1
|
Krishnan J, Poomalai P, Ravichandran A, Reddy A, Sureshkumar R. A Concise Review on Effect of PEGylation on the Properties of Lipid-Based Nanoparticles. Assay Drug Dev Technol 2024; 22:246-264. [PMID: 38828531 DOI: 10.1089/adt.2024.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Nanoparticle-based drug delivery systems have emerged as promising platforms for enhancing therapeutic efficacy while minimizing off-target effects. Among various strategies employed to optimize these systems, polyethylene glycol (PEG) modification, known as PEGylation-the covalent attachment of PEG to nanoparticles, has gained considerable attention for its ability to impart stealth properties to nanoparticles while also extending circulation time and improving biocompatibility. PEGylation extends to different drug delivery systems, in specific, nanoparticles for targeting cancer cells, where the concentration of drug in the cancer cells is improved by virtue of PEGylation. The primary challenge linked to PEGylation lies in its confirmation. Numerous research findings provide comprehensive insights into selecting PEG for various PEGylation methods. In this review, we have endeavored to consolidate the outcomes concerning the choice of PEG and diverse PEGylation techniques.
Collapse
Affiliation(s)
- Janesha Krishnan
- Department of Pharmaceutics, Center for Nano Engineering Science & Technology (C-NEST), JSS Academy of Higher Education and Research, JSS College of Pharmacy, Ooty, India
| | - Praveena Poomalai
- Department of Pharmaceutics, Center for Nano Engineering Science & Technology (C-NEST), JSS Academy of Higher Education and Research, JSS College of Pharmacy, Ooty, India
| | - Ashwin Ravichandran
- Department of Pharmaceutics, Center for Nano Engineering Science & Technology (C-NEST), JSS Academy of Higher Education and Research, JSS College of Pharmacy, Ooty, India
| | - Aishwarya Reddy
- Department of Pharmaceutics, Center for Nano Engineering Science & Technology (C-NEST), JSS Academy of Higher Education and Research, JSS College of Pharmacy, Ooty, India
| | - Raman Sureshkumar
- Department of Pharmaceutics, Center for Nano Engineering Science & Technology (C-NEST), JSS Academy of Higher Education and Research, JSS College of Pharmacy, Ooty, India
| |
Collapse
|
2
|
Muraoka T, Okumura M, Saio T. Enzymatic and synthetic regulation of polypeptide folding. Chem Sci 2024; 15:2282-2299. [PMID: 38362427 PMCID: PMC10866363 DOI: 10.1039/d3sc05781j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Proper folding is essential for the biological functions of all proteins. The folding process is intrinsically error-prone, and the misfolding of a polypeptide chain can cause the formation of toxic aggregates related to pathological outcomes such as neurodegenerative disease and diabetes. Chaperones and some enzymes are involved in the cellular proteostasis systems that assist polypeptide folding to diminish the risk of aggregation. Elucidating the molecular mechanisms of chaperones and related enzymes is important for understanding proteostasis systems and protein misfolding- and aggregation-related pathophysiology. Furthermore, mechanistic studies of chaperones and related enzymes provide important clues to designing chemical mimics, or chemical chaperones, that are potentially useful for recovering proteostasis activities as therapeutic approaches for treating and preventing protein misfolding-related diseases. In this Perspective, we provide a comprehensive overview of the latest understanding of the folding-promotion mechanisms by chaperones and oxidoreductases and recent progress in the development of chemical mimics that possess activities comparable to enzymes, followed by a discussion of future directions.
