1
|
Hendrick V, Pohorylo E, Merchant L, Gerhart J, Arham IN, Draica F, Quercia R, Ayoub A, Mehta R. Pharmacovigilance of Drug-Drug Interactions with Nirmatrelvir/Ritonavir. Infect Dis Ther 2024; 13:2545-2561. [PMID: 39461916 PMCID: PMC11582113 DOI: 10.1007/s40121-024-01050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/09/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION Nirmatrelvir/ritonavir (NMV/r) is approved in the United States (US) and more than 70 other countries for the treatment of mild to moderate COVID-19 in nonhospitalized adults at high risk for severe disease. Because ritonavir inhibits several drug metabolizing enzymes, potential drug-drug interactions (DDIs) between ritonavir and concomitant medications are an important consideration for prescribers. Here, we conducted a real-world analysis of data from Pfizer's global safety database regarding adverse events (AEs) reported during use of NMV/r concomitantly with potentially interacting drugs. METHODS Data were extracted regarding DDI cases occurring from the start of NMV/r authorization through October 31, 2023. Results regarding concomitant treatment, specific AEs, and clinical outcomes are summarized. Overall NMV/r exposure was estimated based on packs of medication dispensed and was used to calculate reporting rates. RESULTS Among 19,617,670 patients exposed globally to NMV/r, 966 cases of potential DDIs were reported. Of these, 594 occurred in the US against an estimated US exposure of 14,646,990 patients, representing a reporting rate of 0.004%. Globally and in the United States, 66.8% and 77.3% of cases, respectively, were nonserious. Simvastatin and tacrolimus were the most frequently reported drugs associated with potential DDIs, and the most frequently reported AE regarding a specific event or symptom was dysgeusia (altered sense of taste), an AE known to be associated with NMV/r. CONCLUSIONS Low reporting rates of DDIs support the potential for NMV/r treatment to be safely managed with careful use of available drug interaction resources to aid in risk mitigation.
Collapse
Affiliation(s)
- Victoria Hendrick
- Worldwide Medical and Safety, Pfizer Research and Development, Sandwich, Kent, UK
| | - Erast Pohorylo
- Worldwide Medical and Safety, Pfizer Research and Development, Collegeville, PA, USA.
| | - Lubna Merchant
- Worldwide Medical and Safety, Pfizer Research and Development, Collegeville, PA, USA
| | - Jackie Gerhart
- Translational Clinical Sciences, Pfizer Research and Development, Collegeville, PA, USA
| | - Iqra Naz Arham
- US Medical and Scientific Affairs, Pfizer Inc, New York, NY, USA
| | - Florin Draica
- US Medical and Scientific Affairs, Pfizer Inc, New York, NY, USA
| | | | - Ayman Ayoub
- Worldwide Medical and Safety, Pfizer Research and Development, Sandwich, Kent, UK
| | - Reema Mehta
- Worldwide Medical and Safety, Pfizer Research and Development, Peapack, NJ, USA
| |
Collapse
|
2
|
Quercia R, Di Perri G, Pein C, Bodie J, Singh RSP, Hendrick V, Boffito M. Ritonavir: 25 Years' Experience of Concomitant Medication Management. A Narrative Review. Infect Dis Ther 2024; 13:1005-1017. [PMID: 38609668 PMCID: PMC11098990 DOI: 10.1007/s40121-024-00959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/08/2024] [Indexed: 04/14/2024] Open
Abstract
Ritonavir is a potent inhibitor of the cytochrome P450 3A4 enzyme and is commonly used as a pharmacokinetic (PK) enhancer in antiviral therapies because it increases bioavailability of concomitantly administered antivirals. Decades of experience with ritonavir-enhanced HIV therapies and, more recently, COVID-19 therapies demonstrate that boosting doses of ritonavir are well tolerated, with an established safety profile. The mechanisms of PK enhancement by ritonavir result in the potential for drug-drug interactions (DDIs) with several classes of drugs, thus making co-medication management an important consideration with enhanced antiviral therapies. However, rates of DDIs with contraindicated medications are low, suggesting these risks are manageable by infectious disease specialists who have experience with the use of PK enhancers. In this review, we provide an overview of ritonavir's mechanisms of action and describe approaches and resources available to mitigate adverse events and manage concomitant medication in both chronic and short-term settings.
Collapse
Affiliation(s)
- Romina Quercia
- Chief Medical Affairs Office, Pfizer Inc, New York City, NY, USA
| | | | - Carolina Pein
- Chief Medical Affairs Office, Pfizer Inc, New York City, NY, USA.
| | - Jennifer Bodie
- Chief Medical Affairs Office, Pfizer Inc, New York City, NY, USA
| | | | | | - Marta Boffito
- Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
- Department of Infectious Diseases, Imperial College London, London, UK
| |
Collapse
|
3
|
Krohmer E, Rohr BS, Stoll F, Gümüs KS, Bergamino M, Mikus G, Sauter M, Burhenne J, Weiss J, Meid AD, Czock D, Blank A, Haefeli WE. Influence of a Short Course of Ritonavir Used as Booster in Antiviral Therapies Against SARS-CoV-2 on the Exposure of Atorvastatin and Rosuvastatin. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07538-w. [PMID: 38112932 DOI: 10.1007/s10557-023-07538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE Early antiviral treatment with nirmatrelvir/ritonavir is recommended for SARS-CoV-2-infected patients at high risk for severe courses. Such patients are usually chronically ill and susceptible to adverse drug interactions caused by ritonavir. We investigated the interactions of short-term low-dose ritonavir therapy with atorvastatin and rosuvastatin, two statins commonly used in this population. METHOD We assessed exposure changes (area under the concentration-time curve (AUC∞) and maximum concentration (Cmax)) of a single dose of 10 mg atorvastatin and 10 mg rosuvastatin before and on the fifth day of ritonavir treatment (2 × 100 mg/day) in healthy volunteers and developed a semi-mechanistic pharmacokinetic model to estimate dose adjustment of atorvastatin during ritonavir treatment. RESULTS By the fifth day of ritonavir treatment, the AUC∞ of atorvastatin increased 4.76-fold and Cmax 3.78-fold, and concurrently, the concentration of atorvastatin metabolites decreased to values below the lower limit of quantification. Pharmacokinetic modelling indicated that a stepwise reduction in atorvastatin dose during ritonavir treatment with a stepwise increase up to 4 days after ritonavir discontinuation can keep atorvastatin exposure within safe and effective margins. Rosuvastatin pharmacokinetics were only mildly modified; ritonavir significantly increased the Cmax 1.94-fold, while AUC∞ was unchanged. CONCLUSION Atorvastatin doses should likely be adjusted during nirmatrelvir/ritonavir treatment. For patients on a 20-mg dose, we recommend half of the original dose. In patients taking 40 mg or more, a quarter of the dose should be taken until 2 days after discontinuation of nirmatrelvir/ritonavir. Patients receiving rosuvastatin do not need to change their treatment regimen. TRIAL REGISTRATION EudraCT number: 2021-006634-39. DRKS00027838.
Collapse
Affiliation(s)
- Evelyn Krohmer
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Brit Silja Rohr
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Felicitas Stoll
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Katja S Gümüs
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Mariano Bergamino
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Gerd Mikus
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Max Sauter
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Andreas D Meid
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - David Czock
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Antje Blank
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Walter E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Murray M. Mechanisms and Clinical Significance of Pharmacokinetic Drug Interactions Mediated by FDA and EMA-approved Hepatitis C Direct-Acting Antiviral Agents. Clin Pharmacokinet 2023; 62:1365-1392. [PMID: 37731164 DOI: 10.1007/s40262-023-01302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/22/2023]
Abstract
The treatment of patients infected with the hepatitis C virus (HCV) has been revolutionised by the development of direct-acting antiviral agents (DAAs) that target specific HCV proteins involved in viral replication. The first DAAs were associated with clinical problems such as adverse drug reactions and pharmacokinetic drug-drug interactions (DDIs). Current FDA/EMA-approved treatments are combinations of DAAs that simultaneously target the HCV N5A-protein, the HCV N5B-polymerase and the HCV NS3/4A-protease. Adverse events and DDIs are less likely with these DAA combinations but several DDIs of potential clinical significance remain. Much of the available information on the interaction of DAAs with CYP drug-metabolising enzymes and influx and efflux transporters is contained in regulatory summaries and is focused on DDIs of likely clinical importance. Important DDIs perpetrated by current DAAs include increases in the pharmacokinetic exposure to statins and dabigatran. Some mechanistic information can be deduced. Although the free concentrations of DAAs in serum are very low, a number of these DDIs are likely mediated by the inhibition of systemic influx transporters, especially OATP1B1/1B3. Other DDIs may arise by DAA-mediated inhibition of intestinal efflux transporters, which increases the systemic concentrations of some coadministered drugs. Conversely, DAAs are victims of DDIs mediated by cyclosporin, ketoconazole, omeprazole and HIV antiretroviral drug combinations, especially when boosted by ritonavir and, to a lesser extent, cobicistat. In addition, concurrent administration of inducers, such as rifampicin, carbamazepine and efavirenz, decreases exposure to some DAAs. Drug-drug interactions that increase the accumulation of HCV N3/4A-protease inhibitors like grazoprevir may exacerbate hepatic injury in HCV patients.
