
Affiliation(s)
- Ruth Kellner
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | - Romain Malempré
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | - Julie Vandenameele
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | - Alain Brans
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | | | - Noémie Rochus
- Eurogentec S.A., Rue Bois Saint-Jean, 5, 4102, Seraing, Belgium
| | - Alexandre Di Paolo
- Eurogentec S.A., Rue Bois Saint-Jean, 5, 4102, Seraing, Belgium.,Xpress Biologics SA, Accessia Pharma Site, Avenue du Parc Industriel, 89, 4041, Milmort, Belgium
| | - Marylène Vandevenne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | - André Matagne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium.
| |
Collapse
|
24
|
Makowski EK, Wu L, Desai AA, Tessier PM. Highly sensitive detection of antibody nonspecific interactions using flow cytometry. MAbs 2021; 13:1951426. [PMID: 34313552 PMCID: PMC8317921 DOI: 10.1080/19420862.2021.1951426] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 11/12/2022] Open
Abstract
The rapidly evolving nature of antibody drug development has resulted in technologies that generate vast numbers (hundreds to thousands) of lead antibody candidates during early discovery. These candidates must be rapidly pared down to identify the most drug-like candidates for in-depth analysis of their safety and efficacy, which can only be performed on a limited number of antibodies due to time and resource requirements. One key biophysical property of successful antibody therapeutics is high specificity, defined as low levels of nonspecific binding or polyspecificity. Although there has been some progress in developing assays for detecting antibody polyspecificity, most of these assays are limited by poor sensitivity or assay formats that require proprietary antibody surface display methods, and some of these assays use complex and poorly defined polyspecificity reagents. Here we report the PolySpecificity Particle (PSP) assay, a sensitive flow cytometry assay for evaluating antibody nonspecific interactions that overcomes previous limitations and can be used for evaluating diverse types of IgGs, multispecific antibodies and Fc-fusion proteins. Our approach uses micron-sized magnetic beads coated with Protein A to capture antibodies at extremely dilute concentrations (<0.02 mg/mL). Flow cytometry analysis of polyspecificity reagent binding to these conjugates results in sensitive detection of differences in nonspecific interactions for clinical-stage antibodies. Our PSP assay strongly discriminates between antibodies with different levels of polyspecificity using previously reported polyspecificity reagents that are either well-defined proteins or highly complex protein mixtures. Moreover, we also find that a unique reagent, namely ovalbumin, results in the best assay sensitivity and specificity. Importantly, our assay is much more sensitive than standard assays such as ELISAs. We expect that our simple, sensitive, and high-throughput PSP assay will accelerate the development of safe and effective antibody therapeutics.
Collapse
Affiliation(s)
| | - Lina Wu
- Department of Chemical Engineering, University of Michigan
| | - Alec A. Desai
- Department of Chemical Engineering, University of Michigan
| | - Peter M. Tessier
- Department of Pharmaceutical Sciences, University of Michigan
- Department of Chemical Engineering, University of Michigan
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, USA
| |
Collapse
|
25
|
Rose HB, Wilber MM, Bommarius AS. Evaluation of ionic equilibria in mixed-buffer isothermal titration calorimetry and continuously stirred tank reactors. Int J Pharm 2020; 594:120170. [PMID: 33309829 DOI: 10.1016/j.ijpharm.2020.120170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/18/2020] [Accepted: 12/07/2020] [Indexed: 12/01/2022]
Abstract
Determination of an equilibrium pH value in complex aqueous solution and deconvolution of this equilibrium to evaluate phenomena related to mixing, dilution, or progress of reaction is increasingly important in areas ranging from water quality to pharmaceutical formulations and manufacturing. Linearization of pH problems by simple algebraic substitution enables equilibria within complex buffered aqueous solutions to be modeled as an eigenvalue problem. This formulation approach makes rigorous determination of equilibrium pH values and reactor dynamics more accessible than with previous calculation methods, even when activity coefficients and non-ideality are considered. This work demonstrates how such calculations can enable detailed modeling of enthalpic changes in an isothermal titration calorimeter. In support of this work, the acid dissociation constants for three furancarboxylic acids (2-furancarboxylic acid, FA; 5-formyl-2-furancarboxylic acid, FFA; and 2,5-furandicarboxylic acid, FDCA), two of them novel, were determined and compared with multi-wavelength ultraviolet-visible spectrophotometry. The thermodynamic pKa values were determined to be 3.1 for FA, 2.2 for FFA, and 2.1 and 3.4 for the first and second ionization steps of FDCA, respectively.
