1
|
Canhão PGM, Snoeys J, Geerinckx S, van Heerden M, Van den Bergh A, Holm C, Markus J, Ayehunie S, Monshouwer M, Evers R, Augustijns P, Kourula S. Human organotypic colon in vitro microtissue: unveiling a new window into colonic drug disposition. Eur J Pharm Sci 2025:107025. [PMID: 39864598 DOI: 10.1016/j.ejps.2025.107025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
The purpose of this study was to evaluate EpiColon, a novel human organotypic 3D colon microtissue prototype, developed to assess colonic drug disposition, with a particular focus on permeability ranking, and compare its performance to Caco-2 monolayers. EpiColon was characterized for barrier function using transepithelial electrical resistance (TEER), morphology via histology and immunohistochemistry, and functionality through drug transport studies measuring apparent permeability (Papp). Cutoff thresholds for the permeability of FITC-dextran 4 kDa (FD4), FITC-dextran 10 kDa (FD10S), and [14C]mannitol were established to monitor microtissue integrity. Permeability of EpiColon for 20 benchmark drugs was compared with Caco-2 data, and the activity of pivotal efflux transporters, including multidrug resistance protein 1/P-glycoprotein (MDR1/P-gp), along with multidrug resistance protein 2 (MRP2) and breast cancer resistance protein (BCRP), was evaluated using selective substrates. EpiColon exhibited a physiological barrier function (272.0 ± 53.05 Ω x cm2) and effectively discriminated between high (e.g., budesonide and [3H]metoprolol) and low permeable compounds (e.g., [3H]atenolol and [14C]mannitol). The model demonstrated functional activity for key efflux transporters, with efflux ratios of 2.32 for [3H]digoxin (MDR1/P-gp) and 3.34 for sulfasalazine (MRP2 and BCRP). Notably, EpiColon showed an enhanced dynamic range in the low permeability range, differentiating Papp between FD4 and FD10S, in contrast to Caco-2 monolayers. Significant positive correlations were observed between human fraction absorbed (fabs) and logarithmically transformed Papp [AP-BL] values for both EpiColon (rs = 0.68) and Caco-2 (rs = 0.68). Furthermore, EpiColon recapitulates some essential phenotypic and cellular features of the human colon, including the expression of critical marker genes (Pan-Cytokeratin+: epithelial/colonocytes, Vimentin+: mesenchymal/fibroblast, and Alcian Blue+: goblet cell/mucus). In conclusion, EpiColon is a promising platform that offers a valuable complement to conventional Caco-2 monolayers for studying colonic drug disposition. However, the presence of flat and some cuboidal cells, along with low throughput, must be addressed to improve its applicability in both academic research and pharmaceutical industry.
Collapse
Affiliation(s)
- Pedro G M Canhão
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium; Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49 - box 921, 3000 Leuven, Belgium
| | - Jan Snoeys
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Suzy Geerinckx
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Marjolein van Heerden
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - An Van den Bergh
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Camden Holm
- MatTek Corporation, 200 Homer Avenue, Ashland, Massachusetts, USA
| | - Jan Markus
- MatTek In Vitro Life Science Laboratories, Bratislava, Slovak Republic
| | - Seyoum Ayehunie
- MatTek Corporation, 200 Homer Avenue, Ashland, Massachusetts, USA
| | - Mario Monshouwer
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Raymond Evers
- Preclinical Sciences & Translational Safety, Janssen R&D, LLC, Spring House, Pennsylvania, USA
| | - Patrick Augustijns
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49 - box 921, 3000 Leuven, Belgium
| | - Stephanie Kourula
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium.
| |
Collapse
|
2
|
Gleeson JP, Zhang SY, Subelzu N, Ling J, Nissley B, Ong W, Nofsinger R, Kesisoglou F. Head-to-Head Comparison of Caco-2 Transwell and Gut-on-a-Chip Models for Assessing Oral Peptide Formulations. Mol Pharm 2024; 21:3880-3888. [PMID: 38941485 DOI: 10.1021/acs.molpharmaceut.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Oral delivery of potent peptide drugs provides key formulation challenges in the pharmaceutical industry: stability, solubility, and permeability. Intestinal permeation enhancers (PEs) can overcome the low oral bioavailability by improving the drug permeability. Conventional in vitro and ex vivo models for assessing PEs fail to predict efficacy in vivo. Here, we compared Caco-2 cells cultured in the conventional static Transwell model to a commercially available continuous flow microfluidic Gut-on-a-Chip model. We determined baseline permeability of FITC-Dextan 3 kDa (FD3) in Transwell (5.3 ± 0.8 × 10-8 cm/s) vs Chip (3.2 ± 1.8 × 10-7 cm/s). We screened the concentration impact of two established PEs sodium caprate and sucrose monolaurate and indicated a requirement for higher enhancer concentration in the Chip model to elicit equivalent efficacy e.g., 10 mM sodium caprate in Transwells vs 25 mM in Chips. Fasted and fed state simulated intestinal fluids (FaSSIF/FeSSIF) were introduced into the Chip and increased basal FD3 permeability by 3-fold and 20-fold, respectively, compared to 4-fold and 4000-fold in Transwells. We assessed the utility of this model to peptides (Insulin and Octreotide) with PEs and observed much more modest permeability enhancement in the Chip model in line with observations in ex vivo and in vivo preclinical models. These data indicate that microfluidic Chip models are well suited to bridge the gap between conventional in vitro and in vivo models.
