1
|
Li B, Ustyugova IV, Szymkowicz L, Zhu S, Ming M, Fung KYY, Cortés G, James DA, Hrynyk M, Rahman N, Brookes RH, Ausar SF. Formulation development of a stable influenza recombinant neuraminidase vaccine candidate. Hum Vaccin Immunother 2024; 20:2304393. [PMID: 38497413 PMCID: PMC10950269 DOI: 10.1080/21645515.2024.2304393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/09/2024] [Indexed: 03/19/2024] Open
Abstract
Current influenza vaccines could be augmented by including recombinant neuraminidase (rNA) protein antigen to broaden protective immunity and improve efficacy. Toward this goal, we investigated formulation conditions to optimize rNA physicochemical stability. When rNA in sodium phosphate saline buffer (NaPBS) was frozen and thawed (F/T), the tetrameric structure transitioned from a "closed" to an "open" conformation, negatively impacting functional activity. Hydrogen deuterium exchange experiments identified differences in anchorage binding sites at the base of the open tetramer, offering a structural mechanistic explanation for the change in conformation and decreased functional activity. Change to the open configuration was triggered by the combined stresses of acidic pH and F/T. The desired closed conformation was preserved in a potassium phosphate buffer (KP), minimizing pH drop upon freezing and including 10% sucrose to control F/T stress. Stability was further evaluated in thermal stress studies where changes in conformation were readily detected by ELISA and size exclusion chromatography (SEC). Both tests were suitable indicators of stability and antigenicity and considered potential critical quality attributes (pCQAs). To understand longer-term stability, the pCQA profiles from thermally stressed rNA at 6 months were modeled to predict stability of at least 24-months at 5°C storage. In summary, a desired rNA closed tetramer was maintained by formulation selection and monitoring of pCQAs to produce a stable rNA vaccine candidate. The study highlights the importance of understanding and controlling vaccine protein structural and functional integrity.
Collapse
Affiliation(s)
- Bing Li
- Sanofi Global Vaccine Drug Product Development, Toronto, ON, Canada
| | | | | | | | - Marin Ming
- Sanofi Analytical Sciences, Toronto, ON, Canada
| | - Karen Y. Y. Fung
- Sanofi Global Vaccine Drug Product Development, Toronto, ON, Canada
| | - Guadalupe Cortés
- Sanofi mRNA & Translational Medicine COVID Franchise, Global Clinical Development, Waltham, MA, USA
| | - D. Andrew James
- Sanofi External Research and Development, Toronto, ON, Canada
| | | | - Nausheen Rahman
- Sanofi Global Vaccine Drug Product Development, Toronto, ON, Canada
| | - Roger H. Brookes
- Sanofi Global Vaccine Drug Product Development, Toronto, ON, Canada
| | | |
Collapse
|
2
|
Xiao E, Mirabel C, Clénet D, Zhu S, James A, Ettorre L, Williams T, Szeto J, Rahman N, Ausar SF. Formulation Development of a COVID-19 Recombinant Spike Protein-Based Vaccine. Vaccines (Basel) 2024; 12:830. [PMID: 39203956 PMCID: PMC11360652 DOI: 10.3390/vaccines12080830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
The purpose of this study was to develop a formulation for a recombinant prefusion spike protein vaccine against SARS-CoV-2. It was found that the spike protein was susceptible to aggregation due to mechanical stress. Therefore, formulation studies were initiated focused on screening pharmaceutical excipients capable of preventing this. The screening of a panel of potential stabilizing conditions found that Tween 20 could inhibit mechanically induced aggregation. A concentration-dependent study indicated that a higher concentration of Tween 20 (0.2% v/v) was required to prevent conformational changes in the trimer. The conformational changes induced by mechanical stress were characterized by size exclusion chromatography (SEC) and hydrogen-deuterium exchange mass spectrometry (HDX-MS), indicating the formation of an extended trimeric conformation that was also unable to bind to antibodies directed to the S2 domain. Long-term stability modeling, using advanced kinetic analysis, indicated that the formulation containing 0.2% (v/v) Tween 20 at a neutral pH was predicted to be stable for at least two years at 2 °C to 8 °C. Additional stabilizer screening conducted by thermal shift assay indicated that sucrose and glycerol were able to significantly increase the spike protein melting temperature (Tm) and improve the overall thermostability of the spike protein in a short-term stability study. Thus, while 0.2% (v/v) Tween 20 was sufficient to prevent aggregation and to maintain spike protein stability under refrigeration, the addition of sucrose further improved vaccine thermostability. Altogether, our study provides a systematic approach to the formulation of protein-based COVID-19 vaccine and highlights the impact of mechanical stress on the conformation of the spike protein and the significance of surfactants and stabilizers in maintaining the structural and functional integrity of the spike protein.
Collapse
Affiliation(s)
- Emily Xiao
- Global Vaccine Drug Product Development, Sanofi, 1755 Steeles Avenue West, Toronto, ON M2R 3T4, Canada; (C.M.); (N.R.)
| | - Clémentine Mirabel
- Global Vaccine Drug Product Development, Sanofi, 1755 Steeles Avenue West, Toronto, ON M2R 3T4, Canada; (C.M.); (N.R.)
| | - Didier Clénet
- Global Vaccine Drug Product Development, Sanofi, 1541 Avenue Marcel Mérieux, 69280 Marcy-L’Étoile, France;
| | - Shaolong Zhu
- Analytical Sciences, Sanofi, 1755 Steeles Avenue West, Toronto, ON M2R 3T4, Canada; (S.Z.); (L.E.); (T.W.); (J.S.)
| | - Andrew James
- External Research and Development, Sanofi, 1755 Steeles Avenue West, Toronto, ON M2R 3T4, Canada;
| | - Luciano Ettorre
- Analytical Sciences, Sanofi, 1755 Steeles Avenue West, Toronto, ON M2R 3T4, Canada; (S.Z.); (L.E.); (T.W.); (J.S.)
| | - Trevor Williams
- Analytical Sciences, Sanofi, 1755 Steeles Avenue West, Toronto, ON M2R 3T4, Canada; (S.Z.); (L.E.); (T.W.); (J.S.)
| | - Jason Szeto
- Analytical Sciences, Sanofi, 1755 Steeles Avenue West, Toronto, ON M2R 3T4, Canada; (S.Z.); (L.E.); (T.W.); (J.S.)
| | - Nausheen Rahman
- Global Vaccine Drug Product Development, Sanofi, 1755 Steeles Avenue West, Toronto, ON M2R 3T4, Canada; (C.M.); (N.R.)