Collapse
Affiliation(s)
- Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC) Kanagawa 243-0435 Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University Sendai Miyagi 980-8578 Japan
| | - Tomohide Saio
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University Tokushima 770-8503 Japan
| |
Collapse
|
3
|
Foralosso R, Kopiasz RJ, Alexander C, Mantovani G, Stolnik S. Synthetic macromolecular peptide-mimetics with amino acid substructure residues as protein stabilising excipients. J Mater Chem B 2024; 12:1022-1030. [PMID: 38205916 DOI: 10.1039/d3tb02102e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The clinical use of protein and peptide biotherapeutics requires fabrication of stable products. This particularly concerns stability towards aggregation of proteins or peptides. Here, we tested a hypothesis that interactions between a synthetic peptide, which is an aggregation-prone region analogue, and its homologous sequence on a protein of interest, could be exploited to design excipients which stabilise the protein against aggregation. A peptide containing the analogue of lysozyme aggregation-prone region (GILQINSRW) was conjugated to a RAFT agent and used to initiate the polymerisation of N-hydroxyethyl acrylamide, generating a GILQINSRW-HEA90 polymer, which profoundly reduced lysozyme aggregation. Substitution of tryptophan in GILQINSRW with glycine, to form GILQINSRG, revealed that tryptophan is a critical amino acid in the protein stabilisation by GILQINSRW-HEA90. Accordingly, polymeric peptide-mimetics of tryptophan, phenylalanine and isoleucine, which are often present in aggregation-prone regions, were synthesized. These were based on synthetic oligomers of acrylamide derivatives of indole-3 acetic acid (IND), phenylacetic acid (PHEN), or 2-methyl butyric acid (MBA), respectively, conjugated with hydrophilic poly(N-hydroxyethyl acrylamide) blocks to form amphiphilic copolymers denoted as INDm-, PHENm- and MTBm-b-HEAn. These materials were tested as protein stabilisers and it was shown that solution properties and the abilities of these materials to stabilise insulin and the peptide IDR 1018 towards aggregation are dependent on the chemical nature of their side groups. These data suggest a structure-activity relationship, whereby the indole-based INDm-b-HEAn peptide-mimetic displays properties of a potential stabilising excipient for protein formulations.
Collapse
Affiliation(s)
| | - Rafał Jerzy Kopiasz
- University of Nottingham, School of Pharmacy, NG7 2RD, UK.
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3 St., 00-664, Warsaw, Poland
| | | | | | - Snow Stolnik
- University of Nottingham, School of Pharmacy, NG7 2RD, UK.
| |
Collapse
|
4
|
Andrianov AK. Noncovalent PEGylation of protein and peptide therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1897. [PMID: 37138514 DOI: 10.1002/wnan.1897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023]
Abstract
Clinical applications of protein therapeutics-an advanced generation of drugs characterized by high biological specificity-are rapidly expanding. However, their development is often impeded by unfavorable pharmacokinetic profiles and largely relies on the use of drug delivery systems to prolong their in vivo half-life and suppress undesirable immunogenicity. Although a commercially established PEGylation technology based on protein conjugation with poly(ethylene glycol) (PEG)-protective steric shield resolves some of the challenges, the search for alternatives continues. Noncovalent PEGylation, which mainly relies on multivalent (cooperative) interactions and high affinity (host-guest) complexes formed between protein and PEG offers a number of potential advantages. Among them are dynamic or reversible protection of the protein with minimal loss of biological activity, drastically lower manufacturing costs, "mix-and-match" formulations approaches, and expanded scope of PEGylation targets. While a great number of innovative chemical approaches have been proposed in recent years, the ability to effectively control the stability of noncovalently assembled protein-PEG complexes under physiological conditions presents a serious challenge for the commercial development of the technology. In an attempt to identify critical factors affecting pharmacological behavior of noncovalently linked complexes, this Review follows a hierarchical analysis of various experimental techniques and resulting supramolecular architectures. The importance of in vivo administration routes, degradation patterns of PEGylating agents, and a multitude of potential exchange reactions with constituents of physiological compartments are highlighted. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Alexander K Andrianov
- Institute of Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| |
Collapse
|
5
|
Oral peptide delivery: challenges and the way ahead. Drug Discov Today 2021; 26:931-950. [PMID: 33444788 DOI: 10.1016/j.drudis.2021.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/16/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Peptides and proteins have emerged as potential therapeutic agents and, in the search for the best treatment regimen, the oral route has been extensively evaluated because of its non-invasive and safe nature. The physicochemical properties of peptides and proteins along with the hurdles in the gastrointestinal tract (GIT), such as degrading enzymes and permeation barriers, are challenges to their delivery. To address these challenges, several conventional and novel approaches, such as nanocarriers, site-specific and stimuli specific delivery, are being used. In this review, we discuss the challenges to the oral delivery of peptides and the approaches used to tackle these challenges.
