1
|
Sreenivasan S, Rathore AS. Impact of Various Forced Oxidative Stress Factors in Rapid Degradation of mAb: Trastuzumab as a Case Study. Pharm Res 2025:10.1007/s11095-025-03816-4. [PMID: 39849217 DOI: 10.1007/s11095-025-03816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/01/2025] [Indexed: 01/25/2025]
Abstract
PURPOSE Therapeutic monoclonal antibodies (mAbs) are prone to degradation via aggregation and fragmentation. In this study, forced degradation of trastuzumab (TmAb) was explored in saline and in-vitro models having H2O2 and exposed to UV light (case study 1), both bleomycin (BML) formulation and ferrous ions (Fe2+) (case study 2), and sodium hypochlorite (NaOCl) (case study 3). METHODS Size exclusion chromatography, dynamic light scattering, spectroscopic analysis, and fluorescence microscope image processing was carried out for characterizing TmAb degradation. RESULTS Saline samples containing TmAb and 0.1% H2O2 incubated at 40ºC for 1 h in the presence of UV light showed increased monomer loss by more than 40% compared to TmAb sample without H2O2 exposed to UV light. Saline containing TmAb having both 0.1-unit BML and 0.25 mM Fe2+ showed increased monomer loss by more than 50% compared to TmAb in saline having only Fe2+ or BML. A higher TmAb degradation was also observed in saline containing 0.01% NaOCl compared to saline without NaOCl. Samples containing aggregates of mAb showed altered protein structure. Degradation of TmAb in saline increased with time, temperature, and concentrations of H2O2, Fe2+, and NaOCl. At different analysis time points, TmAb monomer loss was higher in saline compared to human serum filtrate, an in-vitro model. Aggregate particles (> 2 µm size) of TmAb were also observed in serum containing both Fe2+ and BML. CONCLUSION It can be concluded that rapid TmAb degradation significantly enhanced due to various stress factors, and the aggregates could result in enhanced immunogenic risk to the patients.
Collapse
Affiliation(s)
- Shravan Sreenivasan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
- DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
2
|
Aquino RP, Falcone G, Russo P, Dal Piaz F, Auriemma G, de Francesco FM, Cascone S, Nava E, Del Gaudio P. Integrating Analytical Procedures in Routine Practices of Centralized Antiblastic Compounding Units for Valorization of Residual Compounded Drugs. Pharmaceutics 2025; 17:101. [PMID: 39861749 PMCID: PMC11769000 DOI: 10.3390/pharmaceutics17010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Although extemporaneous formulations of anticancer drug products for personalized therapy are produced according to Good Hospital Pharmacy Manufacturing Practice, the lack of knowledge about drug stability under clinical conditions limits the second-time use of these highly costly medications in clinical practice. Therefore, the residual compounded drugs are considered waste and a cost item that negatively affects the healthcare system. In the context of the ever-increasing interest of the health system in applying practices in line with personalized medicine and spending review policies, this research aimed to demonstrate the feasibility of incorporating analytical techniques into daily routine practice. Specifically, the present research focused on fast stability analysis of Active Pharmaceutical Ingredients (APIs) in antiblastic residual compounded drugs with the purpose of demonstrating their potentialities as a resource for possible second-time use. METHODS Two different subsets of drug products were analyzed, i.e., medicines containing small molecules and medicines containing monoclonal antibodies. In relation to their different physicochemical properties, two analytical approaches were optimized and involved in the stability investigation: HPLC-DAD for small molecules and a combined approach of LC-MS/MS with size exclusion chromatography for monoclonal antibodies analysis. RESULTS Results underlined that the stability data, as available in the summary of product characteristics related to each medicine, do not completely describe the physicochemical shelf-life of anticancer compounded drugs. CONCLUSIONS In fact, for all tested products, our results suggested a longer shelf-life in comparison to the datasheet, giving hospital pharmacists the possibility to extend the clinical use of compounded drugs, improving the cost-benefit of anticancer personalized therapy.
Collapse
Affiliation(s)
- Rita Patrizia Aquino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (R.P.A.); (G.F.); (G.A.); (P.D.G.)
| | - Giovanni Falcone
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (R.P.A.); (G.F.); (G.A.); (P.D.G.)
| | - Paola Russo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (R.P.A.); (G.F.); (G.A.); (P.D.G.)
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy;
| | - Giulia Auriemma
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (R.P.A.); (G.F.); (G.A.); (P.D.G.)
| | - Ferdinando Maria de Francesco
- Pharmaceutical Department, Local Health Authority Naples 3 South, 80059 Torre Del Greco, Italy; (F.M.d.F.); (S.C.); (E.N.)
| | - Stefania Cascone
- Pharmaceutical Department, Local Health Authority Naples 3 South, 80059 Torre Del Greco, Italy; (F.M.d.F.); (S.C.); (E.N.)
| | - Eduardo Nava
- Pharmaceutical Department, Local Health Authority Naples 3 South, 80059 Torre Del Greco, Italy; (F.M.d.F.); (S.C.); (E.N.)
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (R.P.A.); (G.F.); (G.A.); (P.D.G.)
| |
Collapse
|
3
|
Goodarzi MM, Jalalirad R. Clear insight into complex multimodal resins and impurities to overcome recombinant protein purification challenges: A review. Biotechnol Bioeng 2025; 122:5-29. [PMID: 39290077 DOI: 10.1002/bit.28846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Increasing attention has been paid to the purity of therapeutic proteins imposing extensive costs and challenges to the downstream processing of biopharmaceuticals. One of the efforts, that has been exerted to overcome such limitations, was developing multimodal or mixed-mode chromatography (MMC) resins for launching selective, orthogonal, non-affinity purification platforms. Despite relatively extensive usage of MMC resins, their real potential and fulfillment have not been extensively reviewed yet. In this work, the explanation of practical and key aspects of downstream processing of recombinant proteins with or without MMC resins was debated, as being useful for further purification process development. This review has been written as a step-by-step guide to deconvolute both inherent protein purification and MMC complexities. Here, after complete elucidation of the potential of MMC resins, the effects of frequently used additives (mobile phase modifiers) and their possible interactions during the purification process, the critical characteristics of common product-related impurities (e.g., aggregates, charge variants, fragments), host-related impurities (e.g., host cell protein and DNA) and process related impurities (e.g., endotoxin, and viruses) with solved or unsolved challenges of traditional and MMC resins have been discussed. Such collective experiences which are reported in this study could be considered as an applied guide for developing successful downstream processing in challenging conditions by providing a clear insight into complex MMC resins and impurities.
Collapse
Affiliation(s)
- Maryam Moazami Goodarzi
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran
| | - Reza Jalalirad
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran
| |
Collapse
|
4
|
Sreenivasan S, Schöneich C, Rathore AS. Aggregation of therapeutic monoclonal antibodies due to thermal and air/liquid interfacial agitation stress: Occurrence, stability assessment strategies, aggregation mechanism, influencing factors, and ways to enhance stability. Int J Pharm 2024; 666:124735. [PMID: 39326478 DOI: 10.1016/j.ijpharm.2024.124735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Therapeutic proteins, such as monoclonal antibodies (mAbs) are known to undergo stability related issues during various stages of product life cycle resulting in the formation of aggregates and fragments. Aggregates of mAb might result in reduced therapeutic activity and could cause various adverse immunogenic responses. Sample containing mAb undergo aggregation due to various types of stress factors, and there is always a continuous interest among researchers and manufacturers to determine the effect of different factors on the stability of mAb. Thermal stress and air/liquid interfacial agitation stress are among two of the common stress factors to which samples containing mAb are exposed to during various stages. Initial part of this review articles aims to provide a generalized understanding of aggregation of mAb such as size ranges of aggregates, aggregate types, stress factors, analytical techniques, permissible aggregate limits, and stability assessment methods. This article further aims to explain different aspects associated with aggregation of mAb in liquid samples due to thermal and air/liquid interfacial agitation stress. Under each stress category, the occurrence of stress during product life cycle, type of aggregates formed, mechanism of aggregation, strategies used by various researchers to expose mAb containing samples to stress, different factors affecting aggregation, fate of aggregates in human body fluids, and strategies used to enhance mAb stability has been explained in detail. The authors hope that this article provides a detailed understanding about stability of mAb due to thermal and air/liquid interfacial stress with relevance to product life cycle from manufacturing to administration into patients.
Collapse
Affiliation(s)
- Shravan Sreenivasan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India
| | | | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India.
| |
Collapse
|
5
|
Strebl M, Arache A, Blech M, Bakowsky U, Garidel P. Evaluating the influence of the initial high molecular weight level on monoclonal antibody particle formation kinetics using a short-term chemical stress study. Eur J Pharm Sci 2024; 203:106924. [PMID: 39426179 DOI: 10.1016/j.ejps.2024.106924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
Protein formulations may form proteinaceous particles that vary in size from nanometers to millimeters. Monitoring the kinetics of protein particle formation, e.g., through accelerated degradation studies, is an attempt to understand and assess the rate and progression of particle populations. Little is known about whether the initial level of high molecular weight (HMW) species, or initial HMW level (IHL), of a protein solution influences the propagation of protein particle formation, and thus affects the storage stability of proteins. In this study, we have established a method to generate protein solutions of different IHLs by thermal stress. We have evaluated a 16-week thermal stability study at 40 °C of two monoclonal antibodies (mAb-A and mAb-B) at different IHLs using size exclusion chromatography (SEC) and sub-visible particle analysis. We have performed an isothermal stress study with guanidinium hydrochloride (GuaHCl) at room temperature for 300-min to evaluate the formation of HMWs analysed by SEC. The application of the Finke-Watzky (F-W) two-step nucleation model allowed us to mathematically describe the kinetics of HMW formation and to extract kinetic parameters of this process. For mAb-A, the IHLs had a marginal influence on the loss of monomer rate; instead, mAb-A exhibited fragmentation at 40 °C, which was independent of the IHL. Nevertheless, above a threshold of ≥ 7 % IHL, existing trimers/tetramers undergo conversion into higher-order oligomers at 40 °C, which is not observed at lower IHLs. In contrast, mAb-B exhibited an increased HMW formation rate above a threshold of ≥ 4 % IHL, which was reflected in the monomer decay rates at 40 °C and the F-W kinetic parameters of the chemical stress study. This case study shows that the initial level of HMWs exerts a differential influence on the progression of HMW formation. In one instance, there is a discernible acceleration in the formation of HMWs with rising IHLs. Conversely, in another example, the IHL exerts only a slight influence on HMW formation. Moreover, the results of our short-term chemical stress study are in accordance with those of a classical storage stability study conducted at 40 °C, which evaluated different IHLs. The analysis of HMW formation kinetics will enhance our understanding of the protein particle formation process and facilitate the formulation development of biotherapeutics.
Collapse
Affiliation(s)
- Michael Strebl
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Straße 65, D-88397 Biberach an der Riss, Germany.
| | - Anis Arache
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Straße 65, D-88397 Biberach an der Riss, Germany
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Straße 65, D-88397 Biberach an der Riss, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, Philipps University of Marburg, D-35037 Marburg, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Straße 65, D-88397 Biberach an der Riss, Germany.
| |
Collapse
|
6
|
Pandya A, Zhang C, Barata TS, Brocchini S, Howard MJ, Zloh M, Dalby PA. Molecular Dynamics Simulations Reveal How Competing Protein-Surface Interactions for Glycine, Citrate, and Water Modulate Stability in Antibody Fragment Formulations. Mol Pharm 2024; 21:5497-5509. [PMID: 39431440 PMCID: PMC11539065 DOI: 10.1021/acs.molpharmaceut.4c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024]
Abstract
The design of stable formulations remains a major challenge for protein therapeutics, particularly the need to minimize aggregation. Experimental formulation screens are typically based on thermal transition midpoints (Tm), and forced degradation studies at elevated temperatures. Both approaches give limited predictions of long-term storage stability, particularly at low temperatures. Better understanding of the mechanisms of action for formulation of excipients and buffers could lead to improved strategies for formulation design. Here, we identified a complex impact of glycine concentration on the experimentally determined stability of an antibody Fab fragment and then used molecular dynamics simulations to reveal mechanisms that underpin these complex behaviors. Tm values increased monotonically with glycine concentration, but associated ΔSvh measurements revealed more complex changes in the native ensemble dynamics, which reached a maximum at 30 mg/mL. The aggregation kinetics at 65 °C were similar at 0 and 20 mg/mL glycine, but then significantly slower at 50 mg/mL. These complex behaviors indicated changes in the dominant stabilizing mechanisms as the glycine concentration was increased. MD revealed a complex balance of glycine self-interaction, and differentially preferred interactions of glycine with the Fab as it displaced hydration-shell water, and surface-bound water and citrate buffer molecules. As a result, glycine binding to the Fab surface had different effects at different concentrations, and led from preferential interactions at low concentrations to preferential exclusion at higher concentrations. During preferential interaction, glycine displaced water from the Fab hydration shell, and a small number of water and citrate molecules from the Fab surface, which reduced the protein dynamics as measured by root-mean-square fluctuation (RMSF) on the short time scales of MD. By contrast, the native ensemble dynamics increased according to ΔSvh, suggesting increased conformational changes on longer time scales. The aggregation kinetics did not change at low glycine concentrations, and so the opposing dynamics effects either canceled out or were not directly relevant to aggregation. During preferential exclusion at higher glycine concentrations, glycine could only bind to the Fab surface through the displacement of citrate buffer molecules already favorably bound on the Fab surface. Displacement of citrate increased the flexibility (RMSF) of the Fab, as glycine formed fewer bridging hydrogen bonds to the Fab surface. Overall, the slowing of aggregation kinetics coincided with reduced flexibility in the Fab ensemble at the very highest glycine concentrations, as determined by both RMSF and ΔSvh, and occurred at a point where glycine binding displaced neither water nor citrate. These final interactions with the Fab surface were driven by mass action and were the least favorable, leading to a macromolecular crowding effect under the regime of preferential exclusion that stabilized the dynamics of Fab.