| | - Salvador Fernando Ausar
- Global Vaccine Drug Product Development, Sanofi, 1755 Steeles Avenue West, Toronto, ON M2R 3T4, Canada; (C.M.); (N.R.)
| |
Collapse
|
3
|
Laera D, HogenEsch H, O'Hagan DT. Aluminum Adjuvants-'Back to the Future'. Pharmaceutics 2023; 15:1884. [PMID: 37514070 PMCID: PMC10383759 DOI: 10.3390/pharmaceutics15071884] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Aluminum-based adjuvants will continue to be a key component of currently approved and next generation vaccines, including important combination vaccines. The widespread use of aluminum adjuvants is due to their excellent safety profile, which has been established through the use of hundreds of millions of doses in humans over many years. In addition, they are inexpensive, readily available, and are well known and generally accepted by regulatory agencies. Moreover, they offer a very flexible platform, to which many vaccine components can be adsorbed, enabling the preparation of liquid formulations, which typically have a long shelf life under refrigerated conditions. Nevertheless, despite their extensive use, they are perceived as relatively 'weak' vaccine adjuvants. Hence, there have been many attempts to improve their performance, which typically involves co-delivery of immune potentiators, including Toll-like receptor (TLR) agonists. This approach has allowed for the development of improved aluminum adjuvants for inclusion in licensed vaccines against HPV, HBV, and COVID-19, with others likely to follow. This review summarizes the various aluminum salts that are used in vaccines and highlights how they are prepared. We focus on the analytical challenges that remain to allowing the creation of well-characterized formulations, particularly those involving multiple antigens. In addition, we highlight how aluminum is being used to create the next generation of improved adjuvants through the adsorption and delivery of various TLR agonists.
Collapse
Affiliation(s)
- Donatello Laera
- Technical Research & Development, Drug Product, GSK, 53100 Siena, Italy
- Global Manufacturing Division, Corporate Industrial Analytics, Chiesi Pharmaceuticals, 43122 Parma, Italy
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | | |
Collapse
|
4
|
Inglefield J, Catania J, Harris A, Hickey T, Ma Z, Minang J, Baranji K, Spangler T, Look J, Ruiz C, Lu H, Alleva D, Reece JJ, Lacy MJ. Use of protective antigen of Bacillus anthracis as a model recombinant antigen to evaluate toll-like receptors 2, 3, 4, 7 and 9 agonists in mice using established functional antibody assays, antigen-specific antibody assays and cellular assays. Vaccine 2022; 40:5544-5555. [PMID: 35773119 DOI: 10.1016/j.vaccine.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 05/04/2022] [Accepted: 06/05/2022] [Indexed: 11/16/2022]
Abstract
Toll-like receptor (TLR) agonists can act as immune stimulants alone or as part of alum or oil formulations. Humoral and cellular immune responses were utilized to assess quantitative and qualitative immune response enhancement by TLR agonists using recombinant protective antigen (rPA) of B. anthracis as a model antigen. To rPA, combined with aluminum hydroxide (Alhydrogel; Al(OH)3) or squalene (AddaVax™), was added one of 7 TLR agonists: TLR2 agonist Pam3CysSK4 (PamS), TLR3 agonist double stranded polyinosinic:polycytidylic acid (PolyIC), TLR4 agonists Monophosphoryl lipid A (MPLA) or glucopyranosyl lipid A (GLA), TLR7-8 agonists 3M-052 or Resiquimod (Resiq), or TLR9 agonist CPG 7909 (CPG). CD-1 or BALB/c mice received two intraperitoneal or intramuscular immunizations 14 days apart, followed by serum or spleen sampling 14 days later. All TLR agonists except PamS induced high levels of B. anthracis lethal toxin-neutralizing antibodies and immunoglobulin G (IgG) anti-PA. Some responses were >100-fold higher than those without a TLR agonist, and IP delivery (0.5 mL) induced higher TLR-mediated antibody response increases compared to IM delivery (0.05 mL). TLR7-8 and TLR9 agonists induced profound shifts of IgG anti-PA response to IgG2a or IgG2b. Compared to the 14-day immunization schedule, use of a shortened immunization schedule of only 7 days between prime and boost found that TLR9 agonist CPG in a squalene formulation maintained higher interferon-γ-positive cells than TLR4 agonist GLA. Variability in antibody responses was lower in BALB/c mice than CD-1 mice but antibody responses were higher in CD-1 mice. Lower serum 50% effective concentration (EC50) values were found for rPA-agonist formulations and squalene formulations compared to Al(OH)3 formulations. Lower EC50 values also were associated with low frequency detection of linear peptide epitopes. In summary, TLR agonists elicited cellular immune responses and markedly boosted humoral responses.
Collapse
Affiliation(s)
- Jon Inglefield
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Jason Catania
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Andrea Harris
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Thomas Hickey
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Zhidong Ma
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Jacob Minang
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Katalin Baranji
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Tarl Spangler
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Jee Look
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Christian Ruiz
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Hang Lu
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - David Alleva
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Joshua J Reece
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Michael J Lacy
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA.
| |
Collapse
|
5
|
Neyra C, Clénet D, Bright M, Kensinger R, Hauser S. Predictive modeling for assessing the long-term thermal stability of a new fully-liquid quadrivalent meningococcal tetanus toxoid conjugated vaccine. Int J Pharm 2021; 609:121143. [PMID: 34600051 DOI: 10.1016/j.ijpharm.2021.121143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
Establishing product stability is critical for pharmaceuticals. We used a modeling approach to predict the thermal stability of a fully-liquid quadrivalent meningococcal (serogroups A, C, W, Y) conjugate vaccine (MenACYW-TT; MenQuadfi®) at potential transportation and storage temperatures. Vaccine degradation was determined by measuring the rate of hydrolysis through an increase of free polysaccharide (de-conjugated or unconjugated polysaccharide) content during six months storage at 25 °C, 45 °C and 56 °C. A procedure combining advanced kinetics and statistics was used to screen and compare kinetic models describing observed free polysaccharide increase as a function of time and temperature for each serogroup. Statistical analyses were used to quantify prediction accuracy. A two-step kinetic model described the increase in free polysaccharide content for serogroup A; whereas, one-step kinetic models were found suitable to describe the other serogroups. The models were used to predict free polysaccharide increases for each serogroup during long-term storage under recommended conditions (2-8 °C), and during temperature excursions to 25 °C or 40 °C. In both cases, serogroup-specific simulations accurately predict the respective observed experimental data. Experimental data collected to 48 months at 5 °C were within 99% predictive bands. The models described here can be used with confidence to establish shelf-life for this fully-liquid quadrivalent meningococcal conjugate vaccine; as well as, monitor in real-time free polysaccharide increase for vaccines experiencing temperature excursions during shipment/storage.