Collapse
|
6
|
Wang J, Deng T, Liu Y, Chen K, Yang Z, Jiang ZX. Monodisperse and Polydisperse PEGylation of Peptides and Proteins: A Comparative Study. Biomacromolecules 2020; 21:3134-3139. [PMID: 32628833 DOI: 10.1021/acs.biomac.0c00517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although PEGylation is widely used in biomedicine with great success, it suffers from many drawbacks, such as polydispersity, nonbiodegradability, and loss of precursor potency. Recently, the search for polyethylene glycol (PEG) substitutes has attracted considerable attention. Some of the substitutes partially address the drawbacks of PEGs, but sacrifice the "stealth" effect of PEGs and bring in new issues. Herein, we developed monodisperse oligoethylene glycol (M-OEG) polyamides over 5000 Da as biodegradable and monodisperse PEGylation (M-PEGylation) agents, which provided M-PEGylated peptides and proteins with high monodispersity and a biodegradable PEG moiety. Compared to regular PEGylated proteins with a complex "stealth" cloud of PEG, the hydrogen bond interactions between the M-OEG polyamides and proteins provided the M-PEGylated protein with a biodegradable "stealth" cloak. The monodisperse and biodegradable M-PEGylation strategy as well as the peculiar protein-M-OEG polyamide interactions may shed light on many long-lasting issues during the development of PEGylated biologic drugs, such as monodispersity, biodegradability, and tunable conformation.
Collapse
Affiliation(s)
- Jie Wang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Tao Deng
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Yuntai Liu
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Kexin Chen
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Zhigang Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Zhong-Xing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| |
Collapse
|
7
|
Muraoka T. Biofunctional Molecules Inspired by Protein Mimicry and Manipulation. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
8
|
Belén LH, Rangel-Yagui CDO, Beltrán Lissabet JF, Effer B, Lee-Estevez M, Pessoa A, Castillo RL, Farías JG. From Synthesis to Characterization of Site-Selective PEGylated Proteins. Front Pharmacol 2019; 10:1450. [PMID: 31920645 PMCID: PMC6930235 DOI: 10.3389/fphar.2019.01450] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Covalent attachment of therapeutic proteins to polyethylene glycol (PEG) is widely used for the improvement of its pharmacokinetic and pharmacological properties, as well as the reduction in reactogenicity and related side effects. This technique named PEGylation has been successfully employed in several approved drugs to treat various diseases, even cancer. Some methods have been developed to obtain PEGylated proteins, both in multiple protein sites or in a selected amino acid residue. This review focuses mainly on traditional and novel examples of chemical and enzymatic methods for site-selective PEGylation, emphasizing in N-terminal PEGylation, that make it possible to obtain products with a high degree of homogeneity and preserve bioactivity. In addition, the main assay methods that can be applied for the characterization of PEGylated molecules in complex biological samples are also summarized in this paper.
Collapse
Affiliation(s)
- Lisandra Herrera Belén
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Carlota de Oliveira Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jorge F. Beltrán Lissabet
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Brian Effer
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Manuel Lee-Estevez
- Faculty of Health Sciences, Universidad Autónoma de Chile, Temuco, Chile
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rodrigo L. Castillo
- Department of Internal Medicine East, Faculty of Medicine, University of Chile, Santiago de Chile, Chile
| | - Jorge G. Farías
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
9
|
Cai Y, Zhao H. Protein-Induced Dissociation of Biomolecular Assemblies. ACS APPLIED BIO MATERIALS 2018; 2:470-479. [DOI: 10.1021/acsabm.8b00672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaqian Cai
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
10
|
Mummidivarapu VVS, Rennie ML, Doolan AM, Crowley PB. Noncovalent PEGylation via Sulfonatocalix[4]arene–A Crystallographic Proof. Bioconjug Chem 2018; 29:3999-4003. [DOI: 10.1021/acs.bioconjchem.8b00769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Martin L. Rennie
- School of Chemistry, National University of Ireland Galway, University Road, H91 TK33, Galway, Ireland
| | - Aishling M. Doolan
- School of Chemistry, National University of Ireland Galway, University Road, H91 TK33, Galway, Ireland
| | - Peter B. Crowley
- School of Chemistry, National University of Ireland Galway, University Road, H91 TK33, Galway, Ireland