Collapse
Affiliation(s)
- Akash Pandya
- Department
of Biochemical Engineering, University College
London, Gower Street, London WC1E
6BT, U.K.
| | - Cheng Zhang
- Department
of Biochemical Engineering, University College
London, Gower Street, London WC1E
6BT, U.K.
| | - Teresa S. Barata
- School
of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Steve Brocchini
- School
of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Mark J. Howard
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Mire Zloh
- School
of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Paul A. Dalby
- Department
of Biochemical Engineering, University College
London, Gower Street, London WC1E
6BT, U.K.
| |
Collapse
|
7
|
Schön A, Kwon YD, Bender MF, Freire E. Extrapolating differential scanning calorimetry data for monoclonal antibodies to low temperatures. Anal Biochem 2024; 691:115533. [PMID: 38642818 PMCID: PMC11268162 DOI: 10.1016/j.ab.2024.115533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
For irreversible denaturation transitions such as those exhibited by monoclonal antibodies, differential scanning calorimetry provides the denaturation temperature, Tm, the rate of denaturation at Tm, and the activation energy at Tm. These three quantities are essential but not sufficient for an accurate extrapolation of the rate of denaturation to temperatures of 25 °C and below. We have observed that the activation energy is not constant but temperature dependent due to the existence of an activation heat capacity, Cp,a. It is shown in this paper that a model that incorporates Cp,a is able to account for previous observations like, for example, that increasing the Tm does not always improve the stability at low temperatures; that some antibodies exhibit lower stabilities at 5 °C than at 25 °C; or that low temperature stabilities do not follow the rank order derived from Tm values. Most importantly, the activation heat capacity model is able to reproduce time dependent stabilities measured by size exclusion chromatography at low temperatures.
Collapse
Affiliation(s)
- Arne Schön
- Department of Biology, Johns Hopkins University, 3400 North Charles, Baltimore, MD, 21218, USA
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael F Bender
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ernesto Freire
- Department of Biology, Johns Hopkins University, 3400 North Charles, Baltimore, MD, 21218, USA.
| |
Collapse
|
8
|
Wu Z, Wang H, Zhao X, Gong C, Sidnam S, Cantero-Tubilla B, Nedjic-Dugic B, Li M, Wu J, Su Y, Huang Y, Qiu H, Li N. Characterization of Therapeutic Antibody Charge Heterogeneity Under Stress Conditions by Microfluidic Capillary Electrophoresis Coupled with Mass Spectrometry. J Pharm Sci 2024; 113:2170-2177. [PMID: 38796156 DOI: 10.1016/j.xphs.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024]
Abstract
Therapeutic antibodies are a major class of biopharmaceutics that are applied in disease treatment because of their many advantages, including high specificity and high affinity to molecular targets. Between their production and administration, therapeutic antibodies are exposed to multiple stress conditions. Forced degradation and stress stability studies are conducted to simulate the risk of degradation and the effects of these stresses, thereby enhancing understanding of the drug product to support strategies to mitigate the impact from stressed conditions. These types of studies are also routinely conducted to evaluate product comparability when major process changes are implemented during the production. Charge variant analysis helps understand the changes in the electrostatic environment of biotherapeutics and can uncover underlying molecular level alterations associated with charge variants. Herein, we used ZipChip native capillary electrophoresis-mass spectrometry (nCE-MS) to elucidate the changes in charge variant profiles at the molecular level. In two case studies under thermal stress conditions, we observed that charge variants arose from both post-translational modifications (including deamidation, oxidation, and pyroglutamate formation) and sequence truncations at the hinge regions. Under oxidative stress conditions, oxidation was found to be the major contributor to the changes in the charge variant profiles. Under pH stress conditions, the changes in the charge variant profile were due to increased levels of deamidation, oxidation, and pyroglutamate formation. ZipChip nCE-MS analysis enables identification of charge variant species under various stress conditions, thus supporting process and formulation development of biotherapeutics.
Collapse
Affiliation(s)
- Zhijie Wu
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA.
| | - Hongxia Wang
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Xueqing Zhao
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Chao Gong
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Sarah Sidnam
- CMC Regulatory Sciences, Regeneron Pharmaceuticals Inc., Rensselaer, NY, USA
| | | | | | - Meinuo Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Jikang Wu
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Yue Su
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Yu Huang
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA.
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| |
Collapse
|
9
|
Sankaran PK, Poskute R, Dewis L, Watanabe Y, Wong V, Fernandez LP, Shannon R, Wong L, Shrubsall R, Carman L, Holt A, Lepore G, Mishra R, Sewell L, Gothard M, Cheeks M, Lindo V. Comprehensive Stress Stability Studies Reveal the Prominent Stability of the Liquid-Formulated Biotherapeutic Asymmetric Monovalent Bispecific IgG1 Monoclonal Antibody Format. J Pharm Sci 2024; 113:2101-2113. [PMID: 38705464 DOI: 10.1016/j.xphs.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
The developed asymmetric monovalent bispecific IgG1 or Duet monoclonal antibody (Duet mAb) has two distinct fragment antigen-binding region (Fab) subunits that target two different epitope specificities sequentially or simultaneously. The design features include unique engineered disulfide bridges, knob-into-hole mutations, and kappa and lambda chains to produce Duet mAbs. These make it structurally and functionally complex, so one expects challenging developability linked to instability, degradation of products and pathways, and limited reports available. Here, we have treated the product with different sources of extreme stress over a lengthy period, including varying heat, pH, photo stress, chemical oxidative stress, accelerated stress in physiological conditions, and forced glycation conditions. The effects of different stress conditions on the product were assessed using various analytical characterization tools to measure product-related substances, post-translational modifications (PTMs), structural integrity, higher-order disulfide linkages, and biological activity. The results revealed degradation products and pathways of Duet mAb. A moderate increase in size, charge, and hydrophobic variants, PTMs, including deamidation, oxidation, isomerization, and glycation were observed, with most conditions exhibiting biological activity. In addition, the characterization of fractionated charge variants, including deamidated species, showed satisfactory biological activity. This study demonstrated the prominent stability of the Duet mAb format comparable to most marketed mAbs.
Collapse
Affiliation(s)
| | - Ryte Poskute
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Lydia Dewis
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Yasunori Watanabe
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Vanessa Wong
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | | | - Richard Shannon
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Lisa Wong
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Rebecca Shrubsall
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Lee Carman
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Alexander Holt
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Giordana Lepore
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Rahul Mishra
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Laura Sewell
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Matt Gothard
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Matthew Cheeks
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Viv Lindo
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
10
|
Som M, Gikanga B, Kanapuram V, Yadav S. Drug product Formulation and Fill/Finish Manufacturing Process Considerations for AAV-Based Genomic Medicines. J Pharm Sci 2024; 113:1711-1725. [PMID: 38570073 DOI: 10.1016/j.xphs.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Adeno-associated viruses (AAVs) have become the delivery medium of choice for a variety of genomic medicine applications i.e., gene therapy, gene editing/regulation, and ex-vivo cell therapy. AAVs are protein-DNA complexes which have unique stability characteristics that are susceptible to various stress exposure conditions commonly seen in the drug product (DP) life cycle. This review takes a comprehensive look at AAV DP formulation and process development considerations that could impact critical quality attributes (CQAs) during manufacturing, packaging, shipping, and clinical use. Additional aspects related to AAV development reviewed herein are: (1) Different AAV serotypes with unique protein sequences and charge characteristics potentially leading to discrete stability profiles; (2) Manufacturing process challenges and optimization efforts to improve yield, recovery and purity especially during early development activities; and (3) Defining and identifying CQAs with analytical methods which are constantly evolving and present unique characterization challenges for AAV-based products.
Collapse
Affiliation(s)
- Madhura Som
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States.
| | - Benson Gikanga
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States
| | - Varna Kanapuram
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States
| | - Sandeep Yadav
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States.
| |
Collapse
|
11
|
Du Y, Song J, Lu L, Yeung E, Givand J, Procopio A, Su Y, Hu G. Design of a Reciprocal Injection Device for Stability Studies of Parenteral Biological Drug Products. J Pharm Sci 2024; 113:1330-1338. [PMID: 38113997 DOI: 10.1016/j.xphs.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
Formulation screening, essential for assessing the impact of physical, chemical, and mechanical stresses on protein stability, plays a critical role in biologics drug product development. This research introduces a Reciprocal Injection Device (RID) designed to accelerate formulation screening by probing protein stability under intensified stress conditions within prefilled syringes. This versatile device is designed to accommodate a broad spectrum of injection parameters and diverse syringe dimensions. A commercial drug product was employed as a model monoclonal antibody formulation. Our findings effectively highlight the efficacy of the RID in assessing concentration-dependent protein stability. This device exhibits significant potential to amplify the influences of interfacial interactions, such as those with buffer salts, excipients, air, metals, and silicone oils, commonly found in combination drug products, and to evaluate the protein stability under varied stresses.
Collapse
Affiliation(s)
- Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Jing Song
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Lynn Lu
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Edward Yeung
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Jeffrey Givand
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Adam Procopio
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Yongchao Su
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, United States.
| | - Guangli Hu
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, United States.
| |
Collapse
|
12
|
Dasnoy S, Illartin M, Queffelec J, Nkunku A, Peerboom C. Combined Effect of Shaking Orbit and Vial Orientation on the Agitation-Induced Aggregation of Proteins. J Pharm Sci 2024; 113:669-679. [PMID: 37611666 DOI: 10.1016/j.xphs.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Orbital shaking in a glass vial is a commonly used forced degradation test to evaluate protein propensity for agitation-induced aggregation. Vial shaking in horizontal orientation has been widely recommended to maximize the air-liquid interface area while ensuring solution contact with the stopper. We evaluated the impact of shaking orbit diameter and frequency, and glass vial orientation (horizontal versus vertical) on the aggregation of three proteins prepared in surfactant-free formulation buffers. As soon as an orbit-specific frequency threshold was reached, an increase in turbidity was observed for the three proteins in vertical orientation only when using a 3 mm agitation orbit, and in horizontal orientation only when using a 30 mm agitation orbit. Orthogonal analyses confirmed turbidity was linked to protein aggregation. The most turbid samples had a visually more homogeneous appearance in vertical than in horizontal orientation, in line with the predicted dispersion of air and liquid phases obtained from computational fluid dynamics agitation simulations. Both shaking orbits were used to assess the performance of nonionic surfactants. We show that the propensity of a protein to aggregate in a vial agitated in horizontal or vertical orientation depends on the shaking orbit, and confirm that Brij® 58 and FM1000 prevent proteins from agitation-induced aggregation at lower concentrations than polysorbate 80.
Collapse
Affiliation(s)
| | - Marion Illartin
- UCB Pharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium; Institut Mines-Télécom (IMT) Mines Albi, Allée des Sciences, 81000 Albi, France
| | - Julie Queffelec
- UCB Pharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium; Institut Mines-Télécom (IMT) Mines Albi, Allée des Sciences, 81000 Albi, France
| | - Aubrey Nkunku
- UCB Pharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium; ALTEN Belgium, Chaussée de Charleroi 112, 1060 Bruxelles, Belgium
| | - Claude Peerboom
- UCB Pharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| |
Collapse
|
13
|
Campbell JM, Colombo S, Doyle JL, Filoti DI, Hübner G, Magnenat L, Nowinski AK, Pavon JA, Singh SM, Vo LR, Woods JM, Stokes ESE. An Industry Perspective on the use of Forced Degradation Studies to Assess Comparability of Biopharmaceuticals. J Pharm Sci 2024; 113:505-512. [PMID: 38103689 DOI: 10.1016/j.xphs.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Forced degradation, also known as stress testing, is used throughout pharmaceutical development for many purposes including assessing the comparability of biopharmaceutical products according to ICH Guideline Q5E. These formal comparability studies, the results of which are submitted to health authorities, investigate potential impacts of manufacturing process changes on the quality, safety, and efficacy of the drug. Despite the wide use of forced degradation in comparability assessments, detailed guidance on the design and interpretation of such studies is scarce. The BioPhorum Development Group is an industry-wide consortium enabling networking and sharing of common practices for the development of biopharmaceuticals. The BioPhorum Development Group Forced Degradation Workstream recently conducted several group discussions and a benchmarking survey to understand current industry approaches for the use of forced degradation studies to assess comparability of protein-based biopharmaceuticals. The results provide insight into the design of forced degradation studies, analytical characterization and testing strategies, data evaluation criteria, as well as some considerations and differences for non-platform modalities (e.g., non-traditional mAbs). This article presents survey responses from several global companies of various sizes and provides an industry perspective and experience regarding the practicalities of using forced degradation to assess comparability.