Collapse
Affiliation(s)
- Christophe Neyra
- Manufacturing Technology Department, Sanofi Pasteur, Swiftwater, PA, USA.
| | - Didier Clénet
- Bioprocess R&D Department, Sanofi Pasteur, Marcy l'Etoile, France.
| | - Marcia Bright
- Quality Control Stability, Sanofi Pasteur, Swiftwater, PA, USA.
| | | | - Steven Hauser
- Manufacturing Technology Department, Sanofi Pasteur, Swiftwater, PA, USA.
| |
Collapse
|
6
|
Johann F, Wöll S, Winzer M, Snell J, Valldorf B, Gieseler H. Miniaturized Forced Degradation of Therapeutic Proteins and ADCs by Agitation-Induced Aggregation Using Orbital Shaking of Microplates. J Pharm Sci 2021; 111:1401-1413. [PMID: 34563536 DOI: 10.1016/j.xphs.2021.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
Microplate-based formulation screening is a powerful approach to identify stabilizing excipients for therapeutic proteins while reducing material requirements. However, this approach is sometimes not representative of studies conducted in relevant container closures. The present study aimed to identify critical parameters for a microplate-based orbital shaking method to screen biotherapeutic formulations by agitation-induced aggregation. For this purpose, an in-depth methodological study was conducted using different shakers, microplates, and plate seals. Aggregation was monitored by size exclusion chromatography, turbidity, and backgrounded membrane imaging. Both shaker quality and liquid-seal contact had substantial impacts on aggregation during shaking and resulted in non-uniform sample treatment when parameters were not suitably selected. The well volume to fill volume ratio (Vwell/Vfill) was identified as an useful parameter for achieving comparable aggregation levels between different microplate formats. An optimized method (2400 rpm [ac 95 m/s2], Vfill 60-100 µL [Vwell/Vfill 6-3.6], 24 h, RT, heat-sealed) allowed for uniform sample treatment independent of surface tension and good agreement with vial shaking results. This study provides valuable guidance for miniaturization of shaking stress studies in biopharmaceutical drug development, facilitating method transfer and comparability between laboratories.
Collapse
Affiliation(s)
- Florian Johann
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Department of Pharmaceutics, Freeze Drying Focus Group (FDFG), Cauerstraße 4, 91058 Erlangen, Germany; Merck KGaA, Department of Pharmaceutical Technologies, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Steffen Wöll
- Merck KGaA, Department of Pharmaceutical Technologies, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Matthias Winzer
- Merck KGaA, Department of Pharmaceutical Technologies, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Jared Snell
- EMD Serono Research and Development Institute, Department of Pharmaceutical Technologies, 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Bernhard Valldorf
- Merck KGaA, Department of Pharmaceutical Technologies, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Henning Gieseler
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Department of Pharmaceutics, Freeze Drying Focus Group (FDFG), Cauerstraße 4, 91058 Erlangen, Germany; GILYOS GmbH, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany.
| |
Collapse
|
7
|
Ausar SF, Zhu S, Duprez J, Cohen M, Bertrand T, Steier V, Wilson DJ, Li S, Sheung A, Brookes RH, Pedyczak A, Rak A, Andrew James D. Genetically detoxified pertussis toxin displays near identical structure to its wild-type and exhibits robust immunogenicity. Commun Biol 2020; 3:427. [PMID: 32759959 PMCID: PMC7406505 DOI: 10.1038/s42003-020-01153-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/10/2020] [Indexed: 11/09/2022] Open
Abstract
The mutant gdPT R9K/E129G is a genetically detoxified variant of the pertussis toxin (PTx) and represents an attractive candidate for the development of improved pertussis vaccines. The impact of the mutations on the overall protein structure and its immunogenicity has remained elusive. Here we present the crystal structure of gdPT and show that it is nearly identical to that of PTx. Hydrogen-deuterium exchange mass spectrometry revealed dynamic changes in the catalytic domain that directly impacted NAD+ binding which was confirmed by biolayer interferometry. Distal changes in dynamics were also detected in S2-S5 subunit interactions resulting in tighter packing of B-oligomer corresponding to increased thermal stability. Finally, antigen stimulation of human whole blood, analyzed by a previously unreported mass cytometry assay, indicated broader immunogenicity of gdPT compared to pertussis toxoid. These findings establish a direct link between the conserved structure of gdPT and its ability to generate a robust immune response.
Collapse
Affiliation(s)
- Salvador F Ausar
- Bioprocess Research and Development, Sanofi Pasteur Ltd., Toronto, ON, M2R 3T4, Canada
| | - Shaolong Zhu
- Analytical Sciences, Sanofi Pasteur Ltd., Toronto, ON, M2R 3T4, Canada.,Center for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada
| | - Jessica Duprez
- Analytical Sciences, Sanofi Pasteur Ltd., Toronto, ON, M2R 3T4, Canada
| | - Michael Cohen
- Center for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada.,Fluidigm Corporation, Markham, ON, L3R 4G5, Canada
| | - Thomas Bertrand
- Research Platform, Sanofi R&D, Vitry-sur-Seine, 94400, Paris, France
| | - Valérie Steier
- Research Platform, Sanofi R&D, Vitry-sur-Seine, 94400, Paris, France
| | - Derek J Wilson
- Center for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada
| | - Stephen Li
- Fluidigm Corporation, Markham, ON, L3R 4G5, Canada
| | - Anthony Sheung
- Bioprocess Research and Development, Sanofi Pasteur Ltd., Toronto, ON, M2R 3T4, Canada
| | - Roger H Brookes
- Bioprocess Research and Development, Sanofi Pasteur Ltd., Toronto, ON, M2R 3T4, Canada
| | - Artur Pedyczak
- Analytical Sciences, Sanofi Pasteur Ltd., Toronto, ON, M2R 3T4, Canada
| | - Alexey Rak
- Research Platform, Sanofi R&D, Vitry-sur-Seine, 94400, Paris, France
| | - D Andrew James
- Analytical Sciences, Sanofi Pasteur Ltd., Toronto, ON, M2R 3T4, Canada. .,Center for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
8
|
Song Y, Yang Y, Lin X, Li X, Zhang X, Ma G, Su Z, Zhang S. In-situ and sensitive stability study of emulsion and aluminum adjuvanted inactivated foot-and-mouth disease virus vaccine by differential scanning fluorimetry analysis. Vaccine 2020; 38:2904-2912. [DOI: 10.1016/j.vaccine.2020.02.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/20/2022]
|
9
|
Adsorption onto aluminum hydroxide adjuvant protects antigens from degradation. Vaccine 2020; 38:3600-3609. [PMID: 32063436 DOI: 10.1016/j.vaccine.2020.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 11/24/2022]
Abstract
Aluminum based adjuvants are widely used in commercial vaccines, since they are known to be safe and effective with a variety of antigens. The effect of antigen adsorption onto Aluminum Hydroxide is a complex area, since several mechanisms are involved simultaneously, whose impact is both antigen and formulation conditions dependent. Moreover, the mode of action of Aluminum Hydroxide is itself complex, with many mechanisms operating simultaneously. Within the literature there are contrasting theories regarding the effect of adsorption on antigen integrity and stability, with reports of antigen being stabilized by adsorption onto Aluminum Hydroxide, but also with contrary reports of antigen being destabilized. With the aim to understand the impact of adsorption on three recombinant proteins which, following in vivo immunization, are able to induce functional bactericidal antibodies against Neisseria meningitidis type B, we used a range of physico-chemical tools, such as DSC and UPLC, along with in vitro binding of antibodies that recognize structural elements of the proteins, and supported the in vitro data with in vivo evaluation in mice studies. We showed that, following exposure to accelerated degradation conditions involving heat, the recombinant proteins, although robust, were stabilized by adsorption onto Aluminum Hydroxide and retain their structural integrity unlike the not adsorbed proteins. The measure of the Melting Temperature was a useful tool to compare the behavior of proteins adsorbed and not adsorbed on Aluminum Hydroxide and to predict protein stability.