| |
Collapse
|
11
|
Andrianov AK, Marin A, Martinez AP, Weidman JL, Fuerst TR. Hydrolytically Degradable PEGylated Polyelectrolyte Nanocomplexes for Protein Delivery. Biomacromolecules 2018; 19:3467-3478. [PMID: 29953203 DOI: 10.1021/acs.biomac.8b00785] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Novel oppositely charged polyphosphazene polyelectrolytes containing grafted poly(ethylene glycol) (PEG) chains were synthesized as modular components for the assembly of biodegradable PEGylated protein delivery vehicles. These macromolecular counterparts, which contained either carboxylic acid or tertiary amino groups, were then formulated at near physiological conditions into supramolecular assemblies of nanoscale level, below 100 nm. Nanocomplexes with electroneutral surface charge, as assessed by zeta potential measurements, were stable in aqueous solutions, which suggests their compact polyelectrolyte complex "core"-hydrophilic PEG "shell" structure. Investigation of PEGylated polyphosphazene nanocomplexes as agents for noncovalent PEGylation of the therapeutic protein l-asparaginase (L-ASP) in vitro demonstrated their ability to dramatically reduce protein antigenicity, as measured by antibody binding using enzyme linked immunosorbent assay (ELISA). Encapsulation in nanocomplexes did not affect enzymatic activity of L-ASP, but improved its thermal stability and proteolytic resistance. Gel permeation chromatography (GPC) experiments revealed that all synthesized polyphosphazenes exhibited composition controlled hydrolytic degradability in aqueous solutions at neutral pH and showed greater stability at lower temperatures. Overall, novel hydrolytically degradable polyphosphazene polyelectrolytes capable of spontaneous self-assembly into PEGylated nanoparticulates in aqueous solutions can potentially enable a simple and effective approach to modifying therapeutic proteins without the need for their covalent modification.
Collapse
Affiliation(s)
- Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Andre P Martinez
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Jacob L Weidman
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States.,Department of Cell Biology and Molecular Genetics , 1109 Microbiology Building , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
12
|
Asayama S, Nagashima K, Negishi Y, Kawakami H. Byproduct-Free Intact Modification of Insulin by Cholesterol End-Modified Poly(ethylene glycol) for in Vivo Protein Delivery. Bioconjug Chem 2017; 29:67-73. [DOI: 10.1021/acs.bioconjchem.7b00593] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shoichiro Asayama
- Department
of Applied Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Kana Nagashima
- Department
of Applied Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Yoichi Negishi
- School
of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroyoshi Kawakami
- Department
of Applied Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
13
|
Kameta N, Ding W, Dong J. Soft Nanotubes Derivatized with Short PEG Chains for Thermally Controllable Extraction and Separation of Peptides. ACS OMEGA 2017; 2:6143-6150. [PMID: 30023764 PMCID: PMC6044993 DOI: 10.1021/acsomega.7b00838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/13/2017] [Indexed: 06/08/2023]
Abstract
By means of a two-step self-assembly process involving three components, including short poly(ethylene glycol) (PEG) chains, we produced two different types of molecular monolayer nanotubes: nanotubes densely functionalized with PEG chains on the outer surface and nanotubes densely functionalized with PEG chains in the nanochannel. Turbidity measurements and fluorescence spectroscopy with an environmentally responsive probe suggested that the PEG chains underwent dehydration when the nanotubes were heated above 44-57 °C and rehydration when they were cooled back to 25 °C. Dehydration of the exterior or interior PEG chains rendered them hydrophobic and thus able to effectively extract hydrophobic amino acids from the bulk solution. Rehydration of the PEG chains restored their hydrophilicity, thus allowing the extracted amino acids to be squeezed out into the bulk solutions. The nanotubes with exterior PEG chains exhibited selectivity for all of the hydrophobic amino acids, whereas the interior PEG chains were selective for hydrophobic amino acids with an aliphatic side chain over hydrophobic amino acids with an aromatic side chain. The higher selectivity of the latter system is attributable that the extraction and back-extraction processes involve encapsulation and transportation of the amino acids in the nanotube channel. As the result, the latter system was useful for separation of peptides that differed by only a single amino acid, whereas the former system showed no such separation ability.