Collapse
Affiliation(s)
- Harrison B Rose
- School of Chemical & Biomolecular Engineering, Krone Engineered Biosystems Building, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Madison M Wilber
- School of Chemical & Biomolecular Engineering, Krone Engineered Biosystems Building, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Andreas S Bommarius
- School of Chemical & Biomolecular Engineering, Krone Engineered Biosystems Building, Georgia Institute of Technology, Atlanta, GA 30332, United States; School of Chemistry & Biochemistry, Krone Engineered Biosystems Building, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|
26
|
Svilenov HL, Winter G. Formulations That Suppress Aggregation During Long-Term Storage of a Bispecific Antibody are Characterized by High Refoldability and Colloidal Stability. J Pharm Sci 2020; 109:2048-2058. [DOI: 10.1016/j.xphs.2020.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/06/2020] [Accepted: 03/12/2020] [Indexed: 11/30/2022]
|
27
|
Song Y, Yang Y, Lin X, Li X, Zhang X, Ma G, Su Z, Zhang S. In-situ and sensitive stability study of emulsion and aluminum adjuvanted inactivated foot-and-mouth disease virus vaccine by differential scanning fluorimetry analysis. Vaccine 2020; 38:2904-2912. [DOI: 10.1016/j.vaccine.2020.02.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/20/2022]
|
28
|
Wen J, Lord H, Knutson N, Wikström M. Nano differential scanning fluorimetry for comparability studies of therapeutic proteins. Anal Biochem 2020; 593:113581. [PMID: 31935356 DOI: 10.1016/j.ab.2020.113581] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 01/26/2023]
Abstract
Differential scanning calorimetry (DSC) has been extensively used in the biopharmaceutical industry to characterize protein thermal stability and domain folding integrity. Recently, nano differential scanning fluorimetry (nanoDSF) has emerged as a powerful tool for thermal stability analysis and studies of protein domain unfolding. Due to increased interests in the qualification of characterization methods, we are in this study presenting the qualification results for the comparability studies of thermal stability analysis using nanoDSF. The results show that nanoDSF is able to detect thermal transition signals for mAbs, BiTE® molecules, and cytokines at a wide concentration range with high precision, clearly indicating that nanoDSF is suitable for characterization including comparability studies of therapeutic proteins. Compared to the current recognized industry standard DSC, the nanoDSF method enables thermal stability analysis over a much wider concentration range, consumes considerably less materials, and provides significantly higher throughput.
Collapse
Affiliation(s)
- Jie Wen
- Higher Order Structure, Attribute Sciences, Thousand Oaks, CA, 91320, United States.
| | - Harrison Lord
- Higher Order Structure, Attribute Sciences, Thousand Oaks, CA, 91320, United States
| | - Nicholas Knutson
- Higher Order Structure, Attribute Sciences, Thousand Oaks, CA, 91320, United States
| | - Mats Wikström
- Higher Order Structure, Attribute Sciences, Thousand Oaks, CA, 91320, United States.
| |
Collapse
|
29
|
Orthogonal Techniques to Study the Effect of pH, Sucrose, and Arginine Salts on Monoclonal Antibody Physical Stability and Aggregation During Long-Term Storage. J Pharm Sci 2020; 109:584-594. [DOI: 10.1016/j.xphs.2019.10.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/14/2019] [Accepted: 10/31/2019] [Indexed: 11/18/2022]
|
30
|
Elgert C, Rühle A, Sandner P, Behrends S. Thermal shift assay: Strengths and weaknesses of the method to investigate the ligand-induced thermostabilization of soluble guanylyl cyclase. J Pharm Biomed Anal 2019; 181:113065. [PMID: 32032919 DOI: 10.1016/j.jpba.2019.113065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 02/01/2023]
Abstract
Thermal shift assay is a fluorescence dye based biochemical method to determine the melting point of a protein. It can be used to investigate the ligand-induced stabilization of proteins and helps to increase the likelihood of crystallization in biological samples. Dimeric proteins like soluble guanylyl cyclase (sGC) have specific structural and functional properties which may pose a challenge in thermal shift measurements. In this paper, thermal shift assay was used to examine ligand-induced thermostabilization of the dimeric heme-containing protein soluble guanylyl cyclase. Adjustment of the parameters buffer solution, pH, protein / dye ratio and protein amount per well yielded a one-phase melting curve of sGC with a sharp transition and high reproducibility. We found that thermal shift measurement is not affected by heme state or heme content of the enzyme preparation. We used the method to investigate the thermostabilization of sGC induced by the heme-mimetic activator drugs cinaciguat, BAY 60-2770 and BR 11257 in combination with non-hydrolyzable nucleotides. Measurements with the dicarboxylic drugs cinaciguat and BAY 60-2770 yielded steep melting curves with high amplitudes. In contrast, in the presence of the monocarboxylic sGC activator BR 11257, melting curves appear flattened in the dye-based measurements. In the present paper, we show that activity-based thermostability measurements are superior to dye-based measurements in detecting the thermostabilizing influence of sGC activator drugs.