Collapse
Affiliation(s)
- John M Campbell
- GlaxoSmithKline Analytical Development, Upper Providence, PA, 19426, United States
| | - Stefano Colombo
- LEO Pharma A/S, Industriparken 55, Ballerup, DK, 2750, Denmark
| | - Jamie L Doyle
- Regeneron, Quality Control Analytical Sciences, 81 Columbia Tpke, Rensselaer, NY, 12144, United States
| | - Dana I Filoti
- AbbVie Inc., Development Sciences Data & Digital Strategy, 1N. Waukegan Rd., North Chicago, IL, 60064, United States
| | - Göran Hübner
- Boehringer Ingelheim Pharma GmbH & Co KG, Analytical Dev. Biologicals, 88397, Biberach an der Riss, Germany
| | - Laurent Magnenat
- Fresenius Kabi SwissBioSim GmbH, Analytical and Pharmaceutical Development, Route de Crassier 23, 1262, Eysins, Switzerland
| | - Ann K Nowinski
- Seagen Inc., Pharmaceutical Sciences, 21823 30th Drive Southeast, Bothell, WA, 98021, United States
| | - Jorge Alex Pavon
- Merck & Co., Inc., Biologics Analytical Research and Development, 2000 Galloping Hill Road, Kenilworth, NJ, 07033, United States
| | - Surinder M Singh
- Bristol Myers Squibb, Analytical Development & Attribute Science, 1 Squibb Drive, North Brunswick, New Jersey, 08902, United States
| | - Laila R Vo
- Novo Nordisk A/S, CMC Analytical development, Novo Nordisk Park B7.2.021, 2760, Maaloev, Denmark
| | - Joshua M Woods
- Pfizer, Analytical Research and Development, 875 Chesterfield Pkwy W, Chesterfield, MO, 63017, United States
| | - Elaine S E Stokes
- BioPhorum Operations Group, The Gridiron Building, 1 Pancras Square, London, N1C 4AG, United Kingdom.
| |
Collapse
|
14
|
Sreenivasan S, Rathore AS. Taurine, a Naturally Occurring Amino Acid, as a Physical Stability Enhancer of Different Monoclonal Antibodies. AAPS J 2024; 26:25. [PMID: 38355847 DOI: 10.1208/s12248-024-00893-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/01/2024] [Indexed: 02/16/2024] Open
Abstract
Degradation of therapeutic monoclonal antibodies (mAbs) is a major concern as it affects efficacy, shelf-life, and safety of the product. Taurine, a naturally occurring amino acid, is investigated in this study as a potential mAb stabilizer with an extensive analytical characterization to monitor product degradation. Forced degradation of trastuzumab biosimilar (mAb1)-containing samples by thermal stress for 30 min resulted in high-molecular-weight species by more than 65% in sample without taurine compared to the sample with taurine. Samples containing mAb1 without taurine also resulted in higher Z-average diameter, altered protein structure, higher hydrophobicity, and lower melting temperature compared to samples with taurine. The stabilizing effect of taurine was retained at different mAb and taurine concentrations, time, temperatures, and buffers, and at the presence of polysorbate 80 (PS80). Even the lowest taurine concentration (10 mM) considered in this study, which is in the range of taurine levels in amino acid injections, resulted in enhanced mAb stability. Taurine-containing samples resulted in 90% less hemolysis than samples containing PS80. Additionally, mAb in the presence of taurine showed enhanced stability upon subjecting to stress with light of 365 nm wavelength, combination of light and H2O2, and combination of Fe2+ and H2O2, as samples containing mAb without taurine resulted in increased degradation products by more than 50% compared to samples with taurine upon subjecting to these stresses for 60 min. In conclusion, the presence of taurine enhanced physical stability of mAb by preventing aggregate formation, and the industry can consider it as a new mAb stabilizer.
Collapse
Affiliation(s)
- Shravan Sreenivasan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
15
|
Moino C, Artusio F, Pisano R. Shear stress as a driver of degradation for protein-based therapeutics: More accomplice than culprit. Int J Pharm 2024; 650:123679. [PMID: 38065348 DOI: 10.1016/j.ijpharm.2023.123679] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/08/2024]
Abstract
Protein degradation is a major concern for protein-based therapeutics. It may alter the biological activity of the product and raise the potential for undesirable effects on the patients. Among the numerous drivers of protein degradation, shear stress has been the focus around which much work has revolved since the 1970s. In the pharmaceutical realm, the product is often processed through several unit operations, which include mixing, pumping, filtration, filling, and atomization. Nonetheless, the drug might be exposed to significant shear stresses, which might cooperatively contribute to product degradation, together with interfacial stress. This review presents fundamentals of shear stress about protein structure, followed by an overview of the drivers of product degradation. The impact of shear stress on protein stability in different unit operations is then presented, and recommendations for limiting the adverse effects on the biopharmaceutical formulations are outlined. Finally, several devices used to explore the effects of shear stress are discussed.
Collapse
Affiliation(s)
- Camilla Moino
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, Torino 10129, Italy
| | - Fiora Artusio
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, Torino 10129, Italy
| | - Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, Torino 10129, Italy.
| |
Collapse
|
16
|
Torrente-López A, Hermosilla J, Salmerón-García A, Cabeza J, Ruiz-Martínez A, Navas N. Comprehensive physicochemical and functional analysis of pembrolizumab based on controlled degradation studies: Impact on antigen-antibody binding. Eur J Pharm Biopharm 2024; 194:131-147. [PMID: 38101489 DOI: 10.1016/j.ejpb.2023.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Monoclonal antibodies-based medicines are widely used in the treatment of different diseases. These medicines are very sensitive to exposure to different environmental conditions and their handling in hospitals may affect their safety and efficacy. This is the case for pembrolizumab (Keytruda®, 25 mg/mL), for which there is not yet much information on its risk behaviour associated with routine handling or unintentional mishandling. Here we performed a wider physicochemical and functional analysis of pembrolizumab medicine including controlled degradation studies: heat, freeze/thaw, agitation, accelerated light exposure and high hypertonic solution. After that, the samples were analysed by a set of analytical techniques to evaluated critical quality attributes: Far-UV CD, IT-FS, DLS, RP/UHPLC(UV)-MS, SE/UHPLC(UV), RP/UHPLC(UV)-MS/MS and ELISA. The results provide an in-depth understanding of the biochemical and biophysical properties of pembrolizumab, showing that the medicine is affected by accelerated light exposure and temperature of 60 °C, demonstrated by the detection of non-natural dimers and HMWS. Light exposure also revealed different isoform profile and increase in oxidations. Regarding functionality by means of the interaction antigen-antibody binding, all the stressors promoted a decrease in pembrolizumab capacity to bind to PD-1 receptor, although the biological activity remained still high for all of them, being 60 °C and accelerated light exposure the most affected.
Collapse
Affiliation(s)
- Anabel Torrente-López
- Department of Analytical Chemistry, Science Faculty, Biohealth Research Institute (ibs.GRANADA), University of Granada, E-18071 Granada, Spain
| | - Jesús Hermosilla
- Department of Analytical Chemistry, Science Faculty, Biohealth Research Institute (ibs.GRANADA), University of Granada, E-18071 Granada, Spain
| | - Antonio Salmerón-García
- Department of Clinical Pharmacy, Biohealth Research Institute (ibs.GRANADA), San Cecilio University Hospital, E-18012 Granada, Spain
| | - José Cabeza
- Department of Clinical Pharmacy, Biohealth Research Institute (ibs.GRANADA), San Cecilio University Hospital, E-18012 Granada, Spain
| | - Adolfina Ruiz-Martínez
- Department of Pharmacy and Pharmaceutical Technology, Pharmacy Faculty, University of Granada, E-18011 Granada, Spain
| | - Natalia Navas
- Department of Analytical Chemistry, Science Faculty, Biohealth Research Institute (ibs.GRANADA), University of Granada, E-18071 Granada, Spain.
| |
Collapse
|
17
|
Meleties M, Cooper BM, Marcano-James D, Bhalla AS, Shameem M. Vaporized Hydrogen Peroxide Sterilization in the Production of Protein Therapeutics: Uptake and Effects on Product Quality. J Pharm Sci 2023; 112:2991-3004. [PMID: 37751805 DOI: 10.1016/j.xphs.2023.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
The aseptic filling of drug products is carried out in pharmaceutical isolators that have been sterilized. A commonly used method for achieving a high level of sterility assurance is vaporized hydrogen peroxide (VHP) sterilization, which is favorable to other methods, such as ethylene oxide sterilization, due to its low cycle times and nontoxic residuals. While VHP cycles are often employed to create a sterile environment within an isolator, they can leave residual levels of hydrogen peroxide behind that can enter the product during fill-finish operations. Due to the oxidizing potential of hydrogen peroxide and the multiple possible sources of uptake along filling lines, the extent of the potential impact on product quality needs to be understood during pharmaceutical development. Herein, different factors affecting hydrogen peroxide uptake, points of entry along the filling line, and possible impacts on product quality are reviewed.
Collapse
Affiliation(s)
- Michael Meleties
- Formulations Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591 USA.
| | - Bailey M Cooper
- Formulations Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591 USA
| | - Daniela Marcano-James
- Formulations Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591 USA
| | - Amardeep S Bhalla
- Formulations Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591 USA
| | - Mohammed Shameem
- Formulations Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591 USA
| |
Collapse
|
18
|
Jiang Z, Dalby PA. Challenges in scaling up AAV-based gene therapy manufacturing. Trends Biotechnol 2023; 41:1268-1281. [PMID: 37127491 DOI: 10.1016/j.tibtech.2023.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Accelerating the scale up of adeno-associated virus (AAV) manufacture is highly desirable to meet the increased demand for gene therapies. However, the development of bioprocesses for AAV gene therapies remains time-consuming and challenging. The quality by design (QbD) approach ensures bioprocess designs that meet the desired product quality and safety profile. Rapid stress tests, developability screens, and scale-down technologies have the potential to streamline AAV product and manufacturing bioprocess development within the QbD framework. Here we review how their successful use for antibody manufacture development is translating to AAV, but also how this will depend critically on improved analytical methods and adaptation of the tools as more understanding is gained on the critical attributes of AAV required for successful therapy.
Collapse
Affiliation(s)
- Ziyu Jiang
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK.
| | - Paul A Dalby
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
19
|
Deshmukh A, Goyal R, Sundaram K, Dange K, Lakhote T, Niranjan S, Bharucha J, Mishra A, Vats B, Tiwari S. Analytical sameness methodology for the evaluation of structural, physicochemical, and biological characteristics of Armlupeg: A pegfilgrastim biosimilar case study. PLoS One 2023; 18:e0289745. [PMID: 37556495 PMCID: PMC10411777 DOI: 10.1371/journal.pone.0289745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
Pegfilgrastim is administered as an adjunct to chemotherapy to reduce the incidence of febrile neutropenia and associated infectious complications. Lupin's Pegfilgrastim is a proposed biosimilar to the U.S.-referenced Neulasta®. Demonstration of biosimilarity requires extensive physicochemical and functional characterization of the biosimilar, and demonstration of analytical similarity to the reference product, in addition to clinical studies. This work is a case study for demonstrating the analytical similarity of Armlupeg (Lupin's Pegfilgrastim) to Neulasta® with respect to structural and physicochemical attributes using several robust, orthogonal, and state-of-the-art techniques including high-end liquid chromatography, mass spectrometry, and spectroscopy techniques; circular dichroism; differential scanning calorimetry; nuclear magnetic resonance; analytical ultracentrifugation; and micro-flow imaging. Functional similarity was demonstrated using an in vitro cell proliferation assay to measure relative potency and surface plasmon resonance to measure receptor binding kinetics. Furthermore, comparative forced-degradation studies were performed to study the degradation of the products under stress conditions. The product attributes were ranked based on a critical quality attributes risk score according to their potential clinical impact. Based on criticality, all analyses were statistically evaluated to conclude analytical similarity. Lupin's Pegfilgrastim was comparable to Neulasta® as demonstrated via structural, functional, and purity analyses. Lupin's Pegfilgrastim complied with the quality and statistical ranges established using Neulasta®. Both products follow the same degradation pathways under stress conditions as observed in the forced-degradation studies. No new impurity or degradation product was observed in Lupin's Pegfilgrastim. These data conclusively demonstrate the analytical similarity of Lupin's Pegfilgrastim and Neulasta®.