Collapse
Affiliation(s)
- Michael Murray
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
5
|
Gerhart J, Draica F, Benigno M, Atkinson J, Reimbaeva M, Francis D, Baillon-Plot N, Sidhu GS, Damle BD. Real-World Evidence of the Top 100 Prescribed Drugs in the USA and Their Potential for Drug Interactions with Nirmatrelvir; Ritonavir. AAPS J 2023; 25:73. [PMID: 37468770 DOI: 10.1208/s12248-023-00832-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/07/2023] [Indexed: 07/21/2023] Open
Abstract
Nirmatrelvir (coadministered with ritonavir as PAXLOVIDTM) reduces the risk of COVID-19-related hospitalizations and all-cause death in individuals with mild-to-moderate COVID-19 at high risk of progression to severe disease. Ritonavir is coadministered as a pharmacokinetic enhancer. However, ritonavir may cause drug-drug interactions (DDIs) due to its interactions with various drug-metabolizing enzymes and transporters, including cytochrome P450 (CYP) 3A, CYP2D6, and P-glycoprotein transporters. To better understand the extent of DDIs (or lack thereof) of nirmatrelvir; ritonavir in a clinical setting, this study used real-world evidence (RWE) from the Optum Clinformatics Data Mart database to identify the top 100 drugs most commonly prescribed to US patients at high risk of progression to severe COVID-19 disease. The top 100 drugs were identified based on total counts associated with drugs prescribed to high-risk patients (i.e., ≥ 1 medical condition associated with an increased risk of severe COVID-19) who were continuously enrolled in the database throughout 2019 and had ≥ 1 prescription claim. Each of the 100 drugs was then assessed for DDI risk based on their metabolism, excretion, and transport pathways identified from available US prescribing and medical literature sources. Seventy drugs identified were not expected to have DDIs with nirmatrelvir; ritonavir, including many cardiovascular agents, anti-infectives, antidiabetic agents, and antidepressants. Conversely, 30 drugs, including corticosteroids, narcotic analgesics, anticoagulants, statins, and sedatives/hypnotics, were expected to cause DDIs with nirmatrelvir; ritonavir. This RWE analysis is complementary to the prescribing information and other DDI management tools for guiding healthcare providers in managing DDIs.
Collapse
Affiliation(s)
- Jacqueline Gerhart
- Pfizer Inc, Global Product Development, 500 Arcola Road, Collegeville, Pennsylvania, 19426, USA.
| | - Florin Draica
- Pfizer Inc, US Medical Affairs, Hospital, New York, New York, USA
| | | | | | - Maya Reimbaeva
- Pfizer Inc, Global Biometrics and Data Management, Groton, Connecticut, USA
| | - Domenick Francis
- Pfizer Inc, US Medical Affairs, Hospital, New York, New York, USA
| | | | | | - Bharat D Damle
- Pfizer Inc, Global Product Development, New York, New York, USA
| |
Collapse
|
6
|
The Effect of Rifampicin on Darunavir, Ritonavir, and Dolutegravir Exposure within Peripheral Blood Mononuclear Cells: a Dose Escalation Study. Antimicrob Agents Chemother 2022; 66:e0013622. [PMID: 35583344 PMCID: PMC9211429 DOI: 10.1128/aac.00136-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ritonavir-boosted darunavir (DRV/r) and dolutegravir (DTG) are affected by induction of metabolizing enzymes and efflux transporters caused by rifampicin (RIF). This complicates the treatment of people living with HIV (PLWH) diagnosed with tuberculosis. Recent data showed that doubling DRV/r dose did not compensate for this effect, and hepatic safety was unsatisfactory. We aimed to evaluate the pharmacokinetics of DRV, ritonavir (RTV), and DTG in the presence and absence of RIF in peripheral blood mononuclear cells (PBMCs). PLWH were enrolled in a dose-escalation crossover study with 6 treatment periods of 7 days. Participants started with DRV/r 800/100 mg once daily (QD), RIF and DTG were added before the RTV dose was doubled, and then they received DRV/r 800/100 twice daily (BD) and then 1,600/200 QD or vice versa. Finally, RIF was withdrawn. Plasma and intra-PBMC drug concentrations were measured through validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. Seventeen participants were enrolled but only 4 completed all study phases due to high incidence of liver toxicity. Intra-PBMC DRV trough serum concentration (Ctrough) after the addition of RIF dropped from a median (interquartile range [IQR]) starting value of 261 ng/mL (158 to 577) to 112 ng/mL (18 to 820) and 31 ng/mL (12 to 331) for 800/100 BD and 1,600/200 QD DRV/r doses, respectively. The DRV intra-PBMC/plasma ratio increased significantly (P = 0.003). DTG and RIF intra-PBMC concentrations were in accordance with previous reports in the absence of RIF or DRV/r. This study showed a differential impact of enzyme and/or transporter induction on DRV/r concentrations in plasma and PBMCs, highlighting the usefulness of studying intra-PBMC pharmacokinetics with drug-drug interactions. (This study has been registered at ClinicalTrials.gov under registration no. NCT03892161.)
Collapse
|
7
|
Chu X, Chan GH, Houle R, Lin M, Yabut J, Fandozzi C. In Vitro Assessment of Transporter Mediated Perpetrator DDIs for Several Hepatitis C Virus Direct-Acting Antiviral Drugs and Prediction of DDIs with Statins Using Static Models. AAPS J 2022; 24:45. [DOI: 10.1208/s12248-021-00677-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/21/2021] [Indexed: 01/04/2023] Open
|
8
|
Predicting Drug-Drug Interactions between Rifampicin and Ritonavir-Boosted Atazanavir Using PBPK Modelling. Clin Pharmacokinet 2021; 61:375-386. [PMID: 34635995 PMCID: PMC9481493 DOI: 10.1007/s40262-021-01067-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 01/12/2023]
Abstract
Objectives The aim of this study was to simulate the drug–drug interaction (DDI) between ritonavir-boosted atazanavir (ATV/r) and rifampicin (RIF) using physiologically based pharmacokinetic (PBPK) modelling, and to predict suitable dose adjustments for ATV/r for the treatment of people living with HIV (PLWH) co-infected with tuberculosis. Methods A whole-body DDI PBPK model was designed using Simbiology 9.6.0 (MATLAB R2019a) and verified against reported clinical data for all drugs administered alone and concomitantly. The model contained the induction mechanisms of RIF and ritonavir (RTV), the inhibition effect of RTV for the enzymes involved in the DDI, and the induction and inhibition mechanisms of RIF and RTV on the uptake and efflux hepatic transporters. The model was considered verified if the observed versus predicted pharmacokinetic values were within twofold. Alternative ATV/r dosing regimens were simulated to achieve the trough concentration (Ctrough) clinical cut-off of 150 ng/mL. Results The PBPK model was successfully verified according to the criteria. Simulation of different dose adjustments predicted that a change in regimen to twice-daily ATV/r (300/100 or 300/200 mg) may alleviate the induction effect of RIF on ATV Ctrough, with > 95% of individuals predicted to achieve Ctrough above the clinical cut-off. Conclusions The developed PBPK model characterized the induction-mediated DDI between RIF and ATV/r, accurately predicting the reduction of ATV plasma concentrations in line with observed clinical data. A change in the ATV/r dosing regimen from once-daily to twice-daily was predicted to mitigate the effect of the DDI on the Ctrough of ATV, maintaining plasma concentration levels above the therapeutic threshold for most patients. Supplementary Information The online version contains supplementary material available at 10.1007/s40262-021-01067-1.