Collapse
Affiliation(s)
- Christin Elgert
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| | - Anne Rühle
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| | | | - Sönke Behrends
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| |
Collapse
|
31
|
Biophysical Methods for Characterization of Antibody-Drug Conjugates. Methods Mol Biol 2019. [PMID: 31643067 DOI: 10.1007/978-1-4939-9929-3_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Antibody-drug conjugates (ADC) are made up of three components: (1) a mAb specific to cells of choice, (2) a small molecule with desired end goal, and (3) a linker to covalently link drug molecule to the antibody. Bringing together the mAb, drug molecule, and the linker results in the formation of an immunoconjugate designed to selectively deliver the drug molecule to a cell of interest. Synergic effects of the mAb and drug molecule lead to destroying the target tumor cells while leaving the normal cells unharmed. However, the development of ADCs is associated with challenges due to the heterogeneity of the ADC molecules created from the conjugation process. Addition of the linker and drug moieties during processing as well as the hydrophobicity of the drug itself can lead to structural changes that may affect the stability and functional profile of the conjugated molecule. Furthermore, linkers site of attachment plays a major role in determining the conformational and colloidal properties of the ADCs. In this chapter, several characterization methods are introduced to determine the biophysical characteristics of the ADC. Protocols, data analysis as well as notes for circular dichroism, intrinsic fluorescence, ANS fluorescence, differential scanning calorimetry, and dynamic scanning fluorimetry are outlined in detail.
Collapse
|
32
|
Gottlieb L, Marmorstein R. Biochemical and structural analysis of N-terminal acetyltransferases. Methods Enzymol 2019; 626:271-299. [PMID: 31606079 DOI: 10.1016/bs.mie.2019.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
N-terminal acetylation is a co- and post-translational modification catalyzed by the conserved N-terminal acetyltransferase (NAT) family of enzymes. A majority of the human proteome is modified by the human NATs (NatA-F and H), which are minimally composed of a catalytic subunit and as many as two auxiliary subunits. Together, NATs specifically regulate many cellular functions by influencing protein activities such as their degradation, membrane targeting, and protein-protein interactions. This chapter will describe methods developed for their preparation, and their biochemical and structural characterization. This will include methodologies for expression and purification of recombinant NAT protein, kinetic assays, biochemical and biophysical assays, and strategies for structural studies.
Collapse
Affiliation(s)
- Leah Gottlieb
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ronen Marmorstein
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
33
|
Application of interpretable artificial neural networks to early monoclonal antibodies development. Eur J Pharm Biopharm 2019; 141:81-89. [DOI: 10.1016/j.ejpb.2019.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 11/20/2022]
|
34
|
Differential Scanning Calorimetry to Quantify Heat-Induced Aggregation in Concentrated Protein Solutions. Methods Mol Biol 2019; 2039:117-129. [PMID: 31342423 DOI: 10.1007/978-1-4939-9678-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Differential scanning calorimetry (DSC) is an important technique to measure the thermodynamics of protein unfolding (or folding). Information including the temperature for the onset of unfolding, the melt transition temperature (Tm), enthalpy of unfolding (ΔH), and refolding index (RI) are useful for evaluating the heat stability of proteins for a range of biochemical, structural biology, industrial, and pharmaceutical applications. We describe a procedure for careful sample preparation of proteins for DSC measurements and data analysis to determine a range of thermodynamic parameters. In particular, we highlight a measure of protein refolding following complete thermal denaturation (RI), which quantifies the proportion of protein lost to irreversible aggregation after thermal denaturation.