Collapse
Affiliation(s)
- Arati Deshmukh
- Research and Development, Lupin Limited (Biotechnology Division), Pune, Maharashtra, India
| | - Rishank Goyal
- Research and Development, Lupin Limited (Biotechnology Division), Pune, Maharashtra, India
| | - Kalyana Sundaram
- Research and Development, Lupin Limited (Biotechnology Division), Pune, Maharashtra, India
| | - Kaustubh Dange
- Research and Development, Lupin Limited (Biotechnology Division), Pune, Maharashtra, India
| | - Tejshri Lakhote
- Research and Development, Lupin Limited (Biotechnology Division), Pune, Maharashtra, India
| | - Sanjay Niranjan
- Research and Development, Lupin Limited (Biotechnology Division), Pune, Maharashtra, India
| | - Jennifer Bharucha
- Research and Development, Lupin Limited (Biotechnology Division), Pune, Maharashtra, India
| | - Ashok Mishra
- Research and Development, Lupin Limited (Biotechnology Division), Pune, Maharashtra, India
| | - Bhavesh Vats
- Research and Development, Lupin Limited (Biotechnology Division), Pune, Maharashtra, India
| | - Sanjay Tiwari
- Research and Development, Lupin Limited (Biotechnology Division), Pune, Maharashtra, India
| |
Collapse
|
20
|
Jin C, Patel A, Peters J, Hodawadekar S, Kalyanaraman R. Quantum Cascade Laser Based Infrared Spectroscopy: A New Paradigm for Protein Secondary Structure Measurement. Pharm Res 2023; 40:1507-1517. [PMID: 36329374 DOI: 10.1007/s11095-022-03422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Mid-infrared spectroscopy is one of the major analytical techniques employed for measurements of protein structure in solution. Traditional Fourier Transform-Infrared (FT-IR) measurement is limited by its blackbody light source that is inherently spatially incoherent and has low optical power output. This limitation is pronounced when working with proteins in aqueous solutions. Strong absorbance of water in protein amide I region 1600-1700 cm-1 restricts light path length to <10 μm and imposes significant experimental challenges in sample and flow cell handling. Emerging laser spectroscopic techniques use high-power coherent laser as light source that overcomes the limitation in FT-IR measurement. In this study, we employed an innovative infrared spectrometer that uses quantum cascade laser (QCL) as light source. Continuous infrared radiation from this laser source can be swiftly swept within the amide I region (1600-1700 cm-1) and amide II region (1500-1600 cm-1), which makes this technique ideal for protein secondary structure study. Protein solutions as low as 0.5 mg/mL were measured rapidly without any sample preparation. Infrared spectra of model proteins were thus collected, and a chemometric model based on partial least squares regression was developed to quantify α-helix and β-strand motifs in protein secondary structure. The model was applied to measurement of the native secondary structure of commercial therapeutic proteins and bovine serum albumin (BSA) and in thermal degradation studies.
Collapse
Affiliation(s)
- Chunguang Jin
- Global Quality Analytical Science & Technology, Bristol Myers Squibb, New Brunswick, New Jersey, 08901, USA.
| | - Amrish Patel
- Global Quality Analytical Science & Technology, Bristol Myers Squibb, New Brunswick, New Jersey, 08901, USA
| | - Jeremy Peters
- Global Quality Analytical Science & Technology, Bristol Myers Squibb, New Brunswick, New Jersey, 08901, USA
| | | | - Ravi Kalyanaraman
- Global Quality Analytical Science & Technology, Bristol Myers Squibb, New Brunswick, New Jersey, 08901, USA.
| |
Collapse
|
21
|
Sreenivasan S, Rathore AS. Combined Presence of Ferrous Ions and Hydrogen Peroxide in Normal Saline and In Vitro Models Induces Enhanced Aggregation of Therapeutic IgG due to Hydroxyl Radicals. Mol Pharm 2023. [PMID: 37189260 DOI: 10.1021/acs.molpharmaceut.3c00051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Therapeutic monoclonal antibodies (mAb) are known to form aggregates and fragments upon exposure to hydrogen peroxide (H2O2) and ferrous ions (Fe2+). H2O2 and Fe2+ react to form hydroxyl radicals that are detrimental to protein structures. In this study, aggregation of mAb in the combined presence of Fe2+ and H2O2 was investigated in saline and physiologically relevant in vitro models. In the first case study, forced degradation of mAb in saline (a fluid used for administration of mAb) was carried out at 55 °C in the combined presence of 0.2 mM Fe2+ and 0.1% H2O2. The control and stressed samples were analyzed using an array of techniques including visual observation, size-exclusion chromatography (SEC), dynamic light scattering (DLS), microscopy, UV-vis, fluorescence, Fourier transform infrared spectroscopy, and cell-based toxicity assays. At the end of 1 h, samples having the combined presence of both Fe2+ and H2O2 exhibited more than 20% HMW (high molecular weight species), whereas samples having only Fe2+, H2O2, or neither resulted in less than 3% HMW. Aggregate-rich samples also exhibited altered protein structures and hydrophobicity. Aggregation increased upon increasing the time, temperature, and concentration of Fe2+ and H2O2. Samples having both Fe2+ and H2O2 also showed higher cytotoxicity in red blood cells. Samples of mAb with chlorides of copper and cobalt with H2O2 also resulted in multifold degradation. The first case study showed enhanced aggregation of mAb in the combined presence of Fe2+ and H2O2 in saline. In the second case study, aggregation of mAb was investigated in artificially prepared extracellular saline and in vitro models such as macromolecule free fraction of serum and serum. In the presence of both Fe2+ and H2O2, %HMW was higher in extracellular saline compared to macromolecule free fraction of serum. Further, in vitro models having the combined presence of Fe2+ and H2O2 resulted in enhanced aggregation of mAb compared to models that had neither.
Collapse
Affiliation(s)
- Shravan Sreenivasan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
22
|
Datola A, Pistacchio A, Simone P, Colarusso L, Melchiorre M, Rinaldi G, Amidi M, Politi J, Angiuoni G. Characterization by LC-MS/MS of oxidized products identified in synthetic peptide somatostatin and cetrorelix submitted to forced oxidative stress by hydrogen peroxide: Two case studies. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4919. [PMID: 37130582 DOI: 10.1002/jms.4919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/04/2023]
Abstract
In a broader scenario, the forced degradation studies provided by the ICH guidelines for Q1A, Q1B, and Q2B degradation studies allow to know the CQA of the molecule used as a drug product, to determine the appropriate analytical methods, excipients, and storage conditions ensuring the quality of the drug, its efficacy, and patient safety. In this study, we focused our attention on understanding how oxidative stress is performed by H2 O2 -impacted small synthetic peptides that do not contain residues susceptible to oxidation such as methionine. Among the amino acids susceptible to oxidation, methionine is the most reactive and depending on the structure of the protein where it is exposed, it tends to oxidize by converting into methionine sulfone or methionine sulfoxide by oxidation of its sulfur atom. Scouting experiments obtained by forced oxidative stress conditions are presented on two small synthetic peptides that do not contain any methionine residues spiked with different amounts of H2 O2 , and they are analyzed by LC-MS/MS. Less frequent oxidation products than those commonly observed on proteins/peptides-containing methionine have been characterized on both peptides. The study demonstrated that somatostatin, by means of one residue of tryptophan on the molecule, can generate traces of several oxidized products detected by UPLC-MS. Furthermore, even at a negligible level, oxidation on tyrosine and proline in cetrorelix that does not contain methionine nor tryptophan has been detected by UHPLC-MS/MS. Identification and quantification of oxidized species were achieved by high-resolution MS and MS/MS experiments. Thus, FDSs undoubtedly aid the evaluation of the CQAs as an important component of the characterization package as recommended by HAs and ICH, facilitating the understanding of unforeseen features of the studied molecule used as drugs.
Collapse
Affiliation(s)
- Antonio Datola
- Analytical Development Biotech Department, Global Healthcare Operations, EMD Serono, A business of Merck KGaA, Darmstadt, Germany Via Luigi Einaudi, 11 00012 Guidonia Montecelio, Rome, Italy
| | - Alessandra Pistacchio
- Drug Product Process Development Department, Global Healthcare Operations, EMD Serono, A business of Merck KGaA, Darmstadt, Germany Via Luigi Einaudi, 11 00012 Guidonia Montecelio, Rome, Italy
| | - Patrizia Simone
- Analytical Development Biotech Department, Global Healthcare Operations, EMD Serono, A business of Merck KGaA, Darmstadt, Germany Via Luigi Einaudi, 11 00012 Guidonia Montecelio, Rome, Italy
| | - Lucia Colarusso
- Analytical Development Biotech Department, Global Healthcare Operations, EMD Serono, A business of Merck KGaA, Darmstadt, Germany Via Luigi Einaudi, 11 00012 Guidonia Montecelio, Rome, Italy
| | - Maura Melchiorre
- Analytical Development Biotech Department, Global Healthcare Operations, EMD Serono, A business of Merck KGaA, Darmstadt, Germany Via Luigi Einaudi, 11 00012 Guidonia Montecelio, Rome, Italy
| | - Gianluca Rinaldi
- Drug Product Process Development Department, Global Healthcare Operations, EMD Serono, A business of Merck KGaA, Darmstadt, Germany Via Luigi Einaudi, 11 00012 Guidonia Montecelio, Rome, Italy
| | - Maryam Amidi
- Drug Product Process Development Department, Global Healthcare Operations, EMD Serono, A business of Merck KGaA, Darmstadt, Germany Via Luigi Einaudi, 11 00012 Guidonia Montecelio, Rome, Italy
| | - Jane Politi
- Drug Product Process Development Department, Global Healthcare Operations, EMD Serono, A business of Merck KGaA, Darmstadt, Germany Via Luigi Einaudi, 11 00012 Guidonia Montecelio, Rome, Italy
| | - Gabriella Angiuoni
- Analytical Development Biotech Department, Global Healthcare Operations, EMD Serono, A business of Merck KGaA, Darmstadt, Germany Via Luigi Einaudi, 11 00012 Guidonia Montecelio, Rome, Italy
| |
Collapse
|
23
|
Salami H, Wang S, Skomski D. Evaluation of a Self-Supervised Machine Learning Method for Screening of Particulate Samples: A Case Study in Liquid Formulations. J Pharm Sci 2023; 112:771-778. [PMID: 36240862 DOI: 10.1016/j.xphs.2022.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Imaging is commonly used as a characterization method in the pharmaceuticals industry, including for quantifying subvisible particles in solid and liquid formulations. Extracting information beyond particle size, such as classifying morphological subpopulations, requires some type of image analysis method. Suggested methods to classify particles have been based on pre-determined morphological features or use supervised training of convolutional neural networks to learn image representations in relation to ground truth labels. Complications arising from highly complex morphologies, unforeseen classes, and time-consuming preparation of ground truth labels, are some of the challenges faced by these methods. In this work, we evaluate the application of a self-supervised contrastive learning method in studying particle images from therapeutic solutions. Unlike with supervised training, this approach does not require ground truth labels and representations are learned by comparing particle images and their augmentations. This method provides a fast and easily implementable tool of coarse screening for morphological attribute assessment. Furthermore, our analysis shows that in cases with relatively balanced datasets, a small subset of an image dataset is sufficient to train a convolutional neural network encoder capable of extracting useful image representations. It is also demonstrated that particle classes typically observed in protein solutions administered by pre-filled syringes emerge as separated clusters in the encoder's embedding space, facilitating performing tasks such as training weakly-supervised classifiers or identifying the presence of new subpopulations.
Collapse
Affiliation(s)
- Hossein Salami
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, USA
| | - Shubing Wang
- Department of Biometrics Research, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Daniel Skomski
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, USA.
| |
Collapse
|
24
|
Shalaev E, Ohtake S, Moussa EM, Searles J, Nail S, Roberts CJ. Accelerated Storage for Shelf-Life Prediction of Lyophiles: Temperature Dependence of Degradation of Amorphous Small Molecular Weight Drugs and Proteins. J Pharm Sci 2023; 112:1509-1522. [PMID: 36796635 DOI: 10.1016/j.xphs.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Prediction of lyophilized product shelf-life using accelerated stability data requires understanding the temperature dependence of the degradation rate. Despite the abundance of published studies on stability of freeze-dried formulations and other amorphous materials, there are no definitive conclusions on the type of pattern one can expect for the temperature dependence of degradation. This lack of consensus represents a significant gap which may impact development and regulatory acceptance of freeze-dried pharmaceuticals and biopharmaceuticals. Review of the literature demonstrates that the temperature dependence of degradation rate constants in lyophiles can be represented by the Arrhenius equation in most cases. In some instances there is a break in the Arrhenius plot around the glass transition temperature or a related characteristic temperature. The majority of the activation energies (Ea), which are reported for various degradation pathways in lyophiles, falls in the range of 8 to 25 kcal/mol. The degradation Ea values for lyophiles are compared with the Ea for relaxation processes and diffusion in glasses, as wells as solution chemical reactions. Collectively, analysis of the literature demonstrates that the Arrhenius equation represents a reasonable empirical tool for analysis, presentation, and extrapolation of stability data for lyophiles, provided that specific conditions are met.