Collapse
Affiliation(s)
- John P Gleeson
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Stephanie Y Zhang
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Natalia Subelzu
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jing Ling
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Becky Nissley
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Whitney Ong
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Rebecca Nofsinger
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
- Current: Eli Lilly and Company, Drug Disposition, Indianapolis, Indiana 46284, United States
| | - Filippos Kesisoglou
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
3
|
Nakai D, Miyake M. Intestinal Membrane Function in Inflammatory Bowel Disease. Pharmaceutics 2023; 16:29. [PMID: 38258040 PMCID: PMC10820082 DOI: 10.3390/pharmaceutics16010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Inflammatory bowel disease is a set of chronic inflammatory diseases that mainly develop in the gastrointestinal mucosa, including ulcerative colitis and Crohn's disease. Gastrointestinal membrane permeability is an important factor influencing the pharmacological effects of pharmaceuticals administered orally for treating inflammatory bowel disease and other diseases. Understanding the presence or absence of changes in pharmacokinetic properties under a disease state facilitates effective pharmacotherapy. In this paper, we reviewed the gastrointestinal membrane function in ulcerative colitis and Crohn's disease from the perspective of in vitro membrane permeability and electrophysiological parameters. Information on in vivo permeability in humans is summarized. We also overviewed the inflammatory bowel disease research using gut-on-a-chip, in which some advances have recently been achieved. It is expected that these findings will be exploited for the development of therapeutic drugs for inflammatory bowel disease and the optimization of treatment options and regimens.
Collapse
Affiliation(s)
- Daisuke Nakai
- Drug Metabolism & Pharmacokinetics Research Laboratory, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Masateru Miyake
- Pharmapack Co., Ltd., 1-27 Nakaokubo, Toyama 939-2243, Japan;
| |
Collapse
|
4
|
Kondo S, Miyake M. Simultaneous Prediction Method for Intestinal Absorption and Metabolism Using the Mini-Ussing Chamber System. Pharmaceutics 2023; 15:2732. [PMID: 38140073 PMCID: PMC10747201 DOI: 10.3390/pharmaceutics15122732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Many evaluation tools for predicting human absorption are well-known for using cultured cell lines such as Caco-2, MDCK, and so on. Since the combinatorial chemistry and high throughput screening system, pharmacological assay, and pharmaceutical profiling assay are mainstays of drug development, PAMPA has been used to evaluate human drug absorption. In addition, cultured cell lines from iPS cells have been attracting attention because they morphologically resemble human intestinal tissues. In this review, we used human intestinal tissues to estimate human intestinal absorption and metabolism. The Ussing chamber uses human intestinal tissues to directly assay a drug candidate's permeability and determine the electrophysiological parameters such as potential differences (PD), short circuit current (Isc), and resistance (R). Thus, it is an attractive tool for elucidating human intestinal permeability and metabolism. We have presented a novel prediction method for intestinal absorption and metabolism by utilizing a mini-Ussing chamber using human intestinal tissues and animal intestinal tissues, based on the transport index (TI). The TI value was calculated by taking the change in drug concentrations on the apical side due to precipitation and the total amounts accumulated in the tissue (Tcorr) and transported to the basal side (Xcorr). The drug absorbability in rank order, as well as the fraction of dose absorbed (Fa) in humans, was predicted, and the intestinal metabolism of dogs and rats was also predicted, although it was not quantitative. However, the metabolites formation index (MFI) values, which are included in the TI values, can predict the evaluation of intestinal metabolism and absorption by using ketoconazole. Therefore, the mini-Ussing chamber, equipped with human and animal intestinal tissues, would be an ultimate method to predict intestinal absorption and metabolism simultaneously.
Collapse
Affiliation(s)
- Satoshi Kondo
- Department of Drug Metabolism and Pharmacokinetics, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 460-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan;
- Department of Drug Safety Research, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 460-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Masateru Miyake
- Business Integrity and External Affairs, Otsuka Pharmaceutical Co., Ltd., 2-16-4 Konan, Minato-ku, Tokyo 108-8242, Japan
| |
Collapse
|
5
|
Zeiringer S, Wiltschko L, Glader C, Reiser M, Absenger-Novak M, Fröhlich E, Roblegg E. Development and Characterization of an In Vitro Intestinal Model Including Extracellular Matrix and Macrovascular Endothelium. Mol Pharm 2023; 20:5173-5184. [PMID: 37677739 PMCID: PMC10548470 DOI: 10.1021/acs.molpharmaceut.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
In vitro intestinal models are used to study biological processes, drug and food absorption, or cytotoxicity, minimizing the use of animals in the laboratory. They usually consist of enterocytes and mucus-producing cells cultured for 3 weeks, e.g., on Transwells, to obtain a fully differentiated cell layer simulating the human epithelium. Other important components are the extracellular matrix (ECM) and strong vascularization. The former serves as structural support for cells and promotes cellular processes such as differentiation, migration, and growth. The latter includes endothelial cells, which coordinate vascularization and immune cell migration and facilitate the transport of ingested substances or drugs to the liver. In most cases, animal-derived hydrogels such as Matrigel or collagen are used as ECM in in vitro intestinal models, and endothelial cells are only partially considered, if at all. However, it is well-known that animal-derived products can lead to altered cell behavior and incorrect results. To circumvent these limitations, synthetic and modifiable hydrogels (Peptigel and Vitrogel) were studied here to mimic xenofree ECM, and the data were compared with Matrigel. Careful rheological characterization was performed, and the effect on cell proliferation was investigated. The results showed that Vitrogel exhibited shear-thinning behavior with an internal structure recovery of 78.9 ± 11.2%, providing the best properties among the gels investigated. Therefore, a coculture of Caco-2 and HT29-MTX cells (ratio 7:3) was grown on Vitrogel, while simultaneously endothelial cells were cultured on the basolateral side by inverse cultivation. The model was characterized in terms of cell proliferation, differentiation, and drug permeability. It was found that the cells cultured on Vitrogel induced a 1.7-fold increase in cell proliferation and facilitated the formation of microvilli and tight junctions after 2 weeks of cultivation. At the same time, the coculture showed full differentiation indicated by high alkaline phosphatase release of Caco-2 cells (95.0 ± 15.9%) and a mucus layer produced by HT29-MTX cells. Drug tests led to ex vivo comparable permeability coefficients (Papp) (i.e., Papp; antipyrine = (33.64 ± 5.13) × 10-6 cm/s, Papp; atenolol = (0.59 ± 0.16) × 10-6 cm/s). These results indicate that the newly developed intestinal model can be used for rapid and efficient assessment of drug permeability, excluding unexpected results due to animal-derived materials.