Collapse
|
35
|
Framework Mutations of the 10-1074 bnAb Increase Conformational Stability, Manufacturability, and Stability While Preserving Full Neutralization Activity. J Pharm Sci 2019; 109:233-246. [PMID: 31348937 PMCID: PMC6941225 DOI: 10.1016/j.xphs.2019.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/08/2019] [Accepted: 07/17/2019] [Indexed: 01/06/2023]
Abstract
The broadly neutralizing anti-HIV antibody, 10-1074, is a highly somatically hypermutated IgG1 being developed for prophylaxis in sub-Saharan Africa. A series of algorithms were applied to identify potentially destabilizing residues in the framework of the Fv region. Of 17 residues defined, a variant was identified encompassing 1 light and 3 heavy chain residues, with significantly increased conformational stability while maintaining full neutralization activity. Central to the stabilization was the replacement of the heavy chain residue T108 with R108 at the base of the CDR3 loop which allowed for the formation of a nascent salt bridge with heavy chain residue D137. Three additional mutations were necessary to confer increased conformational stability as evidenced by differential scanning fluorimetry and isothermal chemical unfolding. In addition, we observed increased stability during low pH incubation in which 40% of the parental monomer aggregated while the combinatorial variant showed no increase in aggregation. Incubation of the variant at 100 mg/mL for 6 weeks at 40°C showed a 9-fold decrease in subvisible particles ≥2 μm relative to the parental molecule. Stability-based designs have also translated to improved pharmacokinetics. Together, these data show that increasing conformational stability of the Fab can have profound effects on the manufacturability and long-term stability of a monoclonal antibody.
Collapse
|
36
|
Wang W, Ohtake S. Science and art of protein formulation development. Int J Pharm 2019; 568:118505. [PMID: 31306712 DOI: 10.1016/j.ijpharm.2019.118505] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023]
Abstract
Protein pharmaceuticals have become a significant class of marketed drug products and are expected to grow steadily over the next decade. Development of a commercial protein product is, however, a rather complex process. A critical step in this process is formulation development, enabling the final product configuration. A number of challenges still exist in the formulation development process. This review is intended to discuss these challenges, to illustrate the basic formulation development processes, and to compare the options and strategies in practical formulation development.
Collapse
Affiliation(s)
- Wei Wang
- Biological Development, Bayer USA, LLC, 800 Dwight Way, Berkeley, CA 94710, United States.
| | - Satoshi Ohtake
- Pharmaceutical Research and Development, Pfizer Biotherapeutics Pharmaceutical Sciences, Chesterfield, MO 63017, United States
| |
Collapse
|
37
|
Manikwar P, Mulagapati SHR, Kasturirangan S, Moez K, Rainey GJ, Lobo B. Characterization of a Novel Bispecific Antibody With Improved Conformational and Chemical Stability. J Pharm Sci 2019; 109:220-232. [PMID: 31288034 DOI: 10.1016/j.xphs.2019.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/02/2019] [Accepted: 06/18/2019] [Indexed: 02/08/2023]
Abstract
Bispecific antibodies containing single-chain variable fragment (scFv) appended to immunoglobulins G offer unique development challenges. Here, we describe the stability of a novel bispecific format, BiS5, where the scFv is tethered to the CH3 domain. BiS5 showed an improved conformational and chemical stability compared with that of BiS4 in which the scFv is appended in the hinge region between the Fab and Fc. By switching the location of the scFv from hinge region to the CH3, there was an improved stabilization of CH2 and scFv domains. Interestingly, no noticeable impact was observed on the conformational stability of CH3 and Fab domains. BiS4 and BiS5 showed different aggregation and fragmentation rates under accelerated temperature stress conditions. BiS4 showed higher fragmentation rates compared with BiS5 likely owing to fragmentation in the linker region on either side of the scFv while BiS5 is more resistant toward fragmentation owing to tethering of scFv to the CH3 domain at its N and C terminus. In conclusion, the location of scFv affects both aggregation and fragmentation kinetics. These insights into the molecular structure and correlations with their physical and chemical stability will help formulation development of these novel bispecific antibodies.