Collapse
Affiliation(s)
| | - Satoshi Ohtake
- Pfizer BioTherapeutics Pharmaceutical Sciences, Chesterfield, Missouri 63017 USA
| | - Ehab M Moussa
- Biologics Drug Product Development, AbbVie, North Chicago, IL, USA
| | - Jim Searles
- Pfizer BioTherapeutics Pharmaceutical Sciences, Chesterfield, Missouri 63017 USA
| | | | - Christopher J Roberts
- University of Delaware, Department of Chemical & Biomolecular Engineering, Newark DE 19713 USA
| |
Collapse
|
25
|
Vokhmyanina D, Daboss E, Sharapova O, Mogilnikova M, Karyakin A. Single Printing Step Prussian Blue Bulk-Modified Transducers for Oxidase-Based Biosensors. BIOSENSORS 2023; 13:bios13020250. [PMID: 36832015 PMCID: PMC9953944 DOI: 10.3390/bios13020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 05/14/2023]
Abstract
We report on hydrogen peroxide sensors made through a single printing step with carbon ink containing catalytically synthesized Prussian blue nanoparticles. Despite their reduced sensitivity, the resulting bulk-modified sensors displayed both a wider linear calibration range (5 × 10-7-1 × 10-3 M) and an approximately four times lower detection limit versus the surface-modified sensors due to the dramatically decreased noise resulting in, on average, a six times higher signal-to-noise ratio. The corresponding glucose and lactate biosensors demonstrated similar and even higher sensitivities compared to those of biosensors based on surface-modified transducers. The biosensors have been validated through analysis of human serum. The decreased time and cost for production of single printing step bulk-modified transducers, as well as their analytical performance characteristics, which are advantageous over conventional surface-modified ones, would be expected to enable their wide use in (bio)sensorics.
Collapse
|
26
|
Kizuki S, Wang Z, Torisu T, Yamauchi S, Uchiyama S. Relationship between aggregation of therapeutic proteins and agitation parameters: Acceleration and frequency. J Pharm Sci 2023; 112:492-505. [PMID: 36167196 DOI: 10.1016/j.xphs.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 01/18/2023]
Abstract
An increase in protein aggregates during transportation should be suppressed in therapeutic protein products because the aggregates have a potential risk of immunogenicity. In this study, three protein solutions in vials were exposed to tri-axial vibration with various combinations of frequency and acceleration using a transportation test system to investigate the relationship between low g-force stresses and protein aggregate generation. The number concentration of micron aggregates detected by flow imaging analysis increased markedly when the acceleration and frequency of agitation were within a specific range, in other words, above a threshold. This threshold was common among the three protein solutions. The suppression of micron aggregate formation by adding a surfactant suggested that agitation above the threshold increased micron aggregates mainly via interface-mediated routes. Notably, agitation, including agitation below the threshold, accelerated spontaneous oligomerization (nanometer aggregate generation) of proteins in bulk solution even in the presence of the surfactant. Studies of stability against mechanical stresses (e.g., a random vibration test to simulate actual shipment, with a time-compressed setting by increasing acceleration) need to be performed and discussed with careful consideration of the threshold for generating micron aggregates.
Collapse
Affiliation(s)
- Shinji Kizuki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Formulation Research Lab., Taiho Pharmaceutical Co. Ltd., 224-2, Ebisuno, Hiraishi, Kawauchi-cho, Tokushima, 771-0194, Japan
| | - Zekun Wang
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tetsuo Torisu
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Satoru Yamauchi
- Business Development Headquarters, ESPEC CORP. 5-2-5, Minamimachi, Kanokodai, Kita-ku, Kobe, Hyogo, 651-1514, Japan
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
27
|
Solomon TL, Delaglio F, Giddens JP, Marino JP, Yu YB, Taraban MB, Brinson RG. Correlated analytical and functional evaluation of higher order structure perturbations from oxidation of NISTmAb. MAbs 2023; 15:2160227. [PMID: 36683157 PMCID: PMC9872951 DOI: 10.1080/19420862.2022.2160227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The clinical efficacy and safety of protein-based drugs such as monoclonal antibodies (mAbs) rely on the integrity of the protein higher order structure (HOS) during product development, manufacturing, storage, and patient administration. As mAb-based drugs are becoming more prevalent in the treatment of many illnesses, the need to establish metrics for quality attributes of mAb therapeutics through high-resolution techniques is also becoming evident. To this end, here we used a forced degradation method, time-dependent oxidation by hydrogen peroxide, on the model biotherapeutic NISTmAb and evaluated the effects on HOS with orthogonal analytical methods and a functional assay. To monitor the oxidation process, the experimental workflow involved incubation of NISTmAb with hydrogen peroxide in a benchtop nuclear magnetic resonance spectrometer (NMR) that followed the reaction kinetics, in real-time through the water proton transverse relaxation rate R2(1H2O). Aliquots taken at defined time points were further analyzed by high-field 2D 1H-13C methyl correlation fingerprint spectra in parallel with other analytical techniques, including thermal unfolding, size-exclusion chromatography, and surface plasmon resonance, to assess changes in stability, heterogeneity, and binding affinities. The complementary measurement outputs from the different techniques demonstrate the utility of combining NMR with other analytical tools to monitor oxidation kinetics and extract the resulting structural changes in mAbs that are functionally relevant, allowing rigorous assessment of HOS attributes relevant to the efficacy and safety of mAb-based drug products.
Collapse
Affiliation(s)
- Tsega L. Solomon
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, United States
| | - Frank Delaglio
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, United States
| | - John P. Giddens
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, United States
| | - John P. Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, United States
| | - Yihua Bruce Yu
- Bio- and Nano-Technology Center, University of Maryland School of Pharmacy, and Institute for Bioscience and Biotechnology Research, Rockville, Maryland, United States
| | - Marc B. Taraban
- Bio- and Nano-Technology Center, University of Maryland School of Pharmacy, and Institute for Bioscience and Biotechnology Research, Rockville, Maryland, United States
| | - Robert G. Brinson
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, United States,CONTACT Robert G. Brinson Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, 9600 Gudelsky Drive Rockville, Rockville, Maryland20850, United States
| |
Collapse
|
28
|
Morales AM, Sreedhara A, Buecheler J, Brosig S, Chou D, Christian T, Das T, de Jong I, Fast J, Jagannathan B, Moussa EM, Nejadnik MR, Prajapati I, Radwick A, Rahman Y, Singh S. End-to-End Approach to Surfactant Selection, Risk Mitigation, and Control Strategies for Protein-Based Therapeutics. AAPS J 2022; 25:6. [PMID: 36471030 DOI: 10.1208/s12248-022-00773-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
A survey performed by the AAPS Drug Product Handling community revealed a general, mostly consensus, approach to the strategy for the selection of surfactant type and level for biopharmaceutical products. Discussing and building on the survey results, this article describes the common approach for surfactant selection and control strategy for protein-based therapeutics and focuses on key studies, common issues, mitigations, and rationale. Where relevant, each section is prefaced by survey responses from the 22 anonymized respondents. The article format consists of an overview of surfactant stabilization, followed by a strategy for the selection of surfactant level, and then discussions regarding risk identification, mitigation, and control strategy. Since surfactants that are commonly used in biologic formulations are known to undergo various forms of degradation, an effective control strategy for the chosen surfactant focuses on understanding and controlling the design space of the surfactant material attributes to ensure that the desired material quality is used consistently in DS/DP manufacturing. The material attributes of a surfactant added in the final DP formulation can influence DP performance (e.g., protein stability). Mitigation strategies are described that encompass risks from host cell proteins (HCP), DS/DP manufacturing processes, long-term storage, as well as during in-use conditions.
Collapse
Affiliation(s)
- Annette Medina Morales
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, 1 Medimmune Way, Gaithersburg, Maryland, 20878, USA.
| | - Alavattam Sreedhara
- Genentech, Pharmaceutical Development, South San Francisco, California, 94080, USA
| | - Jakob Buecheler
- Technical Research and Development, Novartis Pharma AG, 4002, Basel, Switzerland
| | - Sebastian Brosig
- Technical Research and Development, Novartis Pharma AG, 4002, Basel, Switzerland
| | - Danny Chou
- Compassion BioSolution, LLC, Lomita, California, 90717, USA
| | | | - Tapan Das
- Analytical Development and Attribute Sciences, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | - Isabella de Jong
- Genentech, Pharmaceutical Development, South San Francisco, California, 94080, USA
| | - Jonas Fast
- Pharmaceutical Development, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | | | - Ehab M Moussa
- Drug Product Development, AbbVie, North Chicago, Illinios, 60064, USA
| | - M Reza Nejadnik
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Indira Prajapati
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, 1 Medimmune Way, Gaithersburg, Maryland, 20878, USA
| | | | - Yusra Rahman
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Shubhadra Singh
- GlaxoSmithKline R&D, Biopharmaceutical Product Sciences, Collegeville, Philadelphia, Pennsylvania, 19426, USA
| |
Collapse
|
29
|
Zhang W, Wang H, Feng N, Li Y, Gu J, Wang Z. Developability assessment at early-stage discovery to enable development of antibody-derived therapeutics. Antib Ther 2022; 6:13-29. [PMID: 36683767 PMCID: PMC9847343 DOI: 10.1093/abt/tbac029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Developability refers to the likelihood that an antibody candidate will become a manufacturable, safe and efficacious drug. Although the safety and efficacy of a drug candidate will be well considered by sponsors and regulatory agencies, developability in the narrow sense can be defined as the likelihood that an antibody candidate will go smoothly through the chemistry, manufacturing and control (CMC) process at a reasonable cost and within a reasonable timeline. Developability in this sense is the focus of this review. To lower the risk that an antibody candidate with poor developability will move to the CMC stage, the candidate's developability-related properties should be screened, assessed and optimized as early as possible. Assessment of developability at the early discovery stage should be performed in a rapid and high-throughput manner while consuming small amounts of testing materials. In addition to monoclonal antibodies, bispecific antibodies, multispecific antibodies and antibody-drug conjugates, as the derivatives of monoclonal antibodies, should also be assessed for developability. Moreover, we propose that the criterion of developability is relative: expected clinical indication, and the dosage and administration route of the antibody could affect this criterion. We also recommend a general screening process during the early discovery stage of antibody-derived therapeutics. With the advance of artificial intelligence-aided prediction of protein structures and features, computational tools can be used to predict, screen and optimize the developability of antibody candidates and greatly reduce the risk of moving a suboptimal candidate to the development stage.
Collapse
Affiliation(s)
- Weijie Zhang
- Biologicals Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Hao Wang
- Biologicals Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Nan Feng
- Biologicals Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Yifeng Li
- Technology and Process Development, WuXi Biologicals, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jijie Gu
- Biologicals Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Zhuozhi Wang
- To whom correspondence should be addressed. Biologics Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China, Phone number: +86-21-50518899
| |
Collapse
|
30
|
Nishiumi H, Deiringer N, Krause N, Yoneda S, Torisu T, Menzen T, Friess W, Uchiyama S. Utility of Three Flow Imaging Microscopy Instruments for Image Analysis in Evaluating four Types of Subvisible Particle in Biopharmaceuticals. J Pharm Sci 2022; 111:3017-3028. [PMID: 35948157 DOI: 10.1016/j.xphs.2022.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022]
Abstract
Subvisible particles (SVPs) are a critical quality attribute of parenteral and ophthalmic products. United States Pharmacopeia recommends the characterizations of SVPs which are classified into intrinsic, extrinsic, and inherent particles. Flow imaging microscopy (FIM) is useful as an orthogonal method in both the quantification and classification of SVPs because FIM instruments provide particle images. In addition to the conventionally used FlowCam (Yokogawa Fluid Imaging Technologies) and Micro-Flow Imaging (Bio-Techne) instruments, the iSpect DIA-10 (Shimadzu) instrument has recently been released. The three instruments have similar detection principles but different optical settings and image processing, which may lead to different results of the quantification and classification of SVPs based on the information from particle images. The present study compares four types of SVP (protein aggregates, silicone oil droplets, and surrogates for solid free-fatty-acid particles, milled-lipid particles, and sprayed-lipid particles) to compare the results of size distributions and classification abilities obtained using morphological features and a deep-learning approach. Although the three FIM instruments were effective in classifying the four types of SVP through convolutional neural network analysis, there was no agreement on the size distribution for the same protein aggregate solution, suggesting that using the classifiers of the FIM instruments could result in different evaluations of SVPs in the field of biopharmaceuticals.