Collapse
|
10
|
Saleh M, Nowroozi J, Fotouhi F, Farahmand B. Physicochemical study of the influenza A virus M2 protein and aluminum salt adjuvant interaction as a vaccine candidate model. Future Virol 2019. [DOI: 10.2217/fvl-2019-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: The present study evaluated the structural changes resulting from the interaction between a recombinant influenza A virus M2 protein and aluminum hydroxide adjuvant to investigate the antigen for further immunological studies. Materials & methods: Membrane protein II was produced from the H1N1 subtype of human influenza A virus. The interaction between M2 protein and alum inum hydroxide adjuvant was evaluated by physicochemical techniques including scanning electron microscope, UV-Vis spectra, Fourier-transform infrared spectroscopy and circular dichroism spectroscopy. Results: Physicochemical methods showed high-level protein adsorption and accessibility to the effective parts of the protein. Conclusion: It was concluded that M2 protein secondary structural perturbations, including the α-helix-to-β-sheet transition, enhanced its mechanical properties toward adsorption.
Collapse
Affiliation(s)
- Maryam Saleh
- Department of Microbiology, Faculty of Biological Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Jamileh Nowroozi
- Department of Microbiology, Faculty of Biological Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Fatemeh Fotouhi
- Department of Influenza & Respiratory viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Behrokh Farahmand
- Department of Influenza & Respiratory viruses, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
HogenEsch H, O'Hagan DT, Fox CB. Optimizing the utilization of aluminum adjuvants in vaccines: you might just get what you want. NPJ Vaccines 2018; 3:51. [PMID: 30323958 PMCID: PMC6180056 DOI: 10.1038/s41541-018-0089-x] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 02/01/2023] Open
Abstract
Aluminum-containing adjuvants have been used for over 90 years to enhance the immune response to vaccines. Recent work has significantly advanced our understanding of the physical, chemical, and biological properties of these adjuvants, offering key insights on underlying mechanisms. Given the long-term success of aluminum adjuvants, we believe that they should continue to represent the “gold standard” against which all new adjuvants should be compared. New vaccine candidates that require adjuvants to induce a protective immune responses should first be evaluated with aluminum adjuvants before other more experimental approaches are considered, since use of established adjuvants would facilitate both clinical development and the regulatory pathway. However, the continued use of aluminum adjuvants requires an appreciation of their complexities, in combination with access to the necessary expertise to optimize vaccine formulations. In this article, we will review the properties of aluminum adjuvants and highlight those elements that are critical to optimize vaccine performance. We will discuss how other components (excipients, TLR ligands, etc.) can affect the interaction between adjuvants and antigens, and impact the potency of vaccines. This review provides a resource and guide, which will ultimately contribute to the successful development of newer, more effective and safer vaccines.
Collapse
Affiliation(s)
- Harm HogenEsch
- 1Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN USA.,2Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN USA
| | | | - Christopher B Fox
- 4IDRI, Seattle, WA USA.,5Department of Global Health, University of Washington, Seattle, WA USA
| |
Collapse
|
12
|
Huijuan Y, Xiaohu D, Ze L, Wei C, Jian Z, Lei M, Shaohui S, Weidong L, Guoyang L. Role of phenol red in the stabilization of the Sabin type 2 inactivated polio vaccine at various pH values. J Med Virol 2018; 91:22-30. [DOI: 10.1002/jmv.25289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/12/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Yang Huijuan
- Sixth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| | - Dai Xiaohu
- Fifth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| | - Liu Ze
- Fifth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| | - Cai Wei
- Fourth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| | - Zhou Jian
- Sixth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| | - Ma Lei
- Fifth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| | - Song Shaohui
- Fifth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| | - Li Weidong
- Department of Production AdministrationInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| | - Liao Guoyang
- Fifth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| |
Collapse
|
13
|
Nouchikian L, Roque C, Song JY, Rahman N, Ausar SF. An intrinsic fluorescence method for the determination of protein concentration in vaccines containing aluminum salt adjuvants. Vaccine 2018; 36:5738-5746. [PMID: 30107994 DOI: 10.1016/j.vaccine.2018.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/12/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022]
Abstract
Determination of protein concentration in vaccines containing aluminum salt adjuvant typically necessitates desorption of the protein prior to analysis. Here we describe a method based on the intrinsic fluorescence of tyrosine and tryptophan that requires no desorption of proteins. Adjuvanted formulations of three model Bordetella pertussis antigens were excited at 280 nm and their emission spectra collected from 290 to 400 nm. Emission spectra of protein antigens in the presence of aluminum salt adjuvants were able to be detected, the effects of adjuvants on the spectra were analyzed, and linear regressions were calculated. The fluorescence method proved to be very sensitive with a limit of quantification between 0.4 and 4.4 µg/mL and limit of linearity between 100 and 200 µg/mL, across the formulations tested. The fluorescence method was found to be influenced by adjuvant presence, type of adjuvant, adjuvant concentration, buffer and pH conditions. The method also demonstrated ability to monitor the percent adsorption of antigens to the adjuvants. Furthermore, intrinsic fluorescence showed good correlation with micro-Kjeldahl elemental assay in quantifying protein concentration. Being a non-invasive, quick and sensitive method, intrinsic fluorescence has the potential to be utilized as a high throughput tool for vaccine development and conceivably implemented in-line, using in-line fluorimeters, to monitor antigen concentration during formulation processing.