Collapse
Affiliation(s)
- Prakash Manikwar
- Dosage Form Design & Development, AstraZeneca, Gaithersburg, Maryland 20878.
| | | | - Srinath Kasturirangan
- Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, Maryland 20878
| | - Khashayar Moez
- Dosage Form Design & Development, AstraZeneca, Gaithersburg, Maryland 20878
| | - Godfrey Jonah Rainey
- Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, Maryland 20878
| | - Brian Lobo
- Dosage Form Design & Development, AstraZeneca, Gaithersburg, Maryland 20878
| |
Collapse
|
38
|
The effect of new compounds in stabilizing downstream monoclonal antibody (mAb) process intermediates. Int J Pharm 2019; 565:162-173. [PMID: 31054877 DOI: 10.1016/j.ijpharm.2019.04.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 11/23/2022]
Abstract
Determining the stability of downstream process (DSP) intermediates is an extremely important parameter used to maintain product quality attributes within their acceptance ranges. The IgG4 monoclonal antibody studied (mAb1) showed aggregation under acidic conditions, inhibiting the use of low pH treatment to inactivate endogenous retroviruses, and poor virus filtration performance. Both manufacturing steps are included in mAb DSP for viral clearance. The impact of several new compounds on the aggregation and stabilization of mAb1 in process intermediate pools encountered during these critical DSP steps was investigated. Results showed that, in the presence of a protein stabilizer at pH 3.2, 27% less aggregation was observed compared to controls, during the low pH treatment for viral inactivation. The impact of a novel protein stabilizer on virus filter throughput during mAb1 filtration was compared to L-arginine using an innovative high-throughput automation technique. Compared to control experiments without additives, conditions were found where a 70% increase in filter volumetric throughput was achieved in the presence of the novel stabilizer, and a 56% decrease in volumetric throughput observed with L-arginine. These findings present the possibility of using these novel compounds to stabilize proteins during DSP and permitting the use of platform DSP elements such as low pH treatment and high-throughput virus filtration to challenging and unstable proteins.
Collapse
|
39
|
Falconer RJ. Advances in liquid formulations of parenteral therapeutic proteins. Biotechnol Adv 2019; 37:107412. [PMID: 31254660 DOI: 10.1016/j.biotechadv.2019.06.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/25/2019] [Accepted: 06/24/2019] [Indexed: 01/01/2023]
Abstract
Liquid formulation of therapeutic proteins is a maturing technology. Demand for products that are easy to use in the clinic or that are amenable to self-administration make a ready to use liquid formulation desirable. Most modern liquid formulations have a simple composition; comprising a buffer, a tonicity modifier, a surfactant, sometimes a stabiliser, the therapeutic protein and water. Recent formulations of monoclonal antibodies often use histidine or acetate as the buffer, sucrose or trehalose as the tonicity modifier and polysorbate 20 or 80 as the surfactant with a pH of 5.7 +/- 0.4. The mechanisms for the behaviour of excipients is still debated by academics so formulation design is still a black art. Fortunately, a statistical approach like design of experiment is suitable for formulation development and has been successful when combined with accelerated stability experimentation. The development of prefilled syringes and pens has added low viscosity and shear resistance to the quality attributes for a successful formulation. To achieve patient compliance for self-administration, formulations that cause minimal pain and tissue damage is also desirable.
Collapse
Affiliation(s)
- Robert J Falconer
- Department of Chemical Engineering & Advanced Materials, University of Adelaide, South Australia 5005, Australia.
| |
Collapse
|
40
|
Augustijn D, Mahapatra S, Streicher W, Svilenov H, Kulakova A, Pohl C, Rinnan Å. Novel non-linear curve fitting to resolve protein unfolding transitions in intrinsic fluorescence differential scanning fluorimetry. Eur J Pharm Biopharm 2019; 142:506-517. [PMID: 31175923 DOI: 10.1016/j.ejpb.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 01/02/2023]
Abstract
In biotherapeutic protein research, an estimation of the studied protein's thermal stability is one of the important steps that determine developability as a function of solvent conditions. Differential Scanning Fluorimetry (DSF) can be applied to measure thermal stability. Label-free DSF measures amino acid fluorescence as a function of temperature, where conformational changes induce observable peak deformation, yielding apparent melting temperatures. The estimation of the stability parameters can be hindered in the case of multidomain, multimeric or aggregating proteins when multiple transitions partially coincide. These overlapping protein unfolding transitions are hard to evaluate by the conventional methodology, as peak maxima are shifted by convolution. We show how non-linear curve fitting of intrinsic fluorescence DSF can deconvolute highly overlapping transitions in formulation screening in a semi-automated process. The proposed methodology relies on synchronous, constrained fits of the fluorescence intensity, ratio and their derivatives, by combining linear baselines with generalized logistic transition functions. The proposed algorithm is applied to data from three proteins; a single transition, a double separated transition and a double overlapping transition. Extracted thermal stability parameters; apparent melting temperatures Tm,1, Tm,2 and melting onset temperature Tonset are obtained and compared with reference software analysis. The fits show R2 = 0.94 for single and R2 = 0.88 for separated transitions. Obtaining values and trends for Tonset in a well-described and automated way, will aid protein scientist to better evaluate the thermal stability of proteins.