Collapse
|
9
|
Masuo Y, Fujita KI, Mishiro K, Seba N, Kogi T, Okumura H, Matsumoto N, Kunishima M, Kato Y. 6-Hydroxyindole is an endogenous long-lasting OATP1B1 inhibitor elevated in renal failure patients. Drug Metab Pharmacokinet 2020; 35:555-562. [PMID: 33191090 DOI: 10.1016/j.dmpk.2020.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/21/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
Abstract
The hepatic uptake transporter organic anion transporting polypeptide (OATP) 1B1 is inhibited by some uremic toxins; however, direct inhibition can only partially explain the delayed systemic elimination of substrate drugs in renal failure patients. This study aimed to examine the long-lasting inhibition of OATP1B1 by uremic toxins and their metabolites. Preincubation of HEK293/OATP1B1 cells with 21 uremic toxins resulted in almost no change in the uptake of a typical substrate [3H]estrone-3-sulfate (E1S), although some directly inhibited [3H]E1S uptake. In contrast, preincubation with an indole metabolite, 6-hydroxyindole, reduced [3H]E1S uptake, even after the inhibitor was washed out before [3H]E1S incubation. Such long-lasting inhibition by 6-hydroxyindole was time-dependent and recovered after a 3-h incubation without 6-hydroxyindole. Preincubation with 6-hydroxyindole increased the Km for [3H]E1S uptake with minimal change in Vmax. This was compatible with no change in the cell-surface expression of OATP1B1, as assessed by a biotinylation assay. Preincubation with 6-hydroxyindole reduced [3H]E1S uptake in human hepatocytes without changes in OATP1B1 mRNA. Plasma concentration of 6-hydroxyindole in renal failure patients increased as renal function decreased, but might be insufficient to exhibit potent OATP1B1 inhibition. In conclusion, 6-hydroxyindole is an endogenous long-lasting OATP1B1 inhibitor with elevated plasma concentrations in renal failure patients.
Collapse
Affiliation(s)
- Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ken-Ichi Fujita
- Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan
| | - Kenji Mishiro
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Natsumi Seba
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tatsuya Kogi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hidenori Okumura
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Natsumi Matsumoto
- Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan
| | - Munetaka Kunishima
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
10
|
Taguchi T, Masuo Y, Futatsugi A, Kato Y. Static Model-Based Assessment of OATP1B1-Mediated Drug Interactions with Preincubation-Dependent Inhibitors Based on Inactivation and Recovery Kinetics. Drug Metab Dispos 2020; 48:750-758. [PMID: 32616544 DOI: 10.1124/dmd.120.000020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/23/2020] [Indexed: 01/29/2023] Open
Abstract
Quantitative assessment of drug-drug interactions (DDIs) via organic anion transporting polypeptide (OATP) 1B1 is one of the key issues in drug development. Although OATP1B1 inhibition exhibits unique characteristics, including preincubation dependence for some inhibitors, a limited approach has been attempted based on the static model that considers such preincubation dependence in the prediction of DDIs via OATP1B1. The present study aimed to establish the prediction of DDIs via OATP1B1 using preincubation-dependent inhibitors based on the static model and incorporating both inactivation and recovery of OATP1B1 activity. Cyclosporine A was selected as a preincubation-dependent inhibitor, as well as five substrates that include probes and pharmaceuticals. The inhibition ratio (R value) calculated on the basis of a conventional static model, considering inhibition of OATP1B1 and contribution ratio of OATP1B1 to the overall hepatic uptake, was much lower than the reported AUC ratio, even when IC50 values were estimated after preincubation conditions. Conversely, the R value that was estimated by considering inactivation and recovery parameters was closer to the AUC ratio. The R value that was calculated assuming the complete contribution of OATP1B1 was much higher than the AUC ratio, avoiding false-negative prediction. The R value estimated by considering inactivation and recovery for another combination of a preincubation-dependent inhibitor, asunaprevir, and substrate drug, rosuvastatin, was also closer to the AUC ratio. Thus, R values calculated based on such OATP1B1 kinetics would be potential alternative indexes for the quantitative prediction of OATP1B1-mediated DDIs using preincubation-dependent inhibitors, although this prediction is affected by estimation of the contribution ratio of substrates. SIGNIFICANCE STATEMENT: Static model-based quantitative prediction of organic anion transporting polypeptide 1B1-mediated drug-drug interactions induced by preincubation-dependent inhibitors was newly proposed to avoid false-negative prediction.
Collapse
Affiliation(s)
- Takayuki Taguchi
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., Kyoto, Japan (T.T.) and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (T.T., Y.M., A.F., Y.K.)
| | - Yusuke Masuo
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., Kyoto, Japan (T.T.) and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (T.T., Y.M., A.F., Y.K.)
| | - Azusa Futatsugi
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., Kyoto, Japan (T.T.) and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (T.T., Y.M., A.F., Y.K.)
| | - Yukio Kato
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., Kyoto, Japan (T.T.) and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (T.T., Y.M., A.F., Y.K.)
| |
Collapse
|
11
|
Taguchi T, Masuo Y, Sakai Y, Kato Y. Short-lasting inhibition of hepatic uptake transporter OATP1B1 by tyrosine kinase inhibitor pazopanib. Drug Metab Pharmacokinet 2019; 34:372-379. [PMID: 31703927 DOI: 10.1016/j.dmpk.2019.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/16/2019] [Accepted: 08/06/2019] [Indexed: 01/17/2023]
Abstract
Risk assessment of organic anion transporting polypeptide 1B1 (OATP1B1)-mediated drug-drug interactions (DDIs) is an integral part of drug development, but the difficult aspects in DDI prediction include complex mechanism of OATP1B1 inhibition. Pazopanib, an orally available tyrosine kinase inhibitor, exhibits OATP1B1 inhibition and clinically interacts with some OATP1B1 substrates, although quantitative analysis of DDI potential has not yet been performed. The purpose of the present study was to characterize the inhibitory effect of pazopanib on OATP1B1-mediated transport. Inhibition by pazopanib of OATP1B1-mediated uptake of two typical substrates, [3H]estrone-3-sulfate (E1S) and [3H]estradiol-17β-glucuronide, assessed in HEK293/OATP1B1 cells, was more obvious after preincubation with pazopanib compared with no preincubation. The reduction in IC50 values was 3-7 times greater and was comparable with the preincubation effect of another long-lasting inhibitor, cyclosporine A (CsA). Preincubation with pazopanib and CsA tended to similarly reduce Vmax and increase Km values of E1S. However, the reduced OATP1B1 activity by preincubation with pazopanib was more rapidly recovered than CsA. In addition, R value, which predicts the maximum increase in the AUC ratio of victim drugs, was calculated to be 1.09. These results suggest that pazopanib is preincubation-dependent but a short-lasting inhibitor against OATP1B1 with low potential of OATP1B1-mediated DDIs.
Collapse
Affiliation(s)
- Takayuki Taguchi
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 14, Shinomiya, Minamigawara-cho, Yamashina-ku, Kyoto, 607-8042, Japan; Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1102, Japan.
| | - Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1102, Japan.
| | - Yoshiyuki Sakai
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1102, Japan.