Collapse
Affiliation(s)
- Lucienne Nouchikian
- BioProcess Research and Development, Sanofi Pasteur, 1755 Steeles Ave West, Toronto, Ontario M3R 3T4, Canada
| | - Cristopher Roque
- BioProcess Research and Development, Sanofi Pasteur, 1755 Steeles Ave West, Toronto, Ontario M3R 3T4, Canada
| | - Jimmy Y Song
- BioProcess Research and Development, Sanofi Pasteur, 1755 Steeles Ave West, Toronto, Ontario M3R 3T4, Canada
| | - Nausheen Rahman
- BioProcess Research and Development, Sanofi Pasteur, 1755 Steeles Ave West, Toronto, Ontario M3R 3T4, Canada
| | - Salvador F Ausar
- BioProcess Research and Development, Sanofi Pasteur, 1755 Steeles Ave West, Toronto, Ontario M3R 3T4, Canada.
| |
Collapse
|
14
|
Wei Y, Larson NR, Angalakurthi SK, Russell Middaugh C. Improved Fluorescence Methods for High-Throughput Protein Formulation Screening. SLAS Technol 2018; 23:516-528. [PMID: 29884102 DOI: 10.1177/2472630318780620] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The goal of protein formulation development is to identify optimal conditions for long-term storage. Certain commercial conditions (e.g., high protein concentration or turbid adjuvanted samples) impart additional challenges to biophysical characterization. Formulation screening studies for such conditions are usually performed using a simplified format in which the target protein is studied at a low concentration in a clear solution. The failure of study conditions to model the actual formulation environment may cause a loss of ability to identify the optimal condition for target proteins in their final commercial formulations. In this study, we utilized a steady-state/lifetime fluorescence-based, high-throughput platform to develop a general workflow for direct formulation optimization under analytically challenging but commercially relevant conditions. A high-concentration monoclonal antibody (mAb) and an Alhydrogel-adjuvanted antigen were investigated. A large discrepancy in screening results was observed for both proteins under these two different conditions (simplified and commercially relevant). This study demonstrates the feasibility of using a steady-state/lifetime fluorescence plate reader for direct optimization of challenging formulation conditions and highlights the importance of performing formulation optimization under commercially relevant conditions.
Collapse
Affiliation(s)
- Yangjie Wei
- 1 Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA.,2 Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Nicholas R Larson
- 1 Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA.,2 Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Siva K Angalakurthi
- 1 Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA.,2 Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - C Russell Middaugh
- 1 Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA.,2 Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
15
|
Jully V, Mathot F, Moniotte N, Préat V, Lemoine D. Mechanisms of Antigen Adsorption Onto an Aluminum-Hydroxide Adjuvant Evaluated by High-Throughput Screening. J Pharm Sci 2017; 105:1829-1836. [PMID: 27238481 DOI: 10.1016/j.xphs.2016.03.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/27/2016] [Accepted: 03/22/2016] [Indexed: 02/05/2023]
Abstract
The adsorption mechanism of antigen on aluminum adjuvant can affect antigen elution at the injection site and hence the immune response. Our aim was to evaluate adsorption onto aluminum hydroxide (AH) by ligand exchange and electrostatic interactions of model proteins and antigens, bovine serum albumin (BSA), β-casein, ovalbumin (OVA), hepatitis B surface antigen, and tetanus toxin (TT). A high-throughput screening platform was developed to measure adsorption isotherms in the presence of electrolytes and ligand exchange by a fluorescence-spectroscopy method that detects the catalysis of 6,8-difluoro-4-methylumbelliferyl phosphate by free hydroxyl groups on AH. BSA adsorption depended on predominant electrostatic interactions. Ligand exchange contributes to the adsorption of β-casein, OVA, hepatitis B surface antigen, and TT onto AH. Based on relative surface phosphophilicity and adsorption isotherms in the presence of phosphate and fluoride, the capacities of the proteins to interact with AH by ligand exchange followed the trend: OVA < β-casein < BSA < TT. This could be explained by both the content of ligands available in the protein structure for ligand exchange and the antigen's molecular weight. The high-throughput screening platform can be used to better understand the contributions of ligand exchange and electrostatic attractions governing the interactions between an antigen adsorbed onto aluminum-containing adjuvant.
Collapse
Affiliation(s)
- Vanessa Jully
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels 1200, Belgium; GSK Vaccines, Vaccine Discovery and Development, Rixensart 1330, Belgium
| | - Frédéric Mathot
- GSK Vaccines, Vaccine Discovery and Development, Rixensart 1330, Belgium
| | - Nicolas Moniotte
- GSK Vaccines, Vaccine Discovery and Development, Rixensart 1330, Belgium
| | - Véronique Préat
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels 1200, Belgium.
| | - Dominique Lemoine
- GSK Vaccines, Vaccine Discovery and Development, Rixensart 1330, Belgium
| |
Collapse
|
16
|
Bessemans L, Jully V, de Raikem C, Albanese M, Moniotte N, Silversmet P, Lemoine D. Automated Gravimetric Calibration to Optimize the Accuracy and Precision of TECAN Freedom EVO Liquid Handler. JOURNAL OF LABORATORY AUTOMATION 2016; 21:693-705. [PMID: 26905719 PMCID: PMC5030733 DOI: 10.1177/2211068216632349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Indexed: 11/16/2022]
Abstract
High-throughput screening technologies are increasingly integrated into the formulation development process of biopharmaceuticals. The performance of liquid handling systems is dependent on the ability to deliver accurate and precise volumes of specific reagents to ensure process quality. We have developed an automated gravimetric calibration procedure to adjust the accuracy and evaluate the precision of the TECAN Freedom EVO liquid handling system. Volumes from 3 to 900 µL using calibrated syringes and fixed tips were evaluated with various solutions, including aluminum hydroxide and phosphate adjuvants, β-casein, sucrose, sodium chloride, and phosphate-buffered saline. The methodology to set up liquid class pipetting parameters for each solution was to split the process in three steps: (1) screening of predefined liquid class, including different pipetting parameters; (2) adjustment of accuracy parameters based on a calibration curve; and (3) confirmation of the adjustment. The run of appropriate pipetting scripts, data acquisition, and reports until the creation of a new liquid class in EVOware was fully automated. The calibration and confirmation of the robotic system was simple, efficient, and precise and could accelerate data acquisition for a wide range of biopharmaceutical applications.