Collapse
Affiliation(s)
- Naohiro Kameta
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science
and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Wuxiao Ding
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science
and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Jiuchao Dong
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science
and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
14
|
Kurinomaru T, Kuwada K, Tomita S, Kameda T, Shiraki K. Noncovalent PEGylation through Protein–Polyelectrolyte Interaction: Kinetic Experiment and Molecular Dynamics Simulation. J Phys Chem B 2017. [DOI: 10.1021/acs.jpcb.7b02741] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Takaaki Kurinomaru
- Biomedical
Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Kengo Kuwada
- Faculty
of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Shunsuke Tomita
- Biomedical
Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Tomoshi Kameda
- Artificial
Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto, Tokyo 135-0064, Japan
| | - Kentaro Shiraki
- Faculty
of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
15
|
Abstract
The formulation in which therapeutic proteins are administered plays a key role in retaining their biological activity. Enzyme wrapping, using synthetic polymers, is a strategy employed to provide enzymes with lower immunogenicity, longer circulation times, and better targeting capabilities. Protein-polymer complexation methods, involving covalent, noncovalent, and electrostatic interactions, that can provide means to develop formulations for retaining enzyme stability are discussed in this chapter. Amphiphilic self-cross-linkable polymer was used to encapsulate capsase-3 enzyme in the nanogel, while inverse emulsion polymerization method was used to entrap α-glucosidase enzyme in the nanogel. These nanogels were characterized by dynamic light scattering, transmission electron microscopy, and gel electrophoresis. Upon release of caspase-3 enzyme from polymeric nanogel, it retained nearly 86% of its original activity. Similarly, α-glucosidase that was encased in the acid cleavable polymeric nanogel exhibited substantial activity after release under acidic conditions (pH 5, 48h). Nano-armoring of the enzymes were nearly complete and provided high yields of the encased enzyme.
Collapse
|
16
|
Antonik PM, Eissa AM, Round AR, Cameron NR, Crowley PB. Noncovalent PEGylation via Lectin–Glycopolymer Interactions. Biomacromolecules 2016; 17:2719-25. [DOI: 10.1021/acs.biomac.6b00766] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paweł M. Antonik
- School
of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
- Teagasc Food Research
Centre, Ashtown, Dublin 15, Ireland
| | - Ahmed M. Eissa
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
- Department
of Polymers, Chemical Industries Research Division, National Research Centre (NRC), El-Bohoos Street, Dokki, Cairo 12311, Egypt
| | - Adam R. Round
- European Molecular Biology Laboratory Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| | - Peter B. Crowley
- School
of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
17
|
Wang Y, Hao H, Zhang S. Lysozyme loading and release from Se doped hydroxyapatite nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:545-52. [DOI: 10.1016/j.msec.2015.12.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 11/14/2015] [Accepted: 12/28/2015] [Indexed: 12/15/2022]
|
18
|
A novel combined strategy for the physical PEGylation of polypeptides. J Control Release 2016; 226:35-46. [DOI: 10.1016/j.jconrel.2016.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/24/2022]
|
19
|
Reichert C, Borchard G. Noncovalent PEGylation, An Innovative Subchapter in the Field of Protein Modification. J Pharm Sci 2016; 105:386-390. [PMID: 26523632 DOI: 10.1002/jps.24692] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/03/2015] [Accepted: 09/24/2015] [Indexed: 12/17/2022]
Abstract
Attachment of a chain of poly(ethylene glycol) (PEG) to a therapeutic protein, a process widely known as PEGylation, can lead to several beneficial effects. It has the potential to significantly delay aggregation of the protein by steric shielding, a frequently encountered issue in the development of protein drugs. Moreover, it can modify the pharmacokinetic profile of the PEGylated protein by delaying renal excretion, leading to a longer half-life (t1/2) of the drug. By steric hindrance, it can also inhibit interactions between the protein drug and proteases as well as the host immune system, thereby inhibiting inactivation of the PEGylated protein and also attenuating its immunogenicity. Unfortunately, the effect of steric hindrance also applies to protein drug-target interaction, leading to a (partial) loss of efficacy. In order to avoid this undesirable effect, several efforts have been made to link PEG to a protein in a noncovalent way, providing the protein with several of the beneficial effects of PEGylation while also taking advantage of its native affinity to its target.