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1102, Japan.
| |
Collapse
|
12
|
|
13
|
Panfen E, Chen W, Zhang Y, Sinz M, Marathe P, Gan J, Shen H. Enhanced and Persistent Inhibition of Organic Cation Transporter 1 Activity by Preincubation of Cyclosporine A. Drug Metab Dispos 2019; 47:1352-1360. [PMID: 31427432 DOI: 10.1124/dmd.119.087197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 08/16/2019] [Indexed: 01/18/2023] Open
Abstract
Recent pharmacogenetic evidence indicates that hepatic organic cation transporter (OCT) 1 can serve as the locus of drug-drug interactions (DDIs) with significant pharmacokinetic and pharmacodynamic consequences. We examined the impact of preincubation on the extent of OCT1 inhibition in transfected human embryonic kidney 293 (HEK293) cells. Following 30-minute preincubation with an inhibitor, approximately 50-fold higher inhibition potency was observed for cyclosporine A (CsA) against OCT1-mediated uptake of metformin compared with coincubation, with IC50 values of 0.43 ± 0.12 and 21.6 ± 4.5 µM, respectively. By comparison, only small shifts (≤2-fold) in preincubation IC50 versus coincubation were observed for quinidine, pyrimethamine, ritonavir, and trimethoprim. The shift in CsA OCT1 IC50 was substrate dependent since it ranged from >1.2- to 50.2-fold using different experimental substrates. The inhibition potential of CsA toward OCT1 was confirmed by fenoterol hepatocyte uptake experiment. Furthermore, no shift in CsA IC50 was observed with HEK293 cells transfected with OCT2 and organic anion transporter (OAT) 1 and OAT3. Short exposure (30 minutes) to 10 µM CsA produced long-lasting inhibition (at least 120 minutes) of the OCT1-mediated uptake of metformin in OCT1-HEK293 cells, which was likely attributable to the retention of CsA in the cells, as shown by the fact that inhibitory cellular concentrations of CsA were maintained long after the removal of the compound from the incubation buffer. The potent and persistent inhibitory effect after exposure to CsA warrants careful consideration in the design and interpretation of clinical OCT1 DDI studies. SIGNIFICANCE STATEMENT: Preincubation of OATP1B1 and OATP1B3 with their inhibitor may result in the enhancement of the inhibitory potency in a cell-based assay. However, limited data are available on potentiation of OCT1 inhibition by preincubation, which is a clinically relevant drug transporter. For the first time, we observed a 50-fold increase in CsA inhibitory potency against OCT1-mediated transport of metformin following a preincubation step. The CsA preincubation effect on OCT1 inhibition is substrate dependent. Moreover, the inhibition potential of CsA toward OCT1 is confirmed by hepatocyte uptake experiment. This study delivers clear evidences about the potent and persistent inhibitory effect on OCT1 after exposure to CsA. Further studies are needed to assess the effect of CsA on OCT1 drug substrates in vivo.
Collapse
Affiliation(s)
- Erika Panfen
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Weiqi Chen
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Yueping Zhang
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Michael Sinz
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Punit Marathe
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Jinping Gan
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Hong Shen
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Princeton, New Jersey
| |
Collapse
|
14
|
Tátrai P, Schweigler P, Poller B, Domange N, de Wilde R, Hanna I, Gáborik Z, Huth F. A Systematic In Vitro Investigation of the Inhibitor Preincubation Effect on Multiple Classes of Clinically Relevant Transporters. Drug Metab Dispos 2019; 47:768-778. [DOI: 10.1124/dmd.118.085993] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/02/2019] [Indexed: 02/01/2023] Open
|
15
|
Syam Das S, Nair SS, Indira M. Atorvastatin modulates drug transporters and ameliorates nicotine-induced testicular toxicity. Andrologia 2018; 50:e13029. [PMID: 29740849 DOI: 10.1111/and.13029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 12/24/2022] Open
Abstract
We studied the changes in mRNA expressions of influx and efflux transporters, blood-testis-barrier proteins (BTB) and key apoptotic genes in the testis of rats coadministered with nicotine and atorvastatin. Rats were divided into four groups: (i) control, (ii) atorvastatin (10 mg/kg b.wt), (iii) nicotine (0.6 mg/kg b.wt) and (iv) atorvastatin (10 mg/kg b.wt) + nicotine (0.6 mg/kg b.wt). Atorvastatin was given by oral intubation and nicotine by intraperitoneal injection. After 60 days of treatment, expressions of key apoptotic genes involved in both intrinsic and extrinsic pathways; solute carrier influx transporters SLCOB1, SLC22A1 and efflux transporter ABCB1 associated with transport of atorvastatin and nicotine, and proteins of BTB were assayed. Nicotine administration activated apoptosis and downregulated SLCOB1, which transport atorvastatin. Atorvastatin administration suppressed apoptotic pathway and downregulated SLC22A1, transporter of nicotine. Coadministration of atorvastatin with nicotine downregulated expressions of apoptotic genes. The combined administration of atorvastatin and nicotine reduced the influx of both atorvastatin and nicotine and enhanced the efflux of these drugs thereby altering the microenvironment of testis and improving testicular function. We conclude that atorvastatin-mediated alterations of BTB and drug transporters might have played a significant role in ameliorating nicotine-induced testicular toxicity.
Collapse
Affiliation(s)
- S Syam Das
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| | - S S Nair
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| | - M Indira
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| |
Collapse
|
16
|
Hoosain N, Pearce B, Jacobs C, Benjeddou M. Mapping SLCO1B1 Genetic Variation for Global Precision Medicine in Understudied Regions in Africa: A Focus on Zulu and Cape Admixed Populations. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 20:546-54. [PMID: 27631194 DOI: 10.1089/omi.2016.0115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The U.S. President Barack Obama has announced, in his State of the Union address on January 20, 2015, the Precision Medicine Initiative, a US$215-million program. For global precision medicine to become a reality, however, biological and environmental "variome" in previously understudied populations ought to be mapped and catalogued. Chief among the molecular targets that warrant global mapping is the organic anion-transporting polypeptide 1B1 (OATP1B1), encoded by solute carrier organic anion transporter family member 1B1 (SLCO1B1), a hepatic uptake transporter predominantly expressed in the basolateral side of hepatocytes. Human OATP1B1 plays a crucial role in the transport of a wide variety of substrates. This includes endogenous compounds such as bile salts as well as medicines, including benzylpenicillin, methotrexate, pravastatin, and rifampicin, and natural toxins microcystin and phalloidin. Genetic variations observed in the SLCO1B1 gene have been associated with altered in vitro and in vivo OATP1B1 transport activity, and consequently influencing patients' response to medicines, toxins, and susceptibility to common complex diseases. Well-characterized haplotypes, *5 (RS4149056C) and *15 (RS4149056T), have been associated with a strikingly reduced uptake of multiple OATP1B1 substrates, including estrone-3-sulfate, estradiol-17β-d-glucuronide, atorvastatin, cerivastatin, pravastatin, and rifampicin. In particular, RS4149056C is observed in 60% of the Cape admixed (CA) population and is associated with increased plasma concentrations of many statins as well as fexofenadine and repaglinide. We designed and optimized a SNaPshot minisequencing panel to characterize the variants of relevance for precision medicine in the clinic. We report here the first study on allele and genotype frequencies for 10 nonsynonymous, 4 synonymous, and 6 intronic single-nucleotide polymorphisms of SLCO1B1 in the Zulu and CA populations of South Africa. These variants are further contextualized here, in relation to their potential clinical relevance. These observations collectively contribute to current efforts to advance global precision medicine in understudied populations and resource-limited regions of the world.
Collapse
Affiliation(s)
- Nisreen Hoosain
- Pharmacogenetics Laboratory, Department of Biotechnology, Faculty of Natural Science, University of the Western Cape , Bellville, South Africa
| | - Brendon Pearce
- Pharmacogenetics Laboratory, Department of Biotechnology, Faculty of Natural Science, University of the Western Cape , Bellville, South Africa
| | - Clifford Jacobs
- Pharmacogenetics Laboratory, Department of Biotechnology, Faculty of Natural Science, University of the Western Cape , Bellville, South Africa
| | - Mongi Benjeddou
- Pharmacogenetics Laboratory, Department of Biotechnology, Faculty of Natural Science, University of the Western Cape , Bellville, South Africa
| |
Collapse
|
17
|
Oh Y, Jeong YS, Kim MS, Min JS, Ryoo G, Park JE, Jun Y, Song YK, Chun SE, Han S, Bae SK, Chung SJ, Lee W. Inhibition of Organic Anion Transporting Polypeptide 1B1 and 1B3 by Betulinic Acid: Effects of Preincubation and Albumin in the Media. J Pharm Sci 2018; 107:1713-1723. [PMID: 29462635 DOI: 10.1016/j.xphs.2018.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/22/2018] [Accepted: 02/06/2018] [Indexed: 12/23/2022]
Abstract
Betulinic acid (BA), a plant-derived pentacyclic triterpenoid, may interact with the members of the organic anion transporting polypeptide 1B subfamily. Here, we investigated the interactions of BA and its analogs with OATP1B1/3 and rat Oatp1b2 in vitro and in vivo. BA inhibited the activity of OATP1B1/3 and rat Oatp1b2 in vitro. Systemic exposure of atorvastatin was substantially altered with the intravenous co-administration of BA (20 mg/kg). Preincubation (incubation with inhibitors, followed by washout) with BA led to a sustained inhibition of OATP1B3, which recovered rapidly in the media containing 10% fetal bovine serum. The addition of albumin to the media decreased intracellular concentrations of BA and expedited the recovery of OATP1B3 activity following preincubation. For asunaprevir and cyclosporin A (previously known to inhibit OATP1B3 upon preincubation), the addition of albumin to the media shortened recovery time with asunaprevir, but not with cyclosporin A. Overall, our results showed that BA inhibits OATP1B transporters in vitro and may incur hepatic transporter-mediated drug interactions in vivo. Our results identify BA as another OATP1B3 inhibitor with preincubation effect and suggest that the preincubation effect and its duration is impacted by altered equilibrium of inhibitors between intracellular and extracellular space (e.g., albumin in the media).