Collapse
|
17
|
Practical Approaches to Forced Degradation Studies of Vaccines. Methods Mol Biol 2016. [PMID: 27076171 DOI: 10.1007/978-1-4939-3387-7_49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
During the early stages of vaccine development, forced degradation studies are conducted to provide information about the degradation properties of vaccine formulations. In addition to supporting the development of analytical methods for the detection of degradation products, these stress studies are used to identify optimal long-term storage conditions and are part of the regulatory requirements for the submission of stability data. In this chapter, we provide detailed methods for forced degradation analysis under thermal, light, and mechanical stress conditions.
Collapse
|
18
|
Pollard J, McDonald P, Hesslein A. Lessons learned in building high-throughput process development capabilities. Eng Life Sci 2016. [DOI: 10.1002/elsc.201400254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Paul McDonald
- Purification Development; Genentech; South San Francisco USA
| | - Ashley Hesslein
- Global Biological Development; Bayer HealthCare; Berkeley USA
| |
Collapse
|
19
|
Jully V, Moniotte N, Mathot F, Lemoine D, Préat V. Development of a High-Throughput Screening Platform to Study the Adsorption of Antigens onto Aluminum-Containing Adjuvants. J Pharm Sci 2015; 104:557-65. [DOI: 10.1002/jps.24256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/02/2014] [Accepted: 10/17/2014] [Indexed: 01/26/2023]
|
20
|
Dowling QM, Schwartz AM, Vedvick TS, Fox CB, Kramer RM. Quantitative measurement of Toll-like receptor 4 agonists adsorbed to Alhydrogel(®) by Fourier transform infrared-attenuated total reflectance spectroscopy. J Pharm Sci 2014; 104:768-74. [PMID: 25242027 DOI: 10.1002/jps.24180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/07/2014] [Accepted: 09/02/2014] [Indexed: 01/15/2023]
Abstract
Aluminum salts have a long history as safe and effective vaccine adjuvants. In addition, aluminum salts have high adsorptive capacities for vaccine antigens and adjuvant molecules, for example, Toll-like receptor 4 (TLR4) agonists. However, the physicochemical properties of aluminum salts make direct quantitation of adsorbed molecules challenging. Typical methods for quantifying adsorbed molecules require advanced instrumentation, extreme sample processing, often destroy the sample, or rely on an indirect measurement. A simple, direct, and quantitative method for analysis of adsorbed adjuvant molecules is needed. This report presents a method utilizing Fourier transform infrared spectroscopy with a ZnSe-attenuated total reflectance attachment to directly measure low levels (<30 μg/mL) of TLR4 agonists adsorbed on aluminum salts with minimal sample preparation.
Collapse
|
21
|
Designing and building the next generation of improved vaccine adjuvants. J Control Release 2014; 190:563-79. [DOI: 10.1016/j.jconrel.2014.06.027] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 01/01/2023]
|
22
|
Kumru OS, Joshi SB, Smith DE, Middaugh CR, Prusik T, Volkin DB. Vaccine instability in the cold chain: mechanisms, analysis and formulation strategies. Biologicals 2014; 42:237-59. [PMID: 24996452 DOI: 10.1016/j.biologicals.2014.05.007] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/12/2014] [Accepted: 05/27/2014] [Indexed: 12/15/2022] Open
Abstract
Instability of vaccines often emerges as a key challenge during clinical development (lab to clinic) as well as commercial distribution (factory to patient). To yield stable, efficacious vaccine dosage forms for human use, successful formulation strategies must address a combination of interrelated topics including stabilization of antigens, selection of appropriate adjuvants, and development of stability-indicating analytical methods. This review covers key concepts in understanding the causes and mechanisms of vaccine instability including (1) the complex and delicate nature of antigen structures (e.g., viruses, proteins, carbohydrates, protein-carbohydrate conjugates, etc.), (2) use of adjuvants to further enhance immune responses, (3) development of physicochemical and biological assays to assess vaccine integrity and potency, and (4) stabilization strategies to protect vaccine antigens and adjuvants (and their interactions) during storage. Despite these challenges, vaccines can usually be sufficiently stabilized for use as medicines through a combination of formulation approaches combined with maintenance of an efficient cold chain (manufacturing, distribution, storage and administration). Several illustrative case studies are described regarding mechanisms of vaccine instability along with formulation approaches for stabilization within the vaccine cold chain. These include live, attenuated (measles, polio) and inactivated (influenza, polio) viral vaccines as well as recombinant protein (hepatitis B) vaccines.
Collapse
Affiliation(s)
- Ozan S Kumru
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Sangeeta B Joshi
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Dawn E Smith
- Temptime Corporation, Morris Plains, NJ 07950, USA
| | - C Russell Middaugh
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Ted Prusik
- Temptime Corporation, Morris Plains, NJ 07950, USA
| | - David B Volkin
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
23
|
Fox CB, Kramer RM, Barnes V L, Dowling QM, Vedvick TS. Working together: interactions between vaccine antigens and adjuvants. THERAPEUTIC ADVANCES IN VACCINES 2014; 1:7-20. [PMID: 24757512 DOI: 10.1177/2051013613480144] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of vaccines containing adjuvants has the potential to enhance antibody and cellular immune responses, broaden protective immunity against heterogeneous pathogen strains, enable antigen dose sparing, and facilitate efficacy in immunocompromised populations. Nevertheless, the structural interplay between antigen and adjuvant components is often not taken into account in the published literature. Interactions between antigen and adjuvant formulations should be well characterized to enable optimum vaccine stability and efficacy. This review focuses on the importance of characterizing antigen-adjuvant interactions by summarizing findings involving widely used adjuvant formulation platforms, such as aluminum salts, emulsions, lipid vesicles, and polymer-based particles. Emphasis is placed on the physicochemical basis of antigen-adjuvant associations and the appropriate analytical tools for their characterization, as well as discussing the effects of these interactions on vaccine potency.