Collapse
Affiliation(s)
- Scarlett Zeiringer
- University
of Graz, Institute of Pharmaceutical
Sciences, Pharmaceutical Technology and Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria
| | - Laura Wiltschko
- University
of Graz, Institute of Pharmaceutical
Sciences, Pharmaceutical Technology and Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria
- Joanneum
Research-Health, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Christina Glader
- University
of Graz, Institute of Pharmaceutical
Sciences, Pharmaceutical Technology and Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria
- Research
Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Martin Reiser
- University
of Graz, Institute of Pharmaceutical
Sciences, Pharmaceutical Technology and Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria
| | - Markus Absenger-Novak
- Center
for Medical Research, Medical University
of Graz, Stiftingtalstraße 24, 8010 Graz, Austria
| | - Eleonore Fröhlich
- Center
for Medical Research, Medical University
of Graz, Stiftingtalstraße 24, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Eva Roblegg
- University
of Graz, Institute of Pharmaceutical
Sciences, Pharmaceutical Technology and Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria
- Research
Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
6
|
The change of the electrophysiological parameters using human intestinal tissues from ulcerative colitis and Crohn’s disease. J Pharmacol Sci 2022; 150:90-93. [DOI: 10.1016/j.jphs.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
|
7
|
Guan C, Yang Y, Tian D, Jiang Z, Zhang H, Li Y, Yan J, Zhang C, Chen C, Zhang J, Wang J, Wang Y, Du H, Zhou H, Wang T. Evaluation of an Ussing Chamber System Equipped with Rat Intestinal Tissues to Predict Intestinal Absorption and Metabolism in Humans. Eur J Drug Metab Pharmacokinet 2022; 47:639-652. [PMID: 35733077 DOI: 10.1007/s13318-022-00780-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVE Oral bioavailability (F) is one of the key factors that need to be determined in drug discovery. This factor is determined by the permeability and solubility of new molecule entities (NMEs) according to the biopharmaceutics classification system (BCS). METHODS In the present study, we evaluated the permeability of 22 drugs in rat intestinal tissues using an Ussing chamber system and correlated the permeability with data on human intestinal absorption (Fa) and intestinal availability (Fa × Fg) reported in the literature. RESULTS The rat intestinal permeability data were better correlated with the combined effect of the absorbed fraction (Fa) and the fraction escaping intestinal metabolism (Fg) than Fa itself. Clear regional dependent absorption was observed for most of the test drugs, and ileal Papp was generally higher than that in other segments. Finally, the function of the efflux transporter P-glycoprotein (P-gp) with regard to oral absorption of substrates was evaluated with an Ussing chamber. We also demonstrated that the rat intestinal stability of the three cytochrome P450 (CYP) substrates was consistent with the human data. CONCLUSION An Ussing chamber system incorporating rat intestinal tissue would be a valuable tool to predict human intestinal absorption and metabolism for molecules with various physicochemical properties.
Collapse
Affiliation(s)
- Chi Guan
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Yingxin Yang
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Dong Tian
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Zhiqiang Jiang
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Huiying Zhang
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Yali Li
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Jiaxiu Yan
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Congman Zhang
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Chun Chen
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Junhua Zhang
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Jing Wang
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Yu Wang
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Hongwen Du
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Hongyu Zhou
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Tao Wang
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China.
| |
Collapse
|
8
|
Houriet J, Arnold YE, Pellissier L, Kalia YN, Wolfender JL. Using Porcine Jejunum Ex Vivo to Study Absorption and Biotransformation of Natural Products in Plant Extracts: Pueraria lobata as a Case Study. Metabolites 2021; 11:metabo11080541. [PMID: 34436482 PMCID: PMC8398828 DOI: 10.3390/metabo11080541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Herbal preparations (HPs) used in folk medicine are complex mixtures of natural products (NPs). Their efficacy in vivo after ingestion depends on the uptake of the active ingredient, and, in some cases, their metabolites, in the gastrointestinal tract. Thus, correlating bioactivities measured in vitro and efficacy in vivo is a challenge. An extract of Pueraria lobata rich in different types of isoflavones was used to evaluate the capacity of viable porcine small intestine ex vivo to elucidate the absorption of HP constituents, and, in some cases, their metabolites. The identification and transport of permeants across the jejunum was monitored by liquid chromatography-mass spectrometry (LC-MS), combining targeted and untargeted metabolite profiling approaches. It was observed that the C-glycoside isoflavones were stable and crossed the intestinal membrane, while various O-glycoside isoflavones were metabolized into their corresponding aglycones, which were then absorbed. These results are consistent with human data, highlighting the potential of using this approach. A thorough investigation of the impact of absorption and biotransformation was obtained without in vivo studies. The combination of qualitative untargeted and quantitative targeted LC-MS methods effectively monitored a large number of NPs and their metabolites, which is essential for research on HPs.