Collapse
Affiliation(s)
- Yunseok Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Yoo-Seong Jeong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Min-Soo Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Jee Sun Min
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, Catholic University of Korea, Bucheon, Korea
| | - Gongmi Ryoo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Ji Eun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Yearin Jun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Yoo-Kyung Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Se-Eun Chun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Songhee Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Soo Kyung Bae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, Catholic University of Korea, Bucheon, Korea
| | - Suk-Jae Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.
| |
Collapse
|
18
|
Pahwa S, Alam K, Crowe A, Farasyn T, Neuhoff S, Hatley O, Ding K, Yue W. Pretreatment With Rifampicin and Tyrosine Kinase Inhibitor Dasatinib Potentiates the Inhibitory Effects Toward OATP1B1- and OATP1B3-Mediated Transport. J Pharm Sci 2017; 106:2123-2135. [PMID: 28373111 PMCID: PMC5511785 DOI: 10.1016/j.xphs.2017.03.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/08/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Present studies determined the effects of pretreatment with rifampicin, an organic anion-transporting polypeptide (OATP) inhibitor, and the tyrosine kinase inhibitor dasatinib on OATP1B1- and OATP1B3-mediated transport, and evaluated the OATP-mediated drug-drug interaction potential of dasatinib using the static R-value and dynamic physiologically based pharmacokinetic models. Rifampicin and dasatinib pretreatment significantly decreased OATP1B1- and OATP1B3-mediated transport. Rifampicin pretreatment also significantly decreased [3H]-pitavastatin and [3H]-CCK-8 accumulation in human sandwich-cultured hepatocytes. Present studies revealed that estrone-3-sulfate is a less-sensitive OATP1B1 substrate than estradiol-17β-glucuronide in assessing rifampicin pretreatment effects. Pretreatment with rifampicin and dasatinib reduced the inhibition constant (Ki) values against OATP1B1 by 3 and 2.1 fold and against OATP1B3 by 2.4 and 2.1 fold, respectively. The in vitro rifampicin Ki values after preincubation are comparable to the estimated in vivo Ki reported previously. Models predict that dasatinib has a low potential to cause OATP1B1- and OATP1B3-mediated drug-drug interactions. Time-lapse confocal microscopy demonstrated that rifampicin and dasatinib pretreatment did not affect plasma membrane localization of green-fluorescent protein-tagged OATP1B1 (GFP-OATP1B1) and GFP-OATP1B3 in human embryonic kidney 293 stable cell lines. In summary, we report novel findings that pretreatment with rifampicin and dasatinib potentiates the inhibitory effects toward OATP1B1 and OATP1B3 without affecting plasma membrane levels of the transporters.
Collapse
Affiliation(s)
- Sonia Pahwa
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117
| | - Alexandra Crowe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117
| | - Taleah Farasyn
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117
| | - Sibylle Neuhoff
- Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield S2 4SU, UK
| | - Oliver Hatley
- Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield S2 4SU, UK
| | - Kai Ding
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117.
| |
Collapse
|
19
|
Preincubation-dependent and long-lasting inhibition of organic anion transporting polypeptide (OATP) and its impact on drug-drug interactions. Pharmacol Ther 2017; 177:67-80. [PMID: 28249706 DOI: 10.1016/j.pharmthera.2017.02.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Preincubation with cyclosporin A (CsA), a potent inhibitor of organic anion transporting polypeptide 1B1 (OATP1B1) and OATP1B3, enhanced its inhibitory effects on these transporters in vitro. A similar effect was observed upon preincubation with some other inhibitors. Removing these from the incubation media did not readily reverse the inhibition on OATP1B1 and OATP1B3. This preincubation-dependent long-lasting inhibition appeared to be related to CsA concentration in the cells in addition to that in the incubation media. Thus, we hypothesized that CsA inhibits OATP1B1 and OATP1B3 from inside (trans-inhibition) as well as outside (cis-inhibition) the cells and constructed the cis- and trans-inhibition model. The enhanced inhibitory effect of CsA on OATP1B1 observed after preincubation was quantitatively described using Ki,out and Ki,in as inhibition constants for cis- and trans-inhibitions, respectively. In addition, a long-lasting inhibition was also described by this model. Additional factors taken into consideration when simulating in vivo pharmacokinetic alterations by CsA are potential inhibition by AM1, a major metabolite of CsA, which has been reported to inhibit OATP1B1 and OATP1B3. Based on the physiologically based pharmacokinetic model incorporating trans- and cis-inhibition of OATP1B1 by CsA, the simulation showed that OATP1B1-mediated drug-drug interaction with CsA was suggested to be time-dependent also in vivo although further clinical studies are required for confirmation.
Collapse
|
20
|
Yim CS, Jeong YS, Lee SY, Pyeon W, Ryu HM, Lee JH, Lee KR, Maeng HJ, Chung SJ. Specific Inhibition of the Distribution of Lobeglitazone to the Liver by Atorvastatin in Rats: Evidence for a Rat Organic Anion Transporting Polypeptide 1B2-Mediated Interaction in Hepatic Transport. Drug Metab Dispos 2017; 45:246-259. [PMID: 28069721 DOI: 10.1124/dmd.116.074120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/05/2017] [Indexed: 12/17/2022] Open
Abstract
Cytochrome P450 enzymes and human organic anion transporting polypeptide (OATP) 1B1 are reported to be involved in the pharmacokinetics of lobeglitazone (LB), a new peroxisome proliferator-activated receptor γ agonist. Atorvastatin (ATV), a substrate for CYP3A and human OATP1B1, is likely to be coadministered with LB in patients with the metabolic syndrome. We report herein on a study of potential interactions between LB and ATV in rats. When LB was administered intravenously with ATV, the systemic clearance and volume of distribution at steady state for LB remained unchanged (2.67 ± 0.63 ml/min per kg and 289 ± 20 ml/kg, respectively), compared with that of LB without ATV (2.34 ± 0.37 ml/min per kg and 271 ± 20 ml/kg, respectively). Although the tissue-to-plasma partition coefficient (Kp) of LB was not affected by ATV in most major tissues, the liver Kp for LB was decreased by ATV coadministration. Steady-state liver Kp values for three levels of LB were significantly decreased as a result of ATV coadministration. LB uptake was inhibited by ATV in rat OATP1B2-overexpressing Madin-Darby canine kidney cells and in isolated rat hepatocytes in vitro. After incorporating the kinetic parameters for the in vitro studies into a physiologically based pharmacokinetics model, the characteristics of LB distribution to the liver were consistent with the findings of the in vivo study. It thus appears that the distribution of LB to the liver is mediated by the hepatic uptake of transporters such as rat OATP1B2, and carrier-mediated transport is involved in the liver-specific drug-drug interaction between LB and ATV in vivo.