Collapse
Affiliation(s)
- Dillen Augustijn
- Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark.
| | - Sujata Mahapatra
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Denmark; Department of Chemistry, Technical University of Denmark, 2800 Lyngby, Denmark
| | | | - Hristo Svilenov
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Munich D-81377, Germany
| | - Alina Kulakova
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Denmark; Department of Chemistry, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Christin Pohl
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Denmark; Department of Chemistry, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Åsmund Rinnan
- Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| |
Collapse
|
41
|
Kim DY, Kandalaft H, Hussack G, Raphael S, Ding W, Kelly JF, Henry KA, Tanha J. Evaluation of a noncanonical Cys40-Cys55 disulfide linkage for stabilization of single-domain antibodies. Protein Sci 2019; 28:881-888. [PMID: 30803088 DOI: 10.1002/pro.3595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/01/2019] [Accepted: 02/21/2019] [Indexed: 12/27/2022]
Abstract
Incorporation of noncanonical disulfide linkages into single-domain antibodies (sdAbs) has been shown to enhance thermostability and other properties. Here, we evaluated the effects of introducing a novel disulfide linkage formed between Cys residues at IMGT positions 40 and 55 on the melting temperatures (T m s), reversibility of thermal unfolding, solubility, and antigen-binding affinities of three types of sdAbs (VH H, VH , and VL domains). The Cys40-Cys55 disulfide linkage was tolerated by 9/9 VH Hs, 12/12 VH s, and 2/11 VL s tested and its formation was confirmed by mass spectrometry. Using circular dichroism, we found that the Cys40-Cys55 disulfide linkage increased sdAb T m by an average of 10.0°C (range: 0-21.8°C). However, enhanced thermostability came at the cost of a partial loss of refolding ability upon thermal denaturation as well as, for some sdAbs, significantly decreased solubility and antigen-binding affinity. Thus, Cys40/Cys55 can be added to the panel of known locations for introducing stabilizing noncanonical disulfide linkages into antibody variable domains, although its effects should be tested empirically for individual sdAbs.
Collapse
Affiliation(s)
- Dae Young Kim
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - Hiba Kandalaft
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - Shalini Raphael
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - Wen Ding
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - John F Kelly
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - Jamshid Tanha
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
42
|
Xu Y, Wang D, Mason B, Rossomando T, Li N, Liu D, Cheung JK, Xu W, Raghava S, Katiyar A, Nowak C, Xiang T, Dong DD, Sun J, Beck A, Liu H. Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs 2018; 11:239-264. [PMID: 30543482 DOI: 10.1080/19420862.2018.1553476] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing attention has been paid to developability assessment with the understanding that thorough evaluation of monoclonal antibody lead candidates at an early stage can avoid delays during late-stage development. The concept of developability is based on the knowledge gained from the successful development of approximately 80 marketed antibody and Fc-fusion protein drug products and from the lessons learned from many failed development programs over the last three decades. Here, we reviewed antibody quality attributes that are critical to development and traditional and state-of-the-art analytical methods to monitor those attributes. Based on our collective experiences, a practical workflow is proposed as a best practice for developability assessment including in silico evaluation, extended characterization and forced degradation using appropriate analytical methods that allow characterization with limited material consumption and fast turnaround time.