Collapse
Affiliation(s)
- Joëlle Houriet
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (J.H.); (Y.E.A.); (L.P.); (Y.N.K.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Yvonne E. Arnold
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (J.H.); (Y.E.A.); (L.P.); (Y.N.K.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Léonie Pellissier
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (J.H.); (Y.E.A.); (L.P.); (Y.N.K.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (J.H.); (Y.E.A.); (L.P.); (Y.N.K.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (J.H.); (Y.E.A.); (L.P.); (Y.N.K.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
9
|
Xu Y, Shrestha N, Préat V, Beloqui A. An overview of in vitro, ex vivo and in vivo models for studying the transport of drugs across intestinal barriers. Adv Drug Deliv Rev 2021; 175:113795. [PMID: 33989702 DOI: 10.1016/j.addr.2021.05.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
Oral administration is the most commonly used route for drug delivery owing to its cost-effectiveness, ease of administration, and high patient compliance. However, the absorption of orally delivered compounds is a complex process that greatly depends on the interplay between the characteristics of the drug/formulation and the gastrointestinal tract. In this contribution, we review the different preclinical models (in vitro, ex vivo and in vivo) from their development to application for studying the transport of drugs across intestinal barriers. This review also discusses the advantages and disadvantages of each model. Furthermore, the authors have reviewed the selection and validation of these models and how the limitations of the models can be addressed in future investigations. The correlation and predictability of the intestinal transport data from the preclinical models and human data are also explored. With the increasing popularity and prevalence of orally delivered drugs/formulations, sophisticated preclinical models with higher predictive capacity for absorption of oral formulations used in clinical studies will be needed.
Collapse
Affiliation(s)
- Yining Xu
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Neha Shrestha
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Véronique Préat
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Ana Beloqui
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| |
Collapse
|
10
|
Drug Disposition in the Lower Gastrointestinal Tract: Targeting and Monitoring. Pharmaceutics 2021; 13:pharmaceutics13020161. [PMID: 33530468 PMCID: PMC7912393 DOI: 10.3390/pharmaceutics13020161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
The increasing prevalence of colonic diseases calls for a better understanding of the various colonic drug absorption barriers of colon-targeted formulations, and for reliable in vitro tools that accurately predict local drug disposition. In vivo relevant incubation conditions have been shown to better capture the composition of the limited colonic fluid and have resulted in relevant degradation and dissolution kinetics of drugs and formulations. Furthermore, drug hurdles such as efflux transporters and metabolising enzymes, and the presence of mucus and microbiome are slowly integrated into drug stability- and permeation assays. Traditionally, the well characterized Caco-2 cell line and the Ussing chamber technique are used to assess the absorption characteristics of small drug molecules. Recently, various stem cell-derived intestinal systems have emerged, closely mimicking epithelial physiology. Models that can assess microbiome-mediated drug metabolism or enable coculturing of gut microbiome with epithelial cells are also increasingly explored. Here we provide a comprehensive overview of the colonic physiology in relation to drug absorption, and review colon-targeting formulation strategies and in vitro tools to characterize colonic drug disposition.
Collapse
|
11
|
Michiba K, Maeda K, Kurimori K, Enomoto T, Shimomura O, Takeuchi T, Nishiyama H, Oda T, Kusuhara H. Characterization of the Human Intestinal Drug Transport with Ussing Chamber System Incorporating Freshly Isolated Human Jejunum. Drug Metab Dispos 2020; 49:84-93. [DOI: 10.1124/dmd.120.000138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/02/2020] [Indexed: 12/27/2022] Open
|
12
|
Biomimetic Artificial Membrane Permeability Assay over Franz Cell Apparatus Using BCS Model Drugs. Pharmaceutics 2020; 12:pharmaceutics12100988. [PMID: 33086670 PMCID: PMC7589491 DOI: 10.3390/pharmaceutics12100988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 11/17/2022] Open
Abstract
A major parameter controlling the extent and rate of oral drug absorption is permeability through the lipid bilayer of intestinal epithelial cells. Here, a biomimetic artificial membrane permeability assay (Franz-PAMPA Pampa) was validated using a Franz cells apparatus. Both high and low permeability drugs (metoprolol and mannitol, respectively) were used as external standards. Biomimetic properties of Franz-PAMPA were also characterized by electron paramagnetic resonance spectroscopy (EPR). Moreover, the permeation profile for eight Biopharmaceutic Classification System (BCS) model drugs cited in the FDA guidance and another six drugs (acyclovir, cimetidine, diclofenac, ibuprofen, piroxicam, and trimethoprim) were measured across Franz-PAMPA. Apparent permeability (Papp) Franz-PAMPA values were correlated with fraction of dose absorbed in humans (Fa%) from the literature. Papp in Caco-2 cells and Corti artificial membrane were likewise compared to Fa% to assess Franz-PAMPA performance. Mannitol and metoprolol Papp values across Franz-PAMPA were lower (3.20 × 10-7 and 1.61 × 10-5 cm/s, respectively) than those obtained across non-impregnated membrane (2.27 × 10-5 and 2.55 × 10-5 cm/s, respectively), confirming lipidic barrier resistivity. Performance of the Franz cell permeation apparatus using an artificial membrane showed acceptable log-linear correlation (R2 = 0.664) with Fa%, as seen for Papp in Caco-2 cells (R2 = 0.805). Data support the validation of the Franz-PAMPA method for use during the drug discovery process.