Collapse
Affiliation(s)
- Chang-Soon Yim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea (C.-S.Y., Y.-S.J., S.-Y.L., W.P., H.-M.R., S.-J.C.); Korea Institute of Toxicology, Yuseong-gu, Daejeon, Republic of Korea (J.-H.L.); Life Science Research Center, Daewoong Pharmaceutical Company Ltd., Yongin-si, Gyeonggi-do, Republic of Korea (K.-R.L.); and College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea (H.-J.M.)
| | - Yoo-Seong Jeong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea (C.-S.Y., Y.-S.J., S.-Y.L., W.P., H.-M.R., S.-J.C.); Korea Institute of Toxicology, Yuseong-gu, Daejeon, Republic of Korea (J.-H.L.); Life Science Research Center, Daewoong Pharmaceutical Company Ltd., Yongin-si, Gyeonggi-do, Republic of Korea (K.-R.L.); and College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea (H.-J.M.)
| | - Song-Yi Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea (C.-S.Y., Y.-S.J., S.-Y.L., W.P., H.-M.R., S.-J.C.); Korea Institute of Toxicology, Yuseong-gu, Daejeon, Republic of Korea (J.-H.L.); Life Science Research Center, Daewoong Pharmaceutical Company Ltd., Yongin-si, Gyeonggi-do, Republic of Korea (K.-R.L.); and College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea (H.-J.M.)
| | - Wonji Pyeon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea (C.-S.Y., Y.-S.J., S.-Y.L., W.P., H.-M.R., S.-J.C.); Korea Institute of Toxicology, Yuseong-gu, Daejeon, Republic of Korea (J.-H.L.); Life Science Research Center, Daewoong Pharmaceutical Company Ltd., Yongin-si, Gyeonggi-do, Republic of Korea (K.-R.L.); and College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea (H.-J.M.)
| | - Heon-Min Ryu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea (C.-S.Y., Y.-S.J., S.-Y.L., W.P., H.-M.R., S.-J.C.); Korea Institute of Toxicology, Yuseong-gu, Daejeon, Republic of Korea (J.-H.L.); Life Science Research Center, Daewoong Pharmaceutical Company Ltd., Yongin-si, Gyeonggi-do, Republic of Korea (K.-R.L.); and College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea (H.-J.M.)
| | - Jong-Hwa Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea (C.-S.Y., Y.-S.J., S.-Y.L., W.P., H.-M.R., S.-J.C.); Korea Institute of Toxicology, Yuseong-gu, Daejeon, Republic of Korea (J.-H.L.); Life Science Research Center, Daewoong Pharmaceutical Company Ltd., Yongin-si, Gyeonggi-do, Republic of Korea (K.-R.L.); and College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea (H.-J.M.)
| | - Kyeong-Ryoon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea (C.-S.Y., Y.-S.J., S.-Y.L., W.P., H.-M.R., S.-J.C.); Korea Institute of Toxicology, Yuseong-gu, Daejeon, Republic of Korea (J.-H.L.); Life Science Research Center, Daewoong Pharmaceutical Company Ltd., Yongin-si, Gyeonggi-do, Republic of Korea (K.-R.L.); and College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea (H.-J.M.)
| | - Han-Joo Maeng
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea (C.-S.Y., Y.-S.J., S.-Y.L., W.P., H.-M.R., S.-J.C.); Korea Institute of Toxicology, Yuseong-gu, Daejeon, Republic of Korea (J.-H.L.); Life Science Research Center, Daewoong Pharmaceutical Company Ltd., Yongin-si, Gyeonggi-do, Republic of Korea (K.-R.L.); and College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea (H.-J.M.)
| | - Suk-Jae Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea (C.-S.Y., Y.-S.J., S.-Y.L., W.P., H.-M.R., S.-J.C.); Korea Institute of Toxicology, Yuseong-gu, Daejeon, Republic of Korea (J.-H.L.); Life Science Research Center, Daewoong Pharmaceutical Company Ltd., Yongin-si, Gyeonggi-do, Republic of Korea (K.-R.L.); and College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea (H.-J.M.)
| |
Collapse
|
21
|
Physiologically Based Pharmacokinetic (PBPK) Modeling of Pitavastatin and Atorvastatin to Predict Drug-Drug Interactions (DDIs). Eur J Drug Metab Pharmacokinet 2016; 42:689-705. [DOI: 10.1007/s13318-016-0383-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Takahashi T, Ohtsuka T, Uno Y, Utoh M, Yamazaki H, Kume T. Pre-incubation with cyclosporine A potentiates its inhibitory effects on pitavastatin uptake mediated by recombinantly expressed cynomolgus monkey hepatic organic anion transporting polypeptide. Biopharm Drug Dispos 2016; 37:479-490. [DOI: 10.1002/bdd.2039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/18/2016] [Accepted: 08/30/2016] [Indexed: 01/19/2023]
Affiliation(s)
| | | | - Yasuhiro Uno
- Shin Nippon Biomedical Laboratories Ltd; Kainan Wakayama Japan
| | - Masahiro Utoh
- Shin Nippon Biomedical Laboratories Ltd; Kainan Wakayama Japan
| | | | - Toshiyuki Kume
- Mitsubishi Tanabe Pharma Corporation; Toda Saitama Japan
| |
Collapse
|
23
|
Characterization of Long-Lasting Oatp Inhibition by Typical Inhibitor Cyclosporine A and In Vitro–In Vivo Discrepancy in Its Drug Interaction Potential in Rats. J Pharm Sci 2016; 105:2231-9. [DOI: 10.1016/j.xphs.2016.04.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/08/2016] [Accepted: 04/20/2016] [Indexed: 01/02/2023]
|
24
|
Lai Y, Mandlekar S, Shen H, Holenarsipur VK, Langish R, Rajanna P, Murugesan S, Gaud N, Selvam S, Date O, Cheng Y, Shipkova P, Dai J, Humphreys WG, Marathe P. Coproporphyrins in Plasma and Urine Can Be Appropriate Clinical Biomarkers to Recapitulate Drug-Drug Interactions Mediated by Organic Anion Transporting Polypeptide Inhibition. ACTA ACUST UNITED AC 2016; 358:397-404. [DOI: 10.1124/jpet.116.234914] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/16/2016] [Indexed: 12/12/2022]
|
25
|
Nakakariya M, Goto A, Amano N. Appropriate risk criteria for OATP inhibition at the drug discovery stage based on the clinical relevancy between OATP inhibitors and drug-induced adverse effect. Drug Metab Pharmacokinet 2016; 31:333-339. [PMID: 27567380 DOI: 10.1016/j.dmpk.2016.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 01/27/2023]
Abstract
DDI could be caused by the inhibition of OATP-mediated hepatic uptakes. The aim of this study is to set the risk criteria for the compounds that would cause DDI via OATP inhibition at the drug discovery stage. The IC50 values of OATP inhibitors for human OATP-mediated atorvastatin uptake were evaluated in the expression system. In order to set the risk criteria for OATP inhibition, the relationship was clarified between OATP inhibitory effect and severe adverse effects of OATP substrates, rhabdomyolysis, hyperbilirubinemia and jaundice. Rhabdomyolysis would be caused in the atorvastatin AUC more than 9-fold of that at a minimum therapeutic dose. The atorvastatin AUC was 6- to 9-fold increased with the OATP inhibitors of which IC50 values were ≤1 μmol/L. Hyperbilirubinemia and jaundice would be caused with the OATP inhibitors of which IC50 values were ≤6 μmol/L. This investigation showed that the compounds with IC50 of ≤1 μmol/L would have high risk for OATP-mediated DDI that would cause severe side effects. Before the detailed analysis based on the dosage, unbound fraction in blood and effective concentration to evaluate the clinical DDI potency, this criteria enable high throughput screening and optimize lead compounds at the drug discovery stage.