Collapse
Affiliation(s)
- Christian Reichert
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Gerrit Borchard
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.
| |
Collapse
|
20
|
Kameta N, Matsuzawa T, Yaoi K, Masuda M. Short polyethylene glycol chains densely bound to soft nanotube channels for inhibition of protein aggregation. RSC Adv 2016. [DOI: 10.1039/c6ra06793j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Specific thermal dehydration/rehydration of short polyethylene glycol (PEG) chains densely bound to nanotube channels was useful for aggregation suppression and refolding acceleration of proteins.
Collapse
Affiliation(s)
- N. Kameta
- Research Institute for Sustainable Chemistry
- Department of Materials and Chemistry
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| | - T. Matsuzawa
- Bioproduction Research Institute
- Department of Life Science and Biotechnology
- AIST
- Tsukuba
- Japan
| | - K. Yaoi
- Bioproduction Research Institute
- Department of Life Science and Biotechnology
- AIST
- Tsukuba
- Japan
| | - M. Masuda
- Research Institute for Sustainable Chemistry
- Department of Materials and Chemistry
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| |
Collapse
|
21
|
Kurinomaru T, Shiraki K. Noncovalent PEGylation of l-Asparaginase Using PEGylated Polyelectrolyte. J Pharm Sci 2015; 104:587-92. [DOI: 10.1002/jps.24217] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/04/2014] [Accepted: 09/24/2014] [Indexed: 02/03/2023]
|
22
|
Sadhukhan N, Muraoka T, Ui M, Nagatoishi S, Tsumoto K, Kinbara K. Protein stabilization by an amphiphilic short monodisperse oligo(ethylene glycol). Chem Commun (Camb) 2015; 51:8457-60. [DOI: 10.1039/c4cc10301g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phenyl-appended octa(ethylene glycol) suppresses aggregation of thermally and chemically denatured lysozyme, demonstrating that octa(ethylene glycol) is almost the shortest oligoethylene glycol for providing the capability of stabilizing proteins to molecules.
Collapse
Affiliation(s)
- Nabanita Sadhukhan
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai 980-8577
- Japan
| | - Takahiro Muraoka
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai 980-8577
- Japan
- PRESTO
| | - Mihoko Ui
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai 980-8577
- Japan
| | | | - Kouhei Tsumoto
- Department of Bioengineering
- The University of Tokyo
- Bunkyo-ku
- Japan
- Department of Chemistry and Biotechnology
| | - Kazushi Kinbara
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai 980-8577
- Japan
| |
Collapse
|
23
|
|
24
|
Buschmann J, Calcagni M, Bürgisser GM, Bonavoglia E, Neuenschwander P, Milleret V, Giovanoli P. Synthesis, characterization and histomorphometric analysis of cellular response to a new elastic DegraPol® polymer for rabbit Achilles tendon rupture repair. J Tissue Eng Regen Med 2012; 9:584-94. [DOI: 10.1002/term.1624] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/04/2012] [Accepted: 08/25/2012] [Indexed: 02/05/2023]
Affiliation(s)
- Johanna Buschmann
- Division of Plastic and Reconstructive Surgery; University Hospital Zurich; Sternwartstrasse 14 8091 Zurich Switzerland
| | - Maurizio Calcagni
- Division of Plastic and Reconstructive Surgery; University Hospital Zurich; Sternwartstrasse 14 8091 Zurich Switzerland
| | - Gabriella Meier Bürgisser
- Division of Plastic and Reconstructive Surgery; University Hospital Zurich; Sternwartstrasse 14 8091 Zurich Switzerland
| | | | | | - Vincent Milleret
- Department of Materials; Cells and Biomaterials; ETH Zurich Zurich Switzerland
| | - Pietro Giovanoli
- Division of Plastic and Reconstructive Surgery; University Hospital Zurich; Sternwartstrasse 14 8091 Zurich Switzerland
| |
Collapse
|