Collapse
|
24
|
Qi W, Zeng Y, Orgel S, Francon A, Kim JH, Randolph TW, Carpenter JF, Russell Middaugh C. Preformulation Study of Highly Purified Inactivated Polio Vaccine, Serotype 3. J Pharm Sci 2014; 103:140-51. [DOI: 10.1002/jps.23801] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/23/2013] [Accepted: 11/06/2013] [Indexed: 01/13/2023]
|
25
|
Differential scanning fluorimetry: Rapid screening of formulations that promote the stability of reference preparations. J Pharm Biomed Anal 2013; 77:163-6. [DOI: 10.1016/j.jpba.2013.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/20/2012] [Accepted: 01/01/2013] [Indexed: 11/22/2022]
|
26
|
Chichester JA, Manceva SD, Rhee A, Coffin MV, Musiychuk K, Mett V, Shamloul M, Norikane J, Streatfield SJ, Yusibov V. A plant-produced protective antigen vaccine confers protection in rabbits against a lethal aerosolized challenge with Bacillus anthracis Ames spores. Hum Vaccin Immunother 2013; 9:544-52. [PMID: 23324615 PMCID: PMC3891710 DOI: 10.4161/hv.23233] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 11/21/2012] [Indexed: 11/19/2022] Open
Abstract
The potential use of Bacillus anthracis as a bioterrorism weapon threatens the security of populations globally, requiring the immediate availability of safe, efficient and easily delivered anthrax vaccine for mass vaccination. Extensive research efforts have been directed toward the development of recombinant subunit vaccines based on protective antigen (PA), the principal virulence factor of B. anthracis. Among the emerging technologies for the production of these vaccine antigens is our launch vector-based plant transient expression system. Using this system, we have successfully engineered, expressed, purified and characterized full-length PA (pp-PA83) in Nicotiana benthamiana plants using agroinfiltration. This plant-produced antigen elicited high toxin neutralizing antibody titers in mice and rabbits after two vaccine administrations with Alhydrogel. In addition, immunization with this vaccine candidate protected 100% of rabbits from a lethal aerosolized B. anthracis challenge. The vaccine effects were dose-dependent and required the presence of Alhydrogel adjuvant. In addition, the vaccine antigen formulated with Alhydrogel was stable and retained immunogenicity after two-week storage at 4°C, the conditions intended for clinical use. These results support the testing of this vaccine candidate in human volunteers and the utility of our plant expression system for the production of a recombinant anthrax vaccine.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Aerosols
- Aluminum Hydroxide/administration & dosage
- Animals
- Anthrax/immunology
- Anthrax/prevention & control
- Anthrax Vaccines/administration & dosage
- Anthrax Vaccines/immunology
- Antibodies, Bacterial/blood
- Antibodies, Neutralizing/blood
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/isolation & purification
- Bacterial Toxins/administration & dosage
- Bacterial Toxins/genetics
- Bacterial Toxins/immunology
- Bacterial Toxins/isolation & purification
- Disease Models, Animal
- Inhalation Exposure
- Mice, Inbred BALB C
- Plants, Genetically Modified/genetics
- Rabbits
- Survival Analysis
- Nicotiana/genetics
- Treatment Outcome
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
| | | | - Amy Rhee
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Megan V. Coffin
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | - Vadim Mett
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Moneim Shamloul
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Joey Norikane
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| |
Collapse
|
27
|
Hogenesch H. Mechanism of immunopotentiation and safety of aluminum adjuvants. Front Immunol 2013; 3:406. [PMID: 23335921 PMCID: PMC3541479 DOI: 10.3389/fimmu.2012.00406] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/16/2012] [Indexed: 12/24/2022] Open
Abstract
Aluminum-containing adjuvants are widely used in preventive vaccines against infectious diseases and in preparations for allergy immunotherapy. The mechanism by which they enhance the immune response remains poorly understood. Aluminum adjuvants selectively stimulate a Th2 immune response upon injection of mice and a mixed response in human beings. They support activation of CD8 T cells, but these cells do not undergo terminal differentiation to cytotoxic T cells. Adsorption of antigens to aluminum adjuvants enhances the immune response by facilitating phagocytosis and slowing the diffusion of antigens from the injection site which allows time for inflammatory cells to accumulate. The adsorptive strength is important as high affinity interactions interfere with the immune response. Adsorption can also affect the physical and chemical stability of antigens. Aluminum adjuvants activate dendritic cells via direct and indirect mechanisms. Phagocytosis of aluminum adjuvants followed by disruption of the phagolysosome activates NLRP3-inflammasomes resulting in the release of active IL-1β and IL-18. Aluminum adjuvants also activate dendritic cells by binding to membrane lipid rafts. Injection of aluminum-adjuvanted vaccines causes the release of uric acid, DNA, and ATP from damaged cells which in turn activate dendritic cells. The use of aluminum adjuvant is limited by weak stimulation of cell-mediated immunity. This can be enhanced by addition of other immunomodulatory molecules. Adsorption of these molecules is determined by the same mechanisms that control adsorption of antigens and can affect the efficacy of such combination adjuvants. The widespread use of aluminum adjuvants can be attributed in part to the excellent safety record based on a 70-year history of use. They cause local inflammation at the injection site, but also reduce the severity of systemic and local reactions by binding biologically active molecules in vaccines.
Collapse
Affiliation(s)
- Harm Hogenesch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University West Lafayette, IN, USA
| |
Collapse
|
28
|
Régnier M, Metz B, Tilstra W, Hendriksen C, Jiskoot W, Norde W, Kersten G. Structural perturbation of diphtheria toxoid upon adsorption to aluminium hydroxide adjuvant. Vaccine 2012; 30:6783-8. [DOI: 10.1016/j.vaccine.2012.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/19/2012] [Accepted: 09/07/2012] [Indexed: 10/27/2022]
|
29
|
Protein Antigen Adsorption to the DDA/TDB Liposomal Adjuvant: Effect on Protein Structure, Stability, and Liposome Physicochemical Characteristics. Pharm Res 2012; 30:140-55. [DOI: 10.1007/s11095-012-0856-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/02/2012] [Indexed: 12/24/2022]
|
30
|
Fox CB. Characterization of TLR4 agonist effects on alhydrogel® sedimentation: a novel application of laser scattering optical profiling. J Pharm Sci 2012; 101:4357-64. [PMID: 22927211 DOI: 10.1002/jps.23307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/18/2012] [Accepted: 08/08/2012] [Indexed: 01/13/2023]
Abstract
Aluminum salt formulations such as Alhydrogel® have been used for decades as effective and safe vaccine adjuvants. Aluminum salts have a high adsorptive capacity for vaccine antigens and other immunomodulatory molecules such as Toll-like receptor (TLR) agonists. However, the characterization of some Alhydrogel®-adsorbed TLR agonists is challenging, requiring destructive analysis, complex instrumentation, and/or desorption method development. In this report, we characterize the effects of an Alhydrogel®-adsorbed synthetic Toll-like receptor 4 (TLR4) agonist on aluminum salt sedimentation behavior using laser scattering optical profiling. This method facilitates the detection of the effects on aluminum salt sedimentation behavior of low amounts of adsorbed TLR4 agonist (<30 μM) with a minimum of sample preparation and analysis time by collecting light transmission simultaneously from the complete vertical profile of the sample.