Collapse
Affiliation(s)
- Yingda Xu
- a Protein Analytics , Adimab , Lebanon , NH , USA
| | - Dongdong Wang
- b Analytical Department , Bioanalytix, Inc ., Cambridge , MA , USA
| | - Bruce Mason
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tony Rossomando
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Ning Li
- d Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Dingjiang Liu
- e Formulation Development , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Jason K Cheung
- f Pharmaceutical Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Wei Xu
- g Analytical Method Development , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Smita Raghava
- h Sterile Formulation Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Amit Katiyar
- i Analytical Development , Bristol-Myers Squibb , Pennington , NJ , USA
| | - Christine Nowak
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tao Xiang
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Diane D Dong
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Joanne Sun
- k Product development , Innovent Biologics , Suzhou Industrial Park , China
| | - Alain Beck
- l Analytical chemistry , NBEs, Center d'immunologie Pierre Fabre , St Julien-en-Genevois Cedex , France
| | - Hongcheng Liu
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| |
Collapse
|
43
|
Svilenov H, Gentiluomo L, Friess W, Roessner D, Winter G. A New Approach to Study the Physical Stability of Monoclonal Antibody Formulations—Dilution From a Denaturant. J Pharm Sci 2018; 107:3007-3013. [DOI: 10.1016/j.xphs.2018.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/25/2018] [Accepted: 08/07/2018] [Indexed: 11/30/2022]
|
44
|
Shan L, Mody N, Sormani P, Rosenthal KL, Damschroder MM, Esfandiary R. Developability Assessment of Engineered Monoclonal Antibody Variants with a Complex Self-Association Behavior Using Complementary Analytical and in Silico Tools. Mol Pharm 2018; 15:5697-5710. [DOI: 10.1021/acs.molpharmaceut.8b00867] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | | | - Pietro Sormani
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | | | | | | |
Collapse
|
45
|
Sviben D, Bertoša B, Hloušek-Kasun A, Forcic D, Halassy B, Brgles M. Investigation of the thermal shift assay and its power to predict protein and virus stabilizing conditions. J Pharm Biomed Anal 2018; 161:73-82. [DOI: 10.1016/j.jpba.2018.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 12/21/2022]
|
46
|
Buffer exchange path influences the stability and viscosity upon storage of a high concentration protein. Eur J Pharm Biopharm 2018; 131:60-69. [DOI: 10.1016/j.ejpb.2018.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2022]
|
47
|
An Evaluation of the Potential of NMR Spectroscopy and Computational Modelling Methods to Inform Biopharmaceutical Formulations. Pharmaceutics 2018; 10:pharmaceutics10040165. [PMID: 30248922 PMCID: PMC6320905 DOI: 10.3390/pharmaceutics10040165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022] Open
Abstract
Protein-based therapeutics are considered to be one of the most important classes of pharmaceuticals on the market. The growing need to prolong stability of high protein concentrations in liquid form has proven to be challenging. Therefore, significant effort is being made to design formulations which can enable the storage of these highly concentrated protein therapies for up to 2 years. Currently, the excipient selection approach involves empirical high-throughput screening, but does not reveal details on aggregation mechanisms or the molecular-level effects of the formulations under storage conditions. Computational modelling approaches have the potential to elucidate such mechanisms, and rapidly screen in silico prior to experimental testing. Nuclear Magnetic Resonance (NMR) spectroscopy can also provide complementary insights into excipient–protein interactions. This review will highlight the underpinning principles of molecular modelling and NMR spectroscopy. It will also discuss the advancements in the applications of computational and NMR approaches in investigating excipient–protein interactions.
Collapse
|
48
|
Zhang J, Woods C, He F, Han M, Treuheit MJ, Volkin DB. Structural Changes and Aggregation Mechanisms of Two Different Dimers of an IgG2 Monoclonal Antibody. Biochemistry 2018; 57:5466-5479. [DOI: 10.1021/acs.biochem.8b00575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Zhang
- Process Development, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Christopher Woods
- Process Development, Amgen Inc., Thousand Oaks, California 91320, United States
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66049, United States
| | - Feng He
- Process Development, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Mei Han
- Pharmacokinetics & Drug Metabolism, Amgen Inc., South San Francisco, California 94080, United States
| | - Michael J. Treuheit
- Process Development, Amgen Inc., Thousand Oaks, California 91320, United States
| | - David B. Volkin
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66049, United States
| |
Collapse
|
49
|
Schaefer JV, Sedlák E, Kast F, Nemergut M, Plückthun A. Modification of the kinetic stability of immunoglobulin G by solvent additives. MAbs 2018. [PMID: 29537925 DOI: 10.1080/19420862.2018.1450126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Biophysical properties of antibody-based biopharmaceuticals are a critical part of their release criteria. In this context, finding the appropriate formulation is equally important as optimizing their intrinsic biophysical properties through protein engineering, and both are mutually dependent. Most previous studies have empirically tested the impact of additives on measures of colloidal stability, while mechanistic aspects have usually been limited to only the thermodynamic stability of the protein. Here we emphasize the kinetic impact of additives on the irreversible denaturation steps of immunoglobulins G (IgG) and their antigen-binding fragments (Fabs), as these are the key committed steps preceding aggregation, and thus especially informative in elucidating the molecular parameters of activity loss. We examined the effects of ten additives on the conformational kinetic stability by differential scanning calorimetry (DSC), using a recently developed three-step model containing both reversible and irreversible steps. The data highlight and help to rationalize different effects of the additives on the properties of full-length IgG, analyzed by onset and aggregation temperatures as well as by kinetic parameters derived from our model. Our results further help to explain the observation that stabilizing mutations in the antigen-binding fragment (Fab) significantly affect the kinetic parameters of its thermal denaturation, but not the aggregation properties of the full-length IgGs. We show that the proper analysis of DSC scans for full-length IgGs and their corresponding Fabs not only helps in ranking their stability in different formats and formulations, but provides important mechanistic insights for improving the conformational kinetic stability of IgGs.