Collapse
Affiliation(s)
- Masanori Nakakariya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Akihiko Goto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Nobuyuki Amano
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| |
Collapse
|
26
|
Alam K, Pahwa S, Wang X, Zhang P, Ding K, Abuznait AH, Li L, Yue W. Downregulation of Organic Anion Transporting Polypeptide (OATP) 1B1 Transport Function by Lysosomotropic Drug Chloroquine: Implication in OATP-Mediated Drug-Drug Interactions. Mol Pharm 2016; 13:839-51. [PMID: 26750564 PMCID: PMC4970216 DOI: 10.1021/acs.molpharmaceut.5b00763] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Organic anion transporting polypeptide (OATP) 1B1 mediates the hepatic uptake of many drugs including lipid-lowering statins. Decreased OATP1B1 transport activity is often associated with increased systemic exposure of statins and statin-induced myopathy. Antimalarial drug chloroquine (CQ) is also used for long-term treatment of rheumatoid arthritis and systemic lupus erythematosus. CQ is lysosomotropic and inhibits protein degradation in lysosomes. The current studies were designed to determine the effects of CQ on OATP1B1 protein degradation, OATP1B1-mediated transport in OATP1B1-overexpressing cell line, and statin uptake in human sandwich-cultured hepatocytes (SCH). Treatment with lysosome inhibitor CQ increased OATP1B1 total protein levels in HEK293-OATP1B1 cells and in human SCH as determined by OATP1B1 immunoblot. In HEK293-FLAG-tagged OATP1B1 stable cell line, co-immunofluorescence staining indicated that intracellular FLAG-OATP1B1 is colocalized with lysosomal associated membrane glycoprotein (LAMP)-2, a marker protein of late endosome/lysosome. Enlarged LAMP-2-positive vacuoles with FLAG-OATP1B1 protein retained inside were readily detected in CQ-treated cells, consistent with blocking lysosomal degradation of OATP1B1 by CQ. In HEK293-OATP1B1 cells, without pre-incubation, CQ concentrations up to 100 μM did not affect OATP1B1-mediated [(3)H]E217G accumulation. However, pre-incubation with CQ at clinically relevant concentration(s) significantly decreased [(3)H]E217G and [(3)H]pitavastatin accumulation in HEK293-OATP1B1 cells and [(3)H]pitavastatin accumulation in human SCH. CQ pretreatment (25 μM, 2 h) resulted in ∼1.9-fold decrease in Vmax without affecting Km of OATP1B1-mediated [(3)H]E217G transport in HEK293-OATP1B1 cells. Pretreatment with monensin and bafilomycin A1, which also have lysosome inhibition activity, significantly decreased OATP1B1-mediated transport in HEK293-OATP1B1 cells. Pharmacoepidemiologic studies using data from the U.S. Food and Drug Administration Adverse Event Reporting System indicated that CQ plus pitavastatin, rosuvastatin, and pravastatin, which are minimally metabolized by the cytochrome P450 enzymes, led to higher myopathy risk than these statins alone. In summary, the present studies report novel findings that lysosome is involved in degradation of OATP1B1 protein and that pre-incubation with lysosomotropic drug CQ downregulates OATP1B1 transport activity. Our in vitro data in combination with pharmacoepidemiologic studies support that CQ has potential to cause OATP-mediated drug-drug interactions.
Collapse
Affiliation(s)
- Khondoker Alam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Sonia Pahwa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Xueying Wang
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Pengyue Zhang
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126, United States
| | - Alaa H. Abuznait
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Lang Li
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Wei Yue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| |
Collapse
|
27
|
Shen H, Dai J, Liu T, Cheng Y, Chen W, Freeden C, Zhang Y, Humphreys WG, Marathe P, Lai Y. Coproporphyrins I and III as Functional Markers of OATP1B Activity: In Vitro and In Vivo Evaluation in Preclinical Species. ACTA ACUST UNITED AC 2016; 357:382-93. [DOI: 10.1124/jpet.116.232066] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/12/2016] [Indexed: 01/01/2023]
|
28
|
Vermeer LMM, Isringhausen CD, Ogilvie BW, Buckley DB. Evaluation of Ketoconazole and Its Alternative Clinical CYP3A4/5 Inhibitors as Inhibitors of Drug Transporters: The In Vitro Effects of Ketoconazole, Ritonavir, Clarithromycin, and Itraconazole on 13 Clinically-Relevant Drug Transporters. ACTA ACUST UNITED AC 2015; 44:453-9. [PMID: 26668209 DOI: 10.1124/dmd.115.067744] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/11/2015] [Indexed: 01/18/2023]
Abstract
Ketoconazole is a potent CYP3A4/5 inhibitor and, until recently, recommended by the Food and Drug Administration (FDA) and the European Medicines Agency as a strong CYP3A4/5 inhibitor in clinical drug-drug interaction (DDI) studies. Ketoconazole sporadically causes liver injury or adrenal insufficiency. Because of this, the FDA and European Medicines Agency recommended suspension of ketoconazole use in DDI studies in 2013. The FDA specifically recommended use of clarithromycin or itraconazole as alternative strong CYP3A4/5 inhibitors in clinical DDI studies, but many investigators have also used ritonavir as an alternative. Although the effects of these clinical CYP3A4/5 inhibitors on other CYPs are largely established, reports on the effects on the broad range of drug transporter activities are sparse. In this study, the inhibitory effects of ketoconazole, clarithromycin, ritonavir, and itraconazole (and its CYP3A4-inhibitory metabolites, hydroxy-, keto-, and N-desalkyl itraconazole) toward 13 drug transporters (OATP1B1, OATP1B3, OAT1, OAT3, OCT1, OCT2, MATE1, MATE2-K, P-gp, BCRP, MRP2, MRP3, and BSEP) were systematically assessed in transporter-expressing HEK-293 cell lines or membrane vesicles. In vitro findings were translated into clinical context with the basic static model approaches outlined by the FDA in its 2012 draft guidance on DDIs. The results indicate that, like ketoconazole, the alternative clinical CYP3A4/5 inhibitors ritonavir, clarithromycin, and itraconazole each have unique transporter inhibition profiles. None of the alternatives to ketoconazole provided a clean inhibition profile toward the 13 drug transporters evaluated. The results provide guidance for the selection of clinical CYP3A4/5 inhibitors when transporters are potentially involved in a victim drug's pharmacokinetics.
Collapse
|
29
|
Yamashiro T, Ohta K, Inoue K, Furumiya M, Hayashi Y, Yuasa H. Kinetic and time-dependent features of sustained inhibitory effect of myricetin on folate transport by proton-coupled folate transporter. Drug Metab Pharmacokinet 2015; 30:341-6. [PMID: 26403086 DOI: 10.1016/j.dmpk.2015.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/07/2015] [Accepted: 06/15/2015] [Indexed: 01/11/2023]
Abstract
Myricetin is a flavonoid that has recently been suggested to induce sustained inhibition of proton-coupled folate transporter (PCFT/SLC46A1), which operates for intestinal folate uptake. The present study was conducted to characterize the inhibitory effect in more detail, using human PCFT stably expressed in Madin-Darby canine kidney II cells, to gain information to cope with problems potentially arising from that. The kinetics of saturable folate transport was first assessed in the absence of myricetin in the cells pretreated with the flavonoid for 60 min. The pretreatment induced PCFT inhibition in a manner dependent on the concentration of myricetin, where the maximum transport rate was reduced by 35.5% and 83.1%, respectively, at its concentrations of 20 μM and 50 μM. The inhibitory effect was, however, less extensive at lower folate concentrations, because the Michaelis constant was also reduced similarly in a manner dependent on myricetin concentration. The inhibition was induced depending on the time of pretreatment and, after removal of myricetin (50 μM) upon the manifestation of an extensive inhibition at 60 min, reversed almost completely in 90 min. This rather short time required for recovery may suggest that the sustained inhibition of PCFT is of a reversible type.
Collapse
Affiliation(s)
- Takahiro Yamashiro
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Kinya Ohta
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Mai Furumiya
- Department of Biopharmaceutics, College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya 463-8521, Japan
| | - Yayoi Hayashi
- Department of Biopharmaceutics, College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya 463-8521, Japan
| | - Hiroaki Yuasa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| |
Collapse
|
30
|
Hotchkiss AG, Gao T, Khan U, Berrigan L, Li M, Ingraham L, Pelis RM. Organic Anion Transporter 1 Is Inhibited by Multiple Mechanisms and Shows a Transport Mode Independent of Exchange. Drug Metab Dispos 2015; 43:1847-54. [PMID: 26370539 DOI: 10.1124/dmd.115.065748] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/11/2015] [Indexed: 12/18/2022] Open
Abstract
The mechanism by which drugs inhibit organic anion transporter 1 (OAT1) was examined. OAT1 was stably expressed in Chinese hamster ovary (CHO) cells, and para-aminohippurate (PAH) and 6-carboxyfluorescein were the substrates. Most compounds (10 of 14) inhibited competitively, increasing the Michaelis constant (Km) without affecting the maximal transport rate (Jmax). Others were mixed-type (lowering Jmax and increasing Km) or noncompetitive (lowering Jmax only) inhibitors. The interaction of a noncompetitive inhibitor (telmisartan) with OAT1 was examined further. Binding of telmisartan to OAT1 was observed, but translocation was not. Telmisartan did not alter the plasma membrane expression of OAT1, indicating that it lowers Jmax by reducing the turnover number. PAH transport after telmisartan treatment and its washout recovered faster in the presence of 10% fetal bovine serum in the washout buffer, indicating that binding of telmisartan to OAT1 and its inhibitory effect are reversible. Together, these data suggest that telmisartan binds reversibly to a site distinct from substrate and stabilizes the transporter in a conformation unfavorable for translocation. In the absence of an exchangeable extracellular substrate, PAH efflux from CHO-OAT1 cells was relatively rapid. Telmisartan slowed PAH efflux, suggesting that some transporter-mediated efflux occurs independent of exchange. Although drug-drug interaction predictions at OAT1 assume competitive inhibition, these data show that OAT1 can be inhibited by other mechanisms, which could influence the accuracy of drug-drug interaction predictions at the transporter. Telmisartan was useful for examining how a noncompetitive inhibitor can alter OAT1 transport activity and for uncovering a transport mode independent of exchange.