Collapse
Affiliation(s)
- Haruka Nishiumi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Natalie Deiringer
- Department of Pharmacy; Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | - Nils Krause
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152, Martinsried, Germany
| | - Saki Yoneda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuo Torisu
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tim Menzen
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152, Martinsried, Germany
| | - Wolfgang Friess
- Department of Pharmacy; Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; U-medico Inc., 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
31
|
Eshraghi J, Dou Z, Veilleux JC, Shi G, Collins D, Ardekani AM, Vlachos PP. The Air Entrainment and Hydrodynamic Shear of the Liquid Slosh in Syringes. Int J Pharm 2022; 627:122210. [PMID: 36122618 DOI: 10.1016/j.ijpharm.2022.122210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
Abstract
Understanding the interface motion and hydrodynamic shear induced by the liquid sloshing during the insertion stage of an autoinjector can help improve drug product administration. We perform experiments to investigate the interfacial motion and hydrodynamic shear due to the acceleration and deceleration of syringes. The goal is to explore the role of fluid properties, air gap size, and syringe acceleration on the interface dynamics caused by autoinjector activation. We used a simplified autoinjector platform to record the syringe and liquid motion without any view obstruction. Water and silicone oil with the same viscosity are used as the model fluids. Particle Image Velocimetry (PIV) is employed to measure the velocity field. Simultaneous shadowgraph visualization captures the air entrainment. Our in-house PIV and image processing algorithms are used to quantify the hydrodynamic stress and interfacial area to investigate the effects of various autoinjector design parameters and fluid types on liquid sloshing. The results indicate that reducing the air gap volume and syringe acceleration/deceleration mitigate the interface area and effective shear. Moreover, the interfacial area and induced hydrodynamic stress decrease with the Fr=U/aD, where U is the interface velocity, a is the maximum syringe acceleration, and D is the syringe diameter.
Collapse
Affiliation(s)
- Javad Eshraghi
- Department of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA; Eli Lilly and Company, Indianapolis, Indiana, USA.
| | - Zhongwang Dou
- Department of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | - Galen Shi
- Eli Lilly and Company, Indianapolis, Indiana, USA.
| | | | - Arezoo M Ardekani
- Department of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Pavlos P Vlachos
- Department of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
32
|
Kamble R, Puranik A, Narvekar A, Dandekar P, Jain R. Characterization of outcomes of amino acid modifications using a combinatorial approach to reveal physical and structural perturbations: A case study using trastuzumab biosimilar. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1209:123430. [PMID: 35988497 DOI: 10.1016/j.jchromb.2022.123430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022]
Abstract
Biopharmaceuticals, such as monoclonal antibodies, are considered as life-saving drugs for autoimmune diseases, cancer and infectious diseases. However, biotherapeutics tend to undergo chemical degradation during various stages of manufacturing. The conditions of chemical degradation, along with the physical degradation pathways, have a direct influence on the overall stability, safety and efficacy of these therapeutics. While site-specific chemical changes have been well-explored and investigated using various analytical approaches, the resulting conformational and structural changes have not been much studied. Thus, we explored various biophysical techniques for assessing the influence of three representatives forced degradation conditions viz. oxidation, deamidation, and glycation, in a model therapeutic trastuzumab biosimilar. The site-specific modifications caused by these stress conditions were analysed using high resolution mass spectrometry. While their thermodynamic and conformational consequences were investigated by using differential scanning colorimetry (Nano-DSC), circular dichroism (CD) spectroscopy, analytical ultracentrifugation (AUC), and dynamic light scattering (DLS). The investigated stress conditions resulted in reduced thermodynamic stability of mAb, as confirmed using Nano-DSC. Secondary structure analysis performed with CD spectroscopy indicated detectable structural alterations in the beta sheets of stressed samples. DLS and SV-AUC studies demonstrated an enhanced level of aggregation and fragmentation in presence of all stress conditions. Thus, the biophysical analytical toolkits, when used simultaneously, could offer deeper insights into the subtle conformational changes that result from site-specific chemical modifications in mAbs. Hence, these analytical approaches may serve as significant additions to the battery of techniques used for forced degradation analysis of biopharmaceuticals.
Collapse
Affiliation(s)
- Ritu Kamble
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Amita Puranik
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Aditya Narvekar
- Department of Pharmaceutical Science and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Science and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
33
|
Gurel B, Berksoz M, Capkin E, Parlar A, Pala MC, Ozkan A, Capan Y, Daglikoca DE, Yuce M. Structural and Functional Analysis of CEX Fractions Collected from a Novel Avastin® Biosimilar Candidate and Its Innovator: A Comparative Study. Pharmaceutics 2022; 14:pharmaceutics14081571. [PMID: 36015197 PMCID: PMC9415858 DOI: 10.3390/pharmaceutics14081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Avastin® is a humanized recombinant monoclonal antibody used to treat cancer by targeting VEGF-A to inhibit angiogenesis. SIMAB054, an Avastin® biosimilar candidate developed in this study, showed a different charge variant profile than its innovator. Thus, it is fractionated into acidic, main, and basic isoforms and collected physically by Cation Exchange Chromatography (CEX) for a comprehensive structural and functional analysis. The innovator product, fractionated into the same species and collected by the same method, is used as a reference for comparative analysis. Ultra-Performance Liquid Chromatography (UPLC) ESI-QToF was used to analyze the modifications leading to charge heterogeneities at intact protein and peptide levels. The C-terminal lysine clipping and glycosylation profiles of the samples were monitored by intact mAb analysis. The post-translational modifications, including oxidation, deamidation, and N-terminal pyroglutamic acid formation, were determined by peptide mapping analysis in the selected signal peptides. The relative binding affinities of the fractionated charge isoforms against the antigen, VEGF-A, and the neonatal receptor, FcRn, were revealed by Surface Plasmon Resonance (SPR) studies. The results show that all CEX fractions from the innovator product and the SIMAB054 shared the same structural variants, albeit in different ratios. Common glycoforms and post-translational modifications were the same, but at different percentages for some samples. The dissimilarities were mostly originating from the presence of extra C-term Lysin residues, which are prone to enzymatic degradation in the body, and thus they were previously assessed as clinically irrelevant. Another critical finding was the presence of different glyco proteoforms in different charge species, such as increased galactosylation in the acidic and afucosylation in the basic species. SPR characterization of the isolated charge variants further confirmed that basic species found in the CEX analyses of the biosimilar candidate were also present in the innovator product, although at lower amounts. The charge variants’ in vitro antigen- and neonatal receptor-binding activities varied amongst the samples, which could be further investigated in vivo with a larger sample set to reveal the impact on the pharmacokinetics of drug candidates. Minor structural differences may explain antigen-binding differences in the isolated charge variants, which is a key parameter in a comparability exercise. Consequently, such a biosimilar candidate may not comply with high regulatory standards unless the binding differences observed are justified and demonstrated not to have any clinical impact.
Collapse
Affiliation(s)
- Busra Gurel
- SUNUM Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey;
| | - Melike Berksoz
- ILKO ARGEM Biotechnology R&D Center, Istanbul 34906, Turkey; (M.B.); (E.C.); (M.C.P.); (A.O.); (Y.C.)
| | - Eda Capkin
- ILKO ARGEM Biotechnology R&D Center, Istanbul 34906, Turkey; (M.B.); (E.C.); (M.C.P.); (A.O.); (Y.C.)
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Ayhan Parlar
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Meltem Corbacioglu Pala
- ILKO ARGEM Biotechnology R&D Center, Istanbul 34906, Turkey; (M.B.); (E.C.); (M.C.P.); (A.O.); (Y.C.)
| | - Aylin Ozkan
- ILKO ARGEM Biotechnology R&D Center, Istanbul 34906, Turkey; (M.B.); (E.C.); (M.C.P.); (A.O.); (Y.C.)
| | - Yılmaz Capan
- ILKO ARGEM Biotechnology R&D Center, Istanbul 34906, Turkey; (M.B.); (E.C.); (M.C.P.); (A.O.); (Y.C.)
| | - Duygu Emine Daglikoca
- ILKO ARGEM Biotechnology R&D Center, Istanbul 34906, Turkey; (M.B.); (E.C.); (M.C.P.); (A.O.); (Y.C.)
- Correspondence: (D.E.D.); (M.Y.)
| | - Meral Yuce
- SUNUM Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey;
- Correspondence: (D.E.D.); (M.Y.)
| |
Collapse
|
34
|
Li D, Chen P, Dong Q, Liu B, Zhang W, Wei DQ, Guo B. Investigating the stabilisation of IFN-α2a by replica exchange molecular dynamics simulation. J Mol Model 2022; 28:232. [PMID: 35882698 DOI: 10.1007/s00894-022-05212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 07/01/2022] [Indexed: 11/26/2022]
Abstract
Current biopharmaceutical drugs are mainly a class of peptides or proteins that play an essential role in the treatment of many diseases. Such peptides/proteins are usually thermally unstable and may lose their bioactivity when exposed to ambient conditions. Therefore, they are not suitable for long-term storage. Lyophilisation is the most common method to prolong shelf life of solid peptide/protein drugs; however, the freeze-drying process can lead to irreversible damage. In the present study, human interferon-alpha 2a (IFN-α2a) was selected as a model protein drug; four disaccharides (β-lactose, β-maltose, sucrose, and trehalose) were selected as bioactive protectants. We investigated the effects of different protectants on IFN-α2a under various ambient conditions (vacuum, dry state, and aqueous solution) using replica exchange molecular dynamics simulation. The protective effect of β-maltose on IFN-α2a was the highest in aqueous solution and dry state, β-lactose showed a poor protective effect in all three conditions, the performance of sucrose was good in all conditions, and trehalose showed a better protective effect under vacuum conditions and in aqueous solution. Disaccharides form H-bonds with water, thereby preventing water from the tertiary structure of proteins. Trehalose forms strong H-bonds with water which explains its extraordinary stability.
Collapse
Affiliation(s)
- Daixi Li
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 20093, China.
| | - Peiqin Chen
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Qingli Dong
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Baolin Liu
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Wujie Zhang
- Physics and Chemistry Department, Milwaukee School of Engineering, Milwaukee, WI, 53202, USA
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center On Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
- Peng Cheng Laboratory, Shenzhen, 518055, China
| | - Baisong Guo
- Injection Laboratory, Shanghai Tofflon Science and Technology Co, Ltd, Shanghai, 201108, China
| |
Collapse
|
35
|
Martínez-Ortega A, Herrera A, Salmerón-García A, Cabeza J, Perez-Robles R, Navas N. Degradation and in-use stability study of five marketed therapeutic monoclonal antibodies by generic weak cation exchange liquid chromatographic method ((WCX)HPLC/DAD). J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1203:123295. [DOI: 10.1016/j.jchromb.2022.123295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022]
|
36
|
Grunert I, Heinrich K, Ernst J, Hingar M, Briguet A, Leiss M, Wuhrer M, Reusch D, Bulau P. Detailed Analytical Characterization of a Bispecific IgG1 CrossMab Antibody of the Knob-into-Hole Format Applying Various Stress Conditions Revealed Pronounced Stability. ACS OMEGA 2022; 7:3671-3679. [PMID: 35128275 PMCID: PMC8811765 DOI: 10.1021/acsomega.1c06305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
In recent years, a variety of new antibody formats have been developed. One of these formats allows the binding of one type of antibody to two different epitopes. This can for example be achieved by introduction of the "knob-into-hole" format and a combined CrossMab approach. Due to their complexity, these bispecific antibodies are expected to result in an enhanced variety of different degradation products. Reports on the stability of these molecules are still largely lacking. To address this, a panel of stress conditions, including elevated temperature, pH, oxidizing agents, and forced glycation via glucose incubation, to identify and functionally evaluate critical quality attributes in the complementary-determining and conserved regions of a bispecific antibody was applied in this study. The exertion of various stress conditions combined with an assessment by size exclusion chromatography, ion exchange chromatography, LC-MS/MS peptide mapping, and functional evaluation by cell-based assays was adequate to identify chemical modification sites and assess the stability and integrity, as well as the functionality of a bispecific antibody. Stress conditions induced size variants and post-translational modifications, such as isomerization, deamidation, and oxidation, albeit to a modest extent. Of note, all the observed stress conditions largely maintained functionality. In summary, this study revealed the pronounced stability of IgG1 "knob-into-hole" bispecific CrossMab antibodies compared to already marketed antibody products.