Collapse
|
13
|
Arnold YE, Kalia YN. Using Ex Vivo Porcine Jejunum to Identify Membrane Transporter Substrates: A Screening Tool for Early-Stage Drug Development. Biomedicines 2020; 8:biomedicines8090340. [PMID: 32927779 PMCID: PMC7555276 DOI: 10.3390/biomedicines8090340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022] Open
Abstract
Robust, predictive ex vivo/in vitro models to study intestinal drug absorption by passive and active transport mechanisms are scarce. Membrane transporters can significantly impact drug uptake and transporter-mediated drug–drug interactions can play a pivotal role in determining the drug safety profile. Here, the presence and activity of seven clinically relevant apical/basolateral drug transporters found in human jejunum were tested using ex vivo porcine intestine in a Ussing chamber system. Experiments using known substrates of peptide transporter 1 (PEPT1), organic anion transporting polypeptide (OATP2B1), organic cation transporter 1 (OCT1), P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), multi drug resistance-associated protein 2 and 3 (MRP2 and MRP3), in the absence and presence of potent inhibitors, showed that there was a statistically significant change in apparent intestinal permeability Papp,pig (cm/s) in the presence of the corresponding inhibitor. For MRP2, a transporter reportedly present at relatively low concentration, although Papp,pig did not significantly change in the presence of the inhibitor, substrate deposition (QDEP) in the intestinal tissue was significantly increased. The activity of the seven transport proteins was successfully demonstrated and the results provided insight into their apical/basolateral localization. In conclusion, the results suggest that studies using the porcine intestine/Ussing chamber system, which could easily be integrated into the drug development process, might enable the early-stage identification of new molecular entities that are substrates of membrane transporters.
Collapse
Affiliation(s)
- Yvonne E. Arnold
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva, Switzerland
- Correspondence: ; Tel.: +41-(0)22-379-3355
| |
Collapse
|
14
|
Wang X, Liu M, Zhang L, Wang Y, Li Y, Lu T. Optimizing Pharmacokinetic Property Prediction Based on Integrated Datasets and a Deep Learning Approach. J Chem Inf Model 2020; 60:4603-4613. [PMID: 32804486 DOI: 10.1021/acs.jcim.0c00568] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oral bioavailability (OBA)-related pharmacokinetic properties, such as aqueous solubility, lipophilicity, and intestinal membrane permeability, play a significant role in drug discovery. However, their measurement is usually costly and time-consuming. Therefore, prediction models based on diverse approaches have been established in recent decades. Computational prediction of molecular properties has become an important step in drug discovery, aiming to identify potential drug-like candidates and reduce costs. However, limitations related to dataset capacity and algorithm adaptation still place restrictions on the applicability of the related models. In this study, we considered both dataset and algorithm optimization to address the challenge of predicting OBA-related molecular properties. Benchmark datasets of aqueous solubility (log S), lipophilicity (log D), and membrane permeability measured using the Caco-2 cell line (log Papp) were constructed by merging and calibrating experimental data from diverse articles and databases. Then, a novel molecular property prediction model, called a multiembedding-based synthetic network (MESN), was generated by applying a deep learning algorithm based on the synthesis of multiple types of molecular embeddings. MESN achieves performance improvements over other state-of-the-art methods for the prediction of aqueous solubility, lipophilicity, and membrane permeability. Results were also obtained using several other algorithms and independent validation datasets as a control study. Moreover, a dimension reduction analysis (based on t-distributed stochastic neighbor embedding, t-SNE) and an atomic feature similarity analysis showed that the molecular embeddings extracted from the MESN model exhibit good clustering and diversity. Overall, considering the fundamental role of the data and the superior prediction performance of the model, we highlight the applicability of MESN on benchmark datasets for further utility in drug discovery-related molecular property prediction.
Collapse
Affiliation(s)
- Xiting Wang
- Life Science School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Meng Liu
- Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lan Zhang
- Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yun Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu Li
- Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tao Lu
- Life Science School, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
15
|
Youhanna S, Lauschke VM. The Past, Present and Future of Intestinal In Vitro Cell Systems for Drug Absorption Studies. J Pharm Sci 2020; 110:50-65. [PMID: 32628951 DOI: 10.1016/j.xphs.2020.07.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022]
Abstract
The intestinal epithelium acts as a selective barrier for the absorption of water, nutrients and orally administered drugs. To evaluate the gastrointestinal permeability of a candidate molecule, scientists and drug developers have a multitude of cell culture models at their disposal. Static transwell cultures constitute the most extensively characterized intestinal in vitro system and can accurately categorize molecules into low, intermediate and high permeability compounds. However, they lack key aspects of intestinal physiology, including the cellular complexity of the intestinal epithelium, flow, mechanical strain, or interactions with intestinal mucus and microbes. To emulate these features, a variety of different culture paradigms, including microfluidic chips, organoids and intestinal slice cultures have been developed. Here, we provide an updated overview of intestinal in vitro cell culture systems and critically review their suitability for drug absorption studies. The available data show that these advanced culture models offer impressive possibilities for emulating intestinal complexity. However, there is a paucity of systematic absorption studies and benchmarking data and it remains unclear whether the increase in model complexity and costs translates into improved drug permeability predictions. In the absence of such data, conventional static transwell cultures remain the current gold-standard paradigm for drug absorption studies.