Collapse
Affiliation(s)
- Adam G Hotchkiss
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tiandai Gao
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Usman Khan
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Liam Berrigan
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mansong Li
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Leslie Ingraham
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ryan M Pelis
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
31
|
Furumiya M, Yamashiro T, Inoue K, Nishijima C, Ohta K, Hayashi Y, Yuasa H. Sustained inhibition of proton-coupled folate transporter by myricetin. Drug Metab Pharmacokinet 2015; 30:154-9. [PMID: 25801697 DOI: 10.1016/j.dmpk.2014.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/14/2014] [Accepted: 11/18/2014] [Indexed: 11/27/2022]
Abstract
Myricetin is a flavonoid that has recently been suggested to interfere with the intestinal folate transport system. To examine that possibility, focusing on its sustained inhibitory effect on proton-coupled folate transporter (PCFT), the uptake of folate was examined in Caco-2 cells, in which PCFT is known to be in operation, in the absence of myricetin in the medium during uptake period after preincubation of the cells with the flavonoid (100 μM) for 1 h. This pretreatment induced an extensive and sustained reduction in the carrier-mediated component of folate uptake, which was attributable to a reduction in the maximum transport rate (Vmax). Although the affinity of the transporter for folate was increased at the same time as indicated by a reduction in the Michaelis constant (Km), the change in Km was overwhelmed in extent by that in Vmax. Consistent with the finding, folate transport by human PCFT stably expressed in Madin-Darby canine kidney II cells was reduced in a similar manner with simultaneous reductions in Vmax and Km by myricetin pretreatment. Attention may need to be given for a possibility that such a sustained inhibition of PCFT could potentially be a cause of the malabsorption of folate and also antifolate drugs.
Collapse
Affiliation(s)
- Mai Furumiya
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan; Department of Biopharmaceutics, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Takahiro Yamashiro
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Chihiro Nishijima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kinya Ohta
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yayoi Hayashi
- Department of Biopharmaceutics, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Hiroaki Yuasa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| |
Collapse
|
32
|
Izumi S, Nozaki Y, Maeda K, Komori T, Takenaka O, Kusuhara H, Sugiyama Y. Investigation of the impact of substrate selection on in vitro organic anion transporting polypeptide 1B1 inhibition profiles for the prediction of drug-drug interactions. Drug Metab Dispos 2014; 43:235-47. [PMID: 25414411 DOI: 10.1124/dmd.114.059105] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The risk assessment of organic anion transporting polypeptide (OATP) 1B1-mediated drug-drug interactions (DDIs) is an indispensable part of drug development. We previously reported that in vitro inhibitory potencies of several inhibitors on OATP1B1 depend on the substrates when prototypical substrates, estradiol-17β-glucuronide (E₂G), estrone-3-sulfate, and sulfobromophthalein were used as test substrates. The purpose of this study was to comprehensively investigate this substrate-dependent inhibition of OATP1B1 using clinically relevant OATP1B1 inhibitors and substrate drugs. Effects of cyclosporine A (CsA), rifampin, and gemfibrozil on OATP1B1-mediated uptake of 12 substrate drugs were examined in OATP1B1-expressing human embryonic kidney 293 cells. The Ki values (μM) for CsA varied from 0.0771 to 0.486 (6.3-fold), for rifampin from 0.358 to 1.23 (3.4-fold), and for gemfibrozil from 9.65 to 252 (26-fold). Except for the inhibition of torasemide uptake by CsA and that of nateglinide uptake by gemfibrozil, the Ki values were within 2.8-fold of those obtained using E₂G as a substrate. Preincubation potentiated the inhibitory effect of CsA on OATP1B1 with similar magnitude regardless of the substrates. R values calculated based on a static model showed some variation depending on the Ki values determined with various substrates, and such variability could have an impact on the DDI predictions particularly for a weak-to-moderate inhibitor (gemfibrozil). OATP1B1 substrate drugs except for torasemide and nateglinide, or E₂G as a surrogate, is recommended as an in vitro probe in the inhibition experiments, which will help mitigate the risk of false-negative DDI predictions potentially caused by substrate-dependent Ki variation.
Collapse
Affiliation(s)
- Saki Izumi
- Drug Metabolism and Pharmacokinetics Japan, Tsukuba Research Laboratories, Eisai Co. Ltd., Ibaraki, Japan (S.I., Y.N., T.K.); Pharmacokinetics and Pharmacodynamics, Morphotek Inc., Exton, Pennsylvania (O.T.); Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Kanagawa, Japan (Y.S.)
| | - Yoshitane Nozaki
- Drug Metabolism and Pharmacokinetics Japan, Tsukuba Research Laboratories, Eisai Co. Ltd., Ibaraki, Japan (S.I., Y.N., T.K.); Pharmacokinetics and Pharmacodynamics, Morphotek Inc., Exton, Pennsylvania (O.T.); Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Kanagawa, Japan (Y.S.)
| | - Kazuya Maeda
- Drug Metabolism and Pharmacokinetics Japan, Tsukuba Research Laboratories, Eisai Co. Ltd., Ibaraki, Japan (S.I., Y.N., T.K.); Pharmacokinetics and Pharmacodynamics, Morphotek Inc., Exton, Pennsylvania (O.T.); Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Kanagawa, Japan (Y.S.)
| | - Takafumi Komori
- Drug Metabolism and Pharmacokinetics Japan, Tsukuba Research Laboratories, Eisai Co. Ltd., Ibaraki, Japan (S.I., Y.N., T.K.); Pharmacokinetics and Pharmacodynamics, Morphotek Inc., Exton, Pennsylvania (O.T.); Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Kanagawa, Japan (Y.S.)
| | - Osamu Takenaka
- Drug Metabolism and Pharmacokinetics Japan, Tsukuba Research Laboratories, Eisai Co. Ltd., Ibaraki, Japan (S.I., Y.N., T.K.); Pharmacokinetics and Pharmacodynamics, Morphotek Inc., Exton, Pennsylvania (O.T.); Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Kanagawa, Japan (Y.S.)
| | - Hiroyuki Kusuhara
- Drug Metabolism and Pharmacokinetics Japan, Tsukuba Research Laboratories, Eisai Co. Ltd., Ibaraki, Japan (S.I., Y.N., T.K.); Pharmacokinetics and Pharmacodynamics, Morphotek Inc., Exton, Pennsylvania (O.T.); Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Kanagawa, Japan (Y.S.)
| | - Yuichi Sugiyama
- Drug Metabolism and Pharmacokinetics Japan, Tsukuba Research Laboratories, Eisai Co. Ltd., Ibaraki, Japan (S.I., Y.N., T.K.); Pharmacokinetics and Pharmacodynamics, Morphotek Inc., Exton, Pennsylvania (O.T.); Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Kanagawa, Japan (Y.S.)
| |
Collapse
|
33
|
Johnston RA, Rawling T, Chan T, Zhou F, Murray M. Selective Inhibition of Human Solute Carrier Transporters by Multikinase Inhibitors. Drug Metab Dispos 2014; 42:1851-7. [DOI: 10.1124/dmd.114.059097] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|