Collapse
Affiliation(s)
- Christopher B Fox
- Infectious Disease Research Institute, Seattle, Washington 98104, USA.
| |
Collapse
|
31
|
Ljutic B, Ochs M, Messham B, Ming M, Dookie A, Harper K, Ausar SF. Formulation, stability and immunogenicity of a trivalent pneumococcal protein vaccine formulated with aluminum salt adjuvants. Vaccine 2012; 30:2981-8. [PMID: 22381074 DOI: 10.1016/j.vaccine.2012.02.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/27/2012] [Accepted: 02/16/2012] [Indexed: 01/19/2023]
Abstract
We investigated the immunogenicity, stability and adsorption properties of an experimental pneumococcal vaccine composed of three protein vaccine antigens; Pneumococcal histidine triad protein D, (PhtD), Pneumococcal choline-binding protein A (PcpA) and genetically detoxified pneumolysin D1 (PlyD1) formulated with aluminum salt adjuvants. Immunogenicity studies conducted in BALB/c mice showed that antibody responses to each antigen adjuvanted with aluminum hydroxide (AH) were significantly higher than when adjuvanted with aluminum phosphate (AP) or formulated without adjuvant. Lower microenvironment pH and decreased strength of antigen adsorption significantly improved the stability of antigens. The stability of PcpA and PlyD1 assessed by RP-HPLC correlated well with the immunogenicity of these antigens in mice and showed that pretreatment of the aluminum hydroxide adjuvant with phosphate ions improved their stability. Adjuvant dose-ranging studies showed that 28 μg Al/dose to be the concentration of adjuvant resulting in optimal immunogenicity of the trivalent vaccine formulation. Taken together, the results of theses studies suggest that the type of aluminum salt, strength of adsorption and microenvironment pH have a significant impact on the immunogenicity and chemical stability of an experimental vaccine composed of the three pneumococcal protein antigens, PhtD, PcpA, and PlyD1.
Collapse
Affiliation(s)
- Belma Ljutic
- Product Concept and Development, Sanofi Pasteur, Toronto, ON, M2R 3T4, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Braun LJ, Eldridge AM, Cummiskey J, Arthur KK, Wuttke DS. The role of adjuvant in mediating antigen structure and stability. J Pharm Sci 2011; 101:1391-9. [PMID: 22213631 DOI: 10.1002/jps.23039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 12/07/2011] [Accepted: 12/13/2011] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to probe the fate of a model antigen, a cysteine-free mutant of bacteriophage T4 lysozyme, to the level of fine structural detail, as a consequence of its interaction with an aluminum (Al)-containing adjuvant. Fluorescence spectroscopy and differential scanning calorimetry were used to compare the thermal stability of the protein in solution versus adsorbed onto an Al-containing adjuvant. Differences in accessible hydrophobic surface areas were investigated using an extrinsic fluorescence probe, 8-Anilino-1-naphthalenesulfonic acid (ANS). As has been observed with other model antigens, the apparent thermal stability of the protein decreased following adsorption onto the adjuvant. ANS spectra suggested that adsorption onto the adjuvant caused an increase in exposure of hydrophobic regions of the protein. Electrostatic interactions drove the adsorption, and disruption of these interactions with high ionic strength buffers facilitated the collection of two-dimensional (15) N heteronuclear single quantum coherence nuclear magnetic resonance data of protein released from the adjuvant. Although the altered stability of the adsorbed protein suggested changes to the protein's structure, the fine structure of the desorbed protein was nearly identical to the protein's structure in the adjuvant-free formulation. Thus, the adjuvant-induced changes to the protein that were responsible for the reduced thermal stability were not observed upon desorption.
Collapse
Affiliation(s)
- Latoya Jones Braun
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA.
| | | | | | | | | |
Collapse
|
33
|
Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB. Protein-excipient interactions: mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev 2011; 63:1118-59. [PMID: 21855584 DOI: 10.1016/j.addr.2011.07.006] [Citation(s) in RCA: 350] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/19/2011] [Accepted: 07/26/2011] [Indexed: 12/18/2022]
Abstract
The purpose of this review is to demonstrate the critical importance of understanding protein-excipient interactions as a key step in the rational design of formulations to stabilize and deliver protein-based therapeutic drugs and vaccines. Biophysical methods used to examine various molecular interactions between solutes and protein molecules are discussed with an emphasis on applications to pharmaceutical excipients in terms of their effects on protein stability. Key mechanisms of protein-excipient interactions such as electrostatic and cation-pi interactions, preferential hydration, dispersive forces, and hydrogen bonding are presented in the context of different physical states of the formulation such as frozen liquids, solutions, gels, freeze-dried solids and interfacial phenomenon. An overview of the different classes of pharmaceutical excipients used to formulate and stabilize protein therapeutic drugs is also presented along with the rationale for use in different dosage forms including practical pharmaceutical considerations. The utility of high throughput analytical methodologies to examine protein-excipient interactions is presented in terms of expanding formulation design space and accelerating experimental timelines.
Collapse
Affiliation(s)
- Tim J Kamerzell
- Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|
34
|
High-throughput screening of excipients intended to prevent antigen aggregation at air-liquid interface. Pharm Res 2011; 28:1591-605. [PMID: 21400018 DOI: 10.1007/s11095-011-0393-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE The aim was to develop a high-throughput screening method compatible with low protein concentrations, as present in vaccines, in order to evaluate the performance of various excipients in preventing the aggregation at air-liquid interface of an experimental recombinant antigen called Antigen 18A. METHODS Aggregation of Antigen 18A was triggered by shaking in a half-filled vial or by air bubbling in a microplate. Size-exclusion chromatography, turbidimetry, Nile Red fluorescence spectroscopy, and attenuated total reflection Fourier-transform infrared spectroscopy were used to assess Antigen 18A aggregation. A high-throughput method, based on tryptophan fluorescence spectroscopy, was set up to screen excipients for their capability to prevent Antigen 18A aggregation at air-liquid interface. RESULTS While a similar aggregation profile was obtained with both stress tests when using size-exclusion chromatography, spectroscopic and turbidimetric methods showed an influence of the stress protocol on the nature of the aggregates. The high-throughput screening revealed that 7 out of 44 excipients significantly prevented Antigen 18A from aggregating. We confirmed the performance of hydroxypropyl-β-cyclodextrin and hydroxypropyl-γ-cyclodextrin, as well as poloxamers 188 and 407, in half-filled shaken vials. CONCLUSIONS A high-throughput screening approach can be followed for evaluating the performance of excipients against aggregation of a protein antigen at air-liquid interface.
Collapse
|