Collapse
Affiliation(s)
- Ingrid Grunert
- Pharma
Technical Development, Roche Diagnostics
GmbH, Penzberg 82377, Germany
| | - Katrin Heinrich
- Pharma
Technical Development, Roche Diagnostics
GmbH, Penzberg 82377, Germany
| | - Juliane Ernst
- Pharma
Technical Development, Roche Diagnostics
GmbH, Penzberg 82377, Germany
| | - Michael Hingar
- Pharma
Technical Development, Roche Diagnostics
GmbH, Penzberg 82377, Germany
| | - Alexandre Briguet
- Pharma
Technical Development, Hoffmann-La Roche, Basel 4070, Switzerland
| | - Michael Leiss
- Pharma
Technical Development, Roche Diagnostics
GmbH, Penzberg 82377, Germany
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Leiden 2333ZA, The Netherlands
| | - Dietmar Reusch
- Pharma
Technical Development, Roche Diagnostics
GmbH, Penzberg 82377, Germany
| | - Patrick Bulau
- Pharma
Technical Development, Hoffmann-La Roche, Basel 4070, Switzerland
| |
Collapse
|
37
|
Abstract
Monoclonal antibodies are susceptible to chemical and enzymatic modifications during manufacturing, storage, and shipping. Deamidation, isomerization, and oxidation can compromise the potency, efficacy, and safety of therapeutic antibodies. Recently, in silico tools have been used to identify liable residues and engineer antibodies with better chemical stability. Computational approaches for predicting deamidation, isomerization, oxidation, glycation, carbonylation, sulfation, and hydroxylation are reviewed here. Although liable motifs have been used to improve the chemical stability of antibodies, the accuracy of in silico predictions can be improved using machine learning and molecular dynamic simulations. In addition, there are opportunities to improve predictions for specific stress conditions, develop in silico prediction of novel modifications in antibodies, and predict the impact of modifications on physical stability and antigen-binding.
Collapse
Affiliation(s)
- Shabdita Vatsa
- Development Services, Lonza Biologics, Singapore, Singapore
| |
Collapse
|
38
|
Assessment of Therapeutic Antibody Developability by Combinations of In Vitro and In Silico Methods. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2313:57-113. [PMID: 34478132 DOI: 10.1007/978-1-0716-1450-1_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although antibodies have become the fastest-growing class of therapeutics on the market, it is still challenging to develop them for therapeutic applications, which often require these molecules to withstand stresses that are not present in vivo. We define developability as the likelihood of an antibody candidate with suitable functionality to be developed into a manufacturable, stable, safe, and effective drug that can be formulated to high concentrations while retaining a long shelf life. The implementation of reliable developability assessments from the early stages of antibody discovery enables flagging and deselection of potentially problematic candidates, while focussing available resources on the development of the most promising ones. Currently, however, thorough developability assessment requires multiple in vitro assays, which makes it labor intensive and time consuming to implement at early stages. Furthermore, accurate in vitro analysis at the early stage is compromised by the high number of potential candidates that are often prepared at low quantities and purity. Recent improvements in the performance of computational predictors of developability potential are beginning to change this scenario. Many computational methods only require the knowledge of the amino acid sequences and can be used to identify possible developability issues or to rank available candidates according to a range of biophysical properties. Here, we describe how the implementation of in silico tools into antibody discovery pipelines is increasingly offering time- and cost-effective alternatives to in vitro experimental screening, thus streamlining the drug development process. We discuss in particular the biophysical and biochemical properties that underpin developability potential and their trade-offs, review various in vitro assays to measure such properties or parameters that are predictive of developability, and give an overview of the growing number of in silico tools available to predict properties important for antibody development, including the CamSol method developed in our laboratory.
Collapse
|
39
|
Bou-Assaf GM, Budyak IL, Brenowitz M, Day ES, Hayes D, Hill J, Majumdar R, Ringhieri P, Schuck P, Lin JC. Best Practices for Aggregate Quantitation of Antibody Therapeutics by Sedimentation Velocity Analytical Ultracentrifugation. J Pharm Sci 2022; 111:2121-2133. [PMID: 34986360 DOI: 10.1016/j.xphs.2021.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 11/18/2022]
Abstract
Analytical ultracentrifugation (AUC) is a critical analytical tool supporting the development and manufacture of protein therapeutics. AUC is routinely used as an assay orthogonal to size exclusion chromatography for aggregate quantitation. This article distills the experimental and analysis procedures used by the authors for sedimentation velocity AUC into a series of best-practices considerations. The goal of this distillation is to help harmonize aggregate quantitation approaches across the biopharmaceutical industry. We review key considerations for sample and instrument suitability, experimental design, and data analysis best practices and conversely, highlight potential pitfalls to accurate aggregate analysis. Our goal is to provide experienced users benchmarks against which they can standardize their analyses and to provide guidance for new AUC analysts that will aid them to become proficient in this fundamental technique.
Collapse
Affiliation(s)
| | - Ivan L Budyak
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Michael Brenowitz
- Departments of Biochemistry and Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Eric S Day
- Pharmaceutical Development, Genentech a Member of the Roche Group, 1 DNA Way, South San Francisco, CA 94080
| | - David Hayes
- IntlSoSci, 23 Washington St., Gorham, NH 03581
| | - John Hill
- Department of Bioengineering, University of Washington, Seattle, WA 98105
| | - Ranajoy Majumdar
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Paola Ringhieri
- Analytical Development Biotech Department, Merck Serono S.p.a, Guidonia, RM, Italy; an affiliate of Merck KGaA
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 13 South Drive, Bethesda, MD 20892
| | - Jasper C Lin
- Pharmaceutical Development, Genentech a Member of the Roche Group, 1 DNA Way, South San Francisco, CA 94080.
| |
Collapse
|
40
|
Linkuvienė V, Ross EL, Crawford L, Weiser SE, Man D, Kay S, Kolhe P, Carpenter JF. Effects of transportation of IV bags containing protein formulations via hospital pneumatic tube system: Particle characterization by multiple methods. J Pharm Sci 2022; 111:1024-1039. [DOI: 10.1016/j.xphs.2022.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 01/01/2023]
|
41
|
Particles in Biopharmaceutical Formulations, Part 2: An Update on Analytical Techniques and Applications for Therapeutic Proteins, Viruses, Vaccines and Cells. J Pharm Sci 2021; 111:933-950. [PMID: 34919969 DOI: 10.1016/j.xphs.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/21/2022]
Abstract
Particles in biopharmaceutical formulations remain a hot topic in drug product development. With new product classes emerging it is crucial to discriminate particulate active pharmaceutical ingredients from particulate impurities. Technical improvements, new analytical developments and emerging tools (e.g., machine learning tools) increase the amount of information generated for particles. For a proper interpretation and judgment of the generated data a thorough understanding of the measurement principle, suitable application fields and potential limitations and pitfalls is required. Our review provides a comprehensive overview of novel particle analysis techniques emerging in the last decade for particulate impurities in therapeutic protein formulations (protein-related, excipient-related and primary packaging material-related), as well as particulate biopharmaceutical formulations (virus particles, virus-like particles, lipid nanoparticles and cell-based medicinal products). In addition, we review the literature on applications, describe specific analytical approaches and illustrate advantages and drawbacks of currently available techniques for particulate biopharmaceutical formulations.
Collapse
|
42
|
Liebner R, Altınoğlu S, Selzer T. A Road Map to GMP Readiness for Protein Therapeutics - Drug Product Process Development for Clinical Supply. J Pharm Sci 2021; 111:608-617. [PMID: 34530002 DOI: 10.1016/j.xphs.2021.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Biopharmaceuticals for human use present unique challenges during manufacturing, storage, shipment, and administration. Not all drug product process development aspects can and should be studied in detail before entering in first-in human studies (FIH) due to limited resources and the need for new drug candidates to enter phase 1 clinical studies quickly. Whilst activities for formulation development studies are well defined in literature, there is a lack of regulatory guidance for phase appropriate process development studies for clinical supplies. This review summarizes potential process development studies for liquid protein formulations and proposes a phase appropriate testing approach.
Collapse
Affiliation(s)
- Robert Liebner
- Chemical Pharmaceutical Development - Department of Pharmaceutical Technologies, Merck KGaA, D-64293 Darmstadt, Germany.
| | - Sarah Altınoğlu
- EMD Serono Research & Development Institute, Inc., MA-01821 Billerica, USA
| | - Torsten Selzer
- Chemical Pharmaceutical Development - Department of Pharmaceutical Technologies, Merck KGaA, D-64293 Darmstadt, Germany
| |
Collapse
|
43
|
Sreenivasan S, Jiskoot W, Rathore AS. Rapid aggregation of therapeutic monoclonal antibodies by bubbling induced air/liquid interfacial and agitation stress at different conditions. Eur J Pharm Biopharm 2021; 168:97-109. [PMID: 34461215 DOI: 10.1016/j.ejpb.2021.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 01/04/2023]
Abstract
Degradation of therapeutic monoclonal antibodies (mAb) due to interfacial agitation through air bubbling was investigated. Samples containing mAb in phosphate buffered saline were subjected to rapid bubbling by using a peristaltic pump at an air flow rate of 11.5 mL/min. Samples were analyzed by visual observation, UV-Vis, fluorescence, circular dichroism and infrared spectroscopy, size-exclusion chromatography (SEC), dynamic light scattering, microscopy, and cell-based activity assays. The stressed samples showed increasing turbidity with bubbling time, with mAb1 showing a protein loss of 53% in the supernatant at the latest time point (240 min), indicating formation of sub-visible and visible aggregates. Aggregate rich samples exhibited altered secondary structure and higher hydrophobicity with 40% reduction in activity. The supernatants of the stressed samples showed unchanged secondary and tertiary structure without the presence of any oligomers in SEC. Furthermore, the impact of various factors that could affect aggregation was investigated and it was found that the extent of aggregation was affected by protein concentration, sample volume, presence of surfactants, temperature, air flow rate, and presence of silicone oil. In conclusion, exposure to air/liquid interfacial stress through bubbling into liquid mAb samples effectively generated sub-visible and visible aggregates, making air bubbling an attractive approach for interfacial stress degradation studies of mAbs.
Collapse
Affiliation(s)
- Shravan Sreenivasan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, The Netherlands
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India.
| |
Collapse
|
44
|
Kopp MRG, Wolf Pérez AM, Zucca MV, Capasso Palmiero U, Friedrichsen B, Lorenzen N, Arosio P. An accelerated surface-mediated stress assay of antibody instability for developability studies. MAbs 2021; 12:1815995. [PMID: 32954930 PMCID: PMC7577746 DOI: 10.1080/19420862.2020.1815995] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
High physical stability is required for the development of monoclonal antibodies (mAbs) into successful therapeutic products. Developability assays are used to predict physical stability issues such as high viscosity and poor conformational stability, but protein aggregation remains a challenging property to predict. Among different types of stresses, air–water and solid–liquid interfaces are well known to potentially trigger protein instability and induce aggregation. Yet, in contrast to the increasing number of developability assays to evaluate bulk properties, there is still a lack of experimental methods to evaluate antibody stability against interfaces. Here, we investigate the potential of a hydrophobic nanoparticle surface-mediated stress assay to assess the stability of mAbs during the early stages of development. We evaluate this surface-mediated accelerated stability assay on a rationally designed library of 14 variants of a humanized IgG4, featuring a broad span of solubility values and other developability properties. The assay could identify variants characterized by high instability against agitation in the presence of air–water interfaces. Remarkably, for the set of investigated molecules, we observe strong correlations between the extent of aggregation induced by the surface-mediated stress assay and other developability properties of the molecules, such as aggregation upon storage at 45°C, self-association (evaluated by affinity-capture self-interaction nanoparticle spectroscopy) and nonspecific interactions (estimated by cross-interaction chromatography, stand-up monolayer chromatography (SMAC), SMAC*). This highly controlled surface-mediated stress assay has the potential to complement and increase the ability of the current set of screening techniques to assess protein aggregation and developability potential of mAbs during the early stages of drug development. Abbreviations:AC-SINS: Affinity-Capture Self-Interaction Nanoparticle Spectroscopy; AMS: Ammonium sulfate precipitation; ANS: 1-anilinonaphtalene-8-sulfonate; CIC: Cross-interaction chromatography; DLS: Dynamic light scattering; HIC: Hydrophobic interaction chromatography; HNSSA: Hydrophobic nanoparticles surface-stress assay; mAb: Monoclonal antibody; NP: Nanoparticle; SEC: Size exclusion chromatography; SMAC: Stand-up monolayer chromatography; WT: Wild type
Collapse
Affiliation(s)
- Marie R G Kopp
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology , Zurich, Switzerland
| | - Adriana-Michelle Wolf Pérez
- Department of Biophysics, Biophysics and Injectable Formulation, Novo Nordisk , Måløv, Denmark.,Aarhus University, iNANO , Aarhus C, Denmark
| | - Marta Virginia Zucca
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology , Zurich, Switzerland
| | - Umberto Capasso Palmiero
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology , Zurich, Switzerland
| | | | - Nikolai Lorenzen
- Department of Biophysics, Biophysics and Injectable Formulation, Novo Nordisk , Måløv, Denmark
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology , Zurich, Switzerland
| |
Collapse
|
45
|
Hui JO, Flick T, Loo JA, Campuzano IDG. Unequivocal Identification of Aspartic Acid and isoAspartic Acid by MALDI-TOF/TOF: From Peptide Standards to a Therapeutic Antibody. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1901-1909. [PMID: 33390012 DOI: 10.1021/jasms.0c00370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aspartic acid (Asp) to isoaspartic acid (isoAsp) isomerization in therapeutic monoclonal antibodies (mAbs) and other biotherapeutics is a critical quality attribute (CQA) that requires careful control and monitoring during the drug discovery and production processes. The unwanted formation of isoAsp within biotherapeutics and resultant structural changes in the peptide backbone may negatively impact the efficacy, potency, and safety of the molecule or become immunogenic, especially if the isomerization occurs within the mAb complementarity determining region (CDR). Herein we describe a MALDI-TOF/TOF mass spectrometry method that affords unequivocal identification of the presence and the exact position of the isoAsp residue(s) in peptide standards ranging in size from a tripeptide to a docosapeptide (22 residues). In general, the peptide bond immediately N-terminal to the isoAsp residue is more susceptible to MALDI-TOF/TOF fragmentation than its unmodified counterpart. In some of the peptides evaluated in this study, fragmentation of the peptide bond C-terminal to the isoAsp residue (the aspartate effect) is also enhanced when compared to the control. Relative quantification by MALDI-TOF/TOF of this chemical modification is dependent upon a successful reversed-phase HPLC (rpHPLC) separation of the control and modified peptides. This method has also been validated on a therapeutic mAb that contains a well-documented isoAsp residue in the heavy chain CDR3 after forced degradation. Moreover, we also demonstrate that higher energy C-trap dissociation of only the singly charged species, and not the multiply charged form, of the isoAsp containing peptide, separated by rpHPLC, results in LC-MS/MS fragmentation that is highly consistent to that of MALDI-TOF/TOF.