Collapse
Affiliation(s)
- Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
16
|
Comparison of the Intestinal Drug Permeation and Accumulation Between Normal Human Intestinal Tissues and Human Intestinal Tissues With Ulcerative Colitis. J Pharm Sci 2019; 109:1623-1626. [PMID: 31870787 DOI: 10.1016/j.xphs.2019.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/02/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022]
Abstract
The purpose of this study was to examine drug absorption profile utilizing human intestinal tissues from ulcerative colitis (UC) patients and to compare with normal tissues from intestinal cancer patients. Human intestinal tissues from UC and cancer patients mounted in a mini-Ussing chamber were used to evaluate the permeation of drugs, including FD-4, a very low permeable marker, rebamipide, a low permeable marker, and metoprolol, a high permeable marker. The transport index, an index of sum of permeated and tissue-accumulated molecules, of the model drugs was in accordance with their absorption rank order, and was almost kept constant irrespective of autopsy grade based on tissue fibrosis. On the other hand, UC tissues of grade 2 showed the decreased Xcorr, an index of permeated amount of molecules and increased Tcorr, an index of tissue-accumulated molecules for every tested compound. Our finding of the transport characteristics in intestinal tissues of severe UC patients in mini-Ussing chamber system demonstrated that autopsy grade of UC patients did not drastically change membrane permeability of the tested compounds. Furthermore, it was suggested that morphological changes of intestinal tissues caused by fibrosis led to limited permeation and subsequently increased accumulation with little change of total absorption.
Collapse
|
17
|
Stevens LJ, van Lipzig MMH, Erpelinck SLA, Pronk A, van Gorp J, Wortelboer HM, van de Steeg E. A higher throughput and physiologically relevant two-compartmental human ex vivo intestinal tissue system for studying gastrointestinal processes. Eur J Pharm Sci 2019; 137:104989. [PMID: 31301485 DOI: 10.1016/j.ejps.2019.104989] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/14/2019] [Accepted: 07/07/2019] [Indexed: 02/07/2023]
Abstract
A majority of the preclinical intestinal screening models do not properly reflect the complex physiology of the human intestinal tract, resulting in low translational value to the clinical situation. The often used cell lines such as Caco-2 or HT-29 are not well suited to investigate the different processes that predict oral bioavailability in real life, or processes involved in general gut health aspects. Therefore, highly realistic models resembling the human in vivo situation are needed; application of ex vivo intestinal tissue is an interesting and feasible alternative. After previously using porcine intestinal tissue as a predictive model for human intestinal absorption, we now have successfully applied human intestinal tissue into a newly developed InTESTine™ two-compartmental disposable device suitable for standard 6- or 24-well plate format. With this set-up we demonstrated (regional differences in) drug absorption, by using a subset of compounds with known varying Fa (fraction absorbed) values. A rank-order relationship of R2 = 0.85 could be established between the Fa and Papp of these commercially available drugs. Additionally, comparison between the InTESTine system and the established Ussing chamber technology showed a correlation of R2 = 0.94 (10 drugs) with respect to Papp values, indicating good comparison of both models. Besides absorption, intestinal wall metabolism of testosterone (CYP3A4) was determined by showing a linear formation (R2 = 0.99; up to 165 min) of the main metabolites androstenedione and 6Beta-hydroxytestosterone, indicating no loss of metabolic capacity of the intestinal tissue within the system. Enteroendocrine responses were assessed of the satiety hormones GLP-1 and PYY after stimulation with rebaudioside A and casein, resulting in significantly increased secretion to the luminal side as well as to the basolateral side. Incubation with the probiotic strain LGG showed to enhance the viability of the tissue by showing to decrease the LDH secretion compared to blank intestinal tissue. In conclusion, we show that human ex vivo intestinal tissue mounted in the higher throughput InTESTine 6- 24-transwell plate system is easy to handle and a suitable system to study diverse functional GI processes.
Collapse
Affiliation(s)
- Lianne J Stevens
- The Netherlands Organization for Applied Scientific Research (TNO), Utrechtseweg 48, 3704 HE Zeist, the Netherlands.
| | - Marola M H van Lipzig
- The Netherlands Organization for Applied Scientific Research (TNO), Utrechtseweg 48, 3704 HE Zeist, the Netherlands.
| | - Steven L A Erpelinck
- The Netherlands Organization for Applied Scientific Research (TNO), Utrechtseweg 48, 3704 HE Zeist, the Netherlands.
| | - Apollo Pronk
- Diakonessenhuis, Bosboomstraat 1, 3582 KE Utrecht, the Netherlands.
| | - Joost van Gorp
- Diakonessenhuis, Bosboomstraat 1, 3582 KE Utrecht, the Netherlands.
| | - Heleen M Wortelboer
- The Netherlands Organization for Applied Scientific Research (TNO), Utrechtseweg 48, 3704 HE Zeist, the Netherlands.