Collapse
Affiliation(s)
- Jonas V Schaefer
- a Department of Biochemistry , University of Zurich , Winterthurerstrasse 190, Zurich , Switzerland
| | - Erik Sedlák
- a Department of Biochemistry , University of Zurich , Winterthurerstrasse 190, Zurich , Switzerland.,b Center for Interdisciplinary Biosciences, P.J. Šafárik University , Jesenná 5, Košice , Slovakia
| | - Florian Kast
- a Department of Biochemistry , University of Zurich , Winterthurerstrasse 190, Zurich , Switzerland
| | - Michal Nemergut
- c Department of Biophysics , P.J. Šafárik University , Jesenná 5, Košice , Slovakia
| | - Andreas Plückthun
- a Department of Biochemistry , University of Zurich , Winterthurerstrasse 190, Zurich , Switzerland
| |
Collapse
|
50
|
McClure SM, Ahl PL, Blue JT. High Throughput Differential Scanning Fluorimetry (DSF) Formulation Screening with Complementary Dyes to Assess Protein Unfolding and Aggregation in Presence of Surfactants. Pharm Res 2018; 35:81. [PMID: 29508082 DOI: 10.1007/s11095-018-2361-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/02/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE The purpose was to evaluate DSF for high throughput screening of protein thermal stability (unfolding/ aggregation) across a wide range of formulations. Particular focus was exploring PROTEOSTAT® - a commercially available fluorescent rotor dye - for detection of aggregation in surfactant containing formulations. Commonly used hydrophobic dyes (e.g. SYPRO™ Orange) interact with surfactants, complicating DSF measurements. METHODS CRM197 formulations were prepared and analyzed in standard 96-well plate rT-PCR system, using SYPRO™ Orange and PROTEOSTAT® dyes. Orthogonal techniques (DLS and IPF) are employed to confirm unfolding/aggregation in selected formulations. Selected formulations are subjected to non-thermal stresses (stirring and shaking) in plate based format to characterize aggregation with PROTEOSTAT®. RESULTS Agreement is observed between SYPRO™ Orange (unfolding) and PROTEOSTAT® (aggregation) DSF melt temperatures across wide range of non-surfactant formulations. PROTEOSTAT® can clearly detect temperature induced aggregation in low concentration (0.2 mg/mL) CRM197 formulations containing surfactant. PROTEOSTAT® can be used to explore aggregation due to non-thermal stresses in plate based format amenable to high throughput screening. CONCLUSIONS DSF measurements with complementary extrinsic dyes (PROTEOSTAT®, SYPRO™ Orange) are suitable for high throughput screening of antigen thermal stability, across a wide range of relevant formulation conditions - including surfactants -with standard, plate based rT-PCR instrumentation.
Collapse
Affiliation(s)
- Sean M McClure
- Center for Materials Science and Engineering, Merck Sharp & Dohme Corp, WP75B-210, 770 Sumneytown Pike, West Point, PA, 19486, USA.
| | - Patrick L Ahl
- Vaccine Drug Product Development, Merck Sharp & Dohme Corp, West Point, PA, 19486, USA
| | - Jeffrey T Blue
- Vaccine Drug Product Development, Merck Sharp & Dohme Corp, West Point, PA, 19486, USA
| |
Collapse
|