Collapse
Affiliation(s)
- John O Hui
- Amgen Research, Discovery Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Tawnya Flick
- Attribute Sciences, Pivotal, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Joseph A Loo
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Iain D G Campuzano
- Amgen Research, Discovery Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| |
Collapse
|
46
|
Gammelgaard SK, Petersen SB, Haselmann KF, Nielsen PK. Characterization of Insulin Dimers by Top-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1910-1918. [PMID: 33084334 DOI: 10.1021/jasms.0c00257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-molecular weight products (HMWP) are an important critical quality attribute in research and development of insulin biopharmaceuticals. We here demonstrate on two case studies of covalent insulin dimers, induced by Fe2+ incubation or ultraviolet (UV) light stress, that de novo characterization in top-down mass spectrometry (MS) workflows can identify cross-link types and sites. On the MS2 level, electron-transfer/higher-energy collision dissociation (EThcD) efficiently cleaved the interchain disulfide bonds in the dimers to reveal cross-link connectivities between chains. The combined utilization of EThcD and 213 nm ultraviolet photodissociation (UVPD) facilitated identification of the chemical composition of the cross-links. Identification of cross-link sites between chains at residue level was achievable for both dimers with MS3 analysis of MS2 fragments cleaved at the cross-link or additionally the interchain disulfide bonds. UVPD provided identification of cross-link sites in the Fe2+-induced dimer without MS3, while cross-link site identification with MS2 was not possible for the UV light-induced dimer. Thus, using varied multistage approaches, it was discovered that in the UV light-induced dimer, Tyr14 of the A-chain participated in an -O-S- cross-link in which the sulfur was derived either from Cys7 or Cys19 of the B-chain. In the Fe2+-induced dimer, Phe1 from both B-chains were cross-linked through a -CH2-. The UV chromophoric side chain of Phe1 was indicated in the cross-link, explaining why UVPD-MS2 was effective in fragmenting the cross-link and nearby backbone bonds. Our results demonstrated that higher-energy collisional dissociation (HCD), EThcD, and UVPD combined with MS3 were powerful tools for direct de novo characterization of cross-linked insulin dimers.
Collapse
Affiliation(s)
- Simon K Gammelgaard
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark
| | - Steffen B Petersen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark
| | - Kim F Haselmann
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Peter Kresten Nielsen
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| |
Collapse
|
47
|
Yuan J, Li J, Yang L, Lv Y, Wang C, Jin Z, Ni X, Xia H. Development and validation of a novel reporter gene assay for determination of recombinant human thrombopoietin. Int Immunopharmacol 2021; 99:107982. [PMID: 34333355 DOI: 10.1016/j.intimp.2021.107982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/15/2022]
Abstract
Recombinant human thrombopoietin (rhTPO) was approved by the National Medical Products Administration in 2010 for the treatment of thrombocytopenia in patients with immune thrombocytopenic purpura and chemotherapy-induced thrombocytopenia. Nevertheless, no method for determining rhTPO bioactivity has been recorded in different national/regional pharmacopoeia. Novel methods for lot release and stability testing are needed that are simpler, quicker, and more accurate. Here, we developed a novel reporter gene assay (RGA) for rhTPO bioassay with Ba/F3 cell lines that stably expressed human TPO receptor and luciferase reporter driven by sis-inducible element, gamma response region, and gamma-interferon activated sequence. During careful optimization, the RGA method demonstrated high performance characteristics. According to the International Council for Harmonization Q2 (R1) guidelines and the Chinese Pharmacopoeia 2020 edition, the validation results demonstrated that this method is highly time-saving, sensitive, and robust for research, development, manufacture, and quality control of rhTPO.
Collapse
Affiliation(s)
- Jie Yuan
- School of Life Science and Biopharmaceuticals, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, China; Shenyang Sunshine Pharmaceutical CO., Ltd, 1(st) 3, 10(th) Road, Economic and Technological Development Zone, Shenyang, Liaoning 110027, China
| | - Jia Li
- Shenyang Sunshine Pharmaceutical CO., Ltd, 1(st) 3, 10(th) Road, Economic and Technological Development Zone, Shenyang, Liaoning 110027, China
| | - Lihua Yang
- School of Life Science and Biopharmaceuticals, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, China; Shenyang Sunshine Pharmaceutical CO., Ltd, 1(st) 3, 10(th) Road, Economic and Technological Development Zone, Shenyang, Liaoning 110027, China
| | - Yunying Lv
- School of Life Science and Biopharmaceuticals, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, China; Shenyang Sunshine Pharmaceutical CO., Ltd, 1(st) 3, 10(th) Road, Economic and Technological Development Zone, Shenyang, Liaoning 110027, China
| | - Chao Wang
- Shenyang Sunshine Pharmaceutical CO., Ltd, 1(st) 3, 10(th) Road, Economic and Technological Development Zone, Shenyang, Liaoning 110027, China
| | - Zheng Jin
- Shenyang Sunshine Pharmaceutical CO., Ltd, 1(st) 3, 10(th) Road, Economic and Technological Development Zone, Shenyang, Liaoning 110027, China
| | - Xianpu Ni
- School of Life Science and Biopharmaceuticals, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Huanzhang Xia
- School of Life Science and Biopharmaceuticals, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
48
|
Grabarek AD, Jiskoot W, Hawe A, Pike-Overzet K, Menzen T. Forced degradation of cell-based medicinal products guided by flow imaging microscopy: Explorative studies with Jurkat cells. Eur J Pharm Biopharm 2021; 167:38-47. [PMID: 34274457 DOI: 10.1016/j.ejpb.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/30/2021] [Accepted: 07/10/2021] [Indexed: 01/01/2023]
Abstract
Cell-based medicinal products (CBMPs) offer ground-breaking opportunities to treat diseases with limited or no therapeutic options. However, the intrinsic complexity of CBMPs results in great challenges with respect to analytical characterization and stability assessment. In our study, we submitted Jurkat cell suspensions to forced degradation studies mimicking conditions to which CBMPs might be exposed from procurement of cells to administration of the product. Flow imaging microscopy assisted by machine learning was applied for determination of cell viability and concentration, and quantification of debris particles. Additionally, orthogonal cell characterization techniques were used. Thawing of cells at 5 °C was detrimental to cell viability and resulted in high numbers of debris particles, in contrast to thawing at 37 °C or 20 °C which resulted in better stability. After freezing of cell suspensions at -18 °C in presence of dimethyl sulfoxide (DMSO), a DMSO concentration of 2.5% (v/v) showed low stabilizing properties, whereas 5% or 10% was protective. Horizontal shaking of cell suspensions did not affect cell viability, but led to a reduction in cell concentration. Fetal bovine serum (10% [v/v]) protected the cells during shaking. In conclusion, forced degradation studies with application of orthogonal analytical characterization methods allow for CBMP stability assessment and formulation screening.
Collapse
Affiliation(s)
- A D Grabarek
- Coriolis Pharma, Fraunhoferstraße 18 b, 82152 Martinsried, Germany; Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - W Jiskoot
- Coriolis Pharma, Fraunhoferstraße 18 b, 82152 Martinsried, Germany; Leiden Academic Centre for Drug Research, Leiden University, the Netherlands.
| | - A Hawe
- Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - K Pike-Overzet
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - T Menzen
- Leiden Academic Centre for Drug Research, Leiden University, the Netherlands.
| |
Collapse
|
49
|
Skeene K, Khatri K, Soloviev Z, Lapthorn C. Current status and future prospects for ion-mobility mass spectrometry in the biopharmaceutical industry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140697. [PMID: 34246790 DOI: 10.1016/j.bbapap.2021.140697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Detailed characterization of protein reagents and biopharmaceuticals is key in defining successful drug discovery campaigns, aimed at bringing molecules through different discovery stages up to development and commercialization. There are many challenges in this process, with complex and detailed analyses playing paramount roles in modern industry. Mass spectrometry (MS) has become an essential tool for characterization of proteins ever since the onset of soft ionization techniques and has taken the lead in quality assessment of biopharmaceutical molecules, and protein reagents, used in the drug discovery pipeline. MS use spans from identification of correct sequences, to intact molecule analyses, protein complexes and more recently epitope and paratope identification. MS toolkits could be incredibly diverse and with ever evolving instrumentation, increasingly novel MS-based techniques are becoming indispensable tools in the biopharmaceutical industry. Here we discuss application of Ion Mobility MS (IMMS) in an industrial setting, and what the current applications and outlook are for making IMMS more mainstream.
Collapse
Affiliation(s)
- Kirsty Skeene
- Biopharm Process Research, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Kshitij Khatri
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Collegeville, PA 19406, USA.
| | - Zoja Soloviev
- Protein, Cellular and Structural Sciences, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Cris Lapthorn
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| |
Collapse
|
50
|
Király M, Kiss BD, Horváth P, Drahos L, Mirzahosseini A, Pálfy G, Antal I, Ludányi K. Investigating thermal stability based on the structural changes of lactase enzyme by several orthogonal methods. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 30:e00637. [PMID: 34136367 PMCID: PMC8182373 DOI: 10.1016/j.btre.2021.e00637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/24/2021] [Indexed: 11/21/2022]
Abstract
Thermal stability of lactase (β-galactosidase) enzyme has been studied by a variety of physico-chemical methods. β-galactosidase is the main active ingredient of medications for lactose intolerance. It is typically produced industrially by the Aspergillus oryzae filamentous fungus. Lactase was used as a model to help understand thermal stability of enzyme-type biopharmaceuticals. Enzyme activity (hydrolyzation of lactose) of β-galactosidase was determined after storing the solid enzyme substance at various temperatures. For a better understanding of the relationship between structure and activity changes we determined the mass and size of the molecules with gel electrophoresis and dynamic light scattering and detected aggregation processes. A bottom-up proteomic procedure was used to determine the primary amino acid sequence and to investigate changes in the N-glycosylation pattern of the protein. NMR and CD spectroscopic methods were used to observe changes in higher order structures and to reveal relationships between structural and functional changes.
Collapse
Affiliation(s)
- Márton Király
- Department of Pharmaceutics, Faculty of Pharmacy, Semmelweis University, Hőgyes Endre u. 7., 1092, Budapest, Hungary
| | - Borbála Dalmadi Kiss
- Department of Pharmaceutics, Faculty of Pharmacy, Semmelweis University, Hőgyes Endre u. 7., 1092, Budapest, Hungary
| | - Péter Horváth
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Semmelweis University, Hőgyes Endre u. 7., 1092, Budapest, Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok körútja 2., H-1117, Budapest, Hungary
| | - Arash Mirzahosseini
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Semmelweis University, Hőgyes Endre u. 7., 1092, Budapest, Hungary
| | - Gyula Pálfy
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány P. sétány 1/A, 1117, Budapest, Hungary
- Protein Modeling Group HAS-ELTE, Institute of Chemistry, Eötvös Loránd University, 1538, Budapest, P.O.B. 32, Hungary
| | - István Antal
- Department of Pharmaceutics, Faculty of Pharmacy, Semmelweis University, Hőgyes Endre u. 7., 1092, Budapest, Hungary
| | - Krisztina Ludányi
- Department of Pharmaceutics, Faculty of Pharmacy, Semmelweis University, Hőgyes Endre u. 7., 1092, Budapest, Hungary
| |
Collapse
|