| | - Evita van de Steeg
- The Netherlands Organization for Applied Scientific Research (TNO), Utrechtseweg 48, 3704 HE Zeist, the Netherlands.
| |
Collapse
|
18
|
Miyake M, Oka Y, Mukai T. Food effect on meal administration time of pharmacokinetic profile of cilostazol, a BCS class II drug. Xenobiotica 2019; 50:145-149. [PMID: 30938549 DOI: 10.1080/00498254.2019.1602746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cilostazol (CLZ) is categorized as a biopharmaceutical classification system (BCS) class II drug. CLZ suspensions of jet-milled particles were orally administered to beagle dogs in fasted and fed states, for which food was given 0.5 h before the experiment.The mean highest concentration of CLZ (Cmax) and the area under the serum concentration-time curve (AUCt) fed/fasted ratios were 2.90 and 2.85, respectively, indicating a large and variable food effect. Additionally, CLZ was administered to the same dogs at 2 and 4 h after food or 0.5 h before food. The serum concentrations of CLZ were similar when dosed 0.5 and 2 h after food; however, they were significantly lower when dosed 4 h after food but still greater compared with the fasted state.Furthermore, the ratio of fed/fasted in AUCt was better correlated than that in Cmax. Additionally, the serum concentrations were similar to the fasted states when CLZ was dosed 0.5 h before food.Therefore, the results of this study showed that the serum concentration-time profile of CLZ was significantly affected by the timing of food administration, and that a good correlation was observed between food administration time and the Cmax and AUCt fed/fasted ratios.
Collapse
Affiliation(s)
- Masateru Miyake
- Bioavailability Research Project Formulation Research Institute, Otsuka Pharmaceutical Co. Ltd., Tokushima, Japan.,Quality Assurance Department, Quality Assurance Section, Headquarters for Product Safety and Quality Assurance, Otsuka Pharmaceutical Co. Ltd., Tokushima, Japan
| | - Yoshikazu Oka
- Bioavailability Research Project Formulation Research Institute, Otsuka Pharmaceutical Co. Ltd., Tokushima, Japan
| | - Tadashi Mukai
- Bioavailability Research Project Formulation Research Institute, Otsuka Pharmaceutical Co. Ltd., Tokushima, Japan
| |
Collapse
|
19
|
Drug Transport across Porcine Intestine Using an Ussing Chamber System: Regional Differences and the Effect of P-Glycoprotein and CYP3A4 Activity on Drug Absorption. Pharmaceutics 2019; 11:pharmaceutics11030139. [PMID: 30901927 PMCID: PMC6471532 DOI: 10.3390/pharmaceutics11030139] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 11/17/2022] Open
Abstract
Drug absorption across viable porcine intestines was investigated using an Ussing chamber system. The apparent permeability coefficients, Papp,pig, were compared to the permeability coefficients determined in humans in vivo, Peff,human. Eleven drugs from the different Biopharmaceutical Classification System (BCS) categories absorbed by passive diffusion with published Peff,human values were used to test the system. The initial experiments measured Papp,pig for each drug after application in a Krebs–Bicarbonate Ringer (KBR) buffer and in biorelevant media FaSSIF V2 and FeSSIF V2, mimicking fasted and fed states. Strong sigmoidal correlations were observed between Peff,human and Papp,pig. Differences in the segmental Papp,pig of antipyrine, cimetidine and metoprolol confirmed the discrimination between drug uptake in the duodenum, jejunum and ileum (and colon); the results were in good agreement with human data in vivo. The presence of the P-gp inhibitor verapamil significantly increased Papp,pig across the ileum of the P-gp substrates cimetidine and ranitidine (p < 0.05). Clotrimazole, a potent CYP3A4 inhibitor, significantly increased Papp,pig of the CYP3A4 substrates midazolam, verapamil and tamoxifen and significantly decreased the formation of their main metabolites. In conclusion, the results showed that this is a robust technique to predict passive drug permeability under fasted and fed states, to identify regional differences in drug permeability and to demonstrate the activity of P-gp and CYP3A4.
Collapse
|
20
|
Simultaneous Prediction of Intestinal Absorption and Metabolism Using the Mini-Ussing Chamber System. J Pharm Sci 2019; 108:763-769. [DOI: 10.1016/j.xphs.2018.10.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 02/01/2023]
|
21
|
Lozoya-Agullo I, González-Álvarez I, Merino-Sanjuán M, Bermejo M, González-Álvarez M. Preclinical models for colonic absorption, application to controlled release formulation development. Eur J Pharm Biopharm 2018; 130:247-259. [PMID: 30064699 DOI: 10.1016/j.ejpb.2018.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/14/2022]
Abstract
Oral controlled release (CR) formulations have many benefits and have become a valuable resource for the local and systemic administration of drugs. The most important characteristic of these pharmaceutical products is that drug absorption occurs mainly in the colon. Therefore, this review analyses the physiological and physicochemical features that may affect an orally administered CR product, as well as the different strategies to develop a CR dosage form and the methods used to evaluate the formulation efficacy. The models available to study the intestinal permeability and their applicability to colonic permeability determinations are also discussed.
Collapse
Affiliation(s)
- Isabel Lozoya-Agullo
- Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, Spain; Pharmacokinetics, Pharmaceutical Technology and Parasitology, University of Valencia, Spain
| | | | - Matilde Merino-Sanjuán
- Pharmacokinetics, Pharmaceutical Technology and Parasitology, University of Valencia, Spain; Molecular Recognition and Technological Development, Polytechnic University-University of Valencia, Valencia, Spain
| | - Marival Bermejo
- Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, Spain
| | | |
Collapse
|
22
|
Takahashi Y, Uno K, Iijima K, Abe Y, Koike T, Asano N, Asanuma K, Shimosegawa T. Acidic bile salts induces mucosal barrier dysfunction through let-7a reduction during gastric carcinogenesis after Helicobacter pylori eradication. Oncotarget 2018; 9:18069-18083. [PMID: 29719591 PMCID: PMC5915058 DOI: 10.18632/oncotarget.24725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/24/2018] [Indexed: 12/28/2022] Open
Abstract
Gastric cancer (GC) after eradication for Helicobacter pylori (H.pylori) increases, but its carcinogenesis is not elucidated. It is mainly found in acid non-secretion areas (ANA), as mucosal regeneration in acid secretory areas (AA) after eradication changes the acidity and bile toxicity of gastric juice. We aimed to clarify the role of barrier dysfunction of ANA by the stimulation of pH3 bile acid cocktail (ABC) during carcinogenesis. We collected 18 patients after curative endoscopic resection for GC, identified later than 24 months after eradication, and took biopsies by Congo-red chromoendoscopy to distinguish AA and ANA (UMIN00018967). The mucosal barrier function was investigated using a mini-Ussing chamber system and molecular biological methods. The reduction in mucosal impedance in ANA after stimulation was significantly larger than that in AA, 79.6% vs. 87.9%, respectively. The decrease of zonula occludens-1 (ZO-1) and let-7a and the increase of snail in ANA were significant compared to those in AA. In an in vitro study, the restoration of ZO-1 and let-7a as well as the induction of snail were observed after stimulation. High mobility group A2 (HMGA2)-snail activation, MTT proliferation, and cellular infiltration capacity were significantly increased in AGS transfected with let-7a inhibitor, and vice versa. Accordingly, using a mini-Ussing chamber system for human biopsy specimens followed by an in vitro study, we demonstrated for the first time that the exposure of acidic bile salts to ANA might cause serious barrier dysfunction through the let-7a reduction, promoting epithelial-mesenchymal transition during inflammation-associated carcinogenesis even after eradication.
Collapse
Affiliation(s)
| | - Kaname Uno
- Division of Gastroenterology, Tohoku University, Miyagi, Japan
| | | | - Yasuhiko Abe
- Department of The Second Internal Medicine, Yamagata University, Miyagi, Japan
| | - Tomoyuki Koike
- Division of Gastroenterology, Tohoku University, Miyagi, Japan
| | - Naoki Asano
- Division of Gastroenterology, Tohoku University, Miyagi, Japan
| | | | | |
Collapse
|
23
|
Evaluation of intestinal metabolism and absorption using the Ussing chamber system equipped with intestinal tissue from rats and dogs. Eur J Pharm Biopharm 2017; 122:49-53. [PMID: 28974435 DOI: 10.1016/j.ejpb.2017.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 09/19/2017] [Accepted: 09/29/2017] [Indexed: 01/09/2023]
Abstract
The purpose of this study was to evaluate the intestinal metabolism and absorption in a mini-Ussing chamber equipped with animal intestinal tissues, based on the transport index (TI). TI value was defined as the sum of drug amounts transported to the basal-side component (Xcorr) and drug amounts accumulated in the tissue (Tcorr), which are normalized by AUC of a drug in the apical compartment, as an index for drug absorption. Midazolam was used as a test compound for the evaluation of intestinal metabolism and absorption. The metabolite formulation of midazolam was observed in both rats and dogs. Ketoconazole inhibited the intestinal metabolism of midazolam in rats and improved its intestinal absorption to a statistically significant extent. Therefore, the mini-Ussing chamber, equipped with animal intestinal tissues, showed potential to use the evaluation of the intestinal metabolism and absorption, including the assessment of species differences.
Collapse
|
24
|
Miyake M, Koga T, Kondo S, Yoda N, Emoto C, Mukai T, Toguchi H. Prediction of drug intestinal absorption in human using the Ussing chamber system: A comparison of intestinal tissues from animals and humans. Eur J Pharm Sci 2017; 96:373-380. [DOI: 10.1016/j.ejps.2016.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/30/2016] [Accepted: 10/04/2016] [Indexed: 11/30/2022]
|
25
|
Coleman RA. Human-based systems in drug and chemical safety testing--toward replacement, the 'single R'. Altern Lab Anim 2015; 42:357-66. [PMID: 25635644 DOI: 10.1177/026119291404200605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Three Rs was a concept originally conceived as a means of reducing the suffering of laboratory animals that are used largely in identifying any potential safety issues with chemicals to which humans may be exposed. However, with growing evidence of the shortcomings of laboratory animal testing to reliably predict human responsiveness to such chemicals, questions are now being asked as to whether it is appropriate to use animals as human surrogates at all. This raises the question of whether, of the original Three Rs, two--Reduction and Refinement--are potentially redundant, and whether, instead, we should concentrate on the third R: Replacement. And if this is the best way forward, it is inevitable that this R should be based firmly on human biology. The present review outlines the current state-of-the-art regarding our access to human biology through in vitro, in silico and in vivo technologies, identifying strengths, weaknesses and opportunities, and goes on to address the prospect of achieving a single R, with some suggestions as to how to progress toward this goal.
Collapse
|
26
|
Miyake M. Improvement and Prediction of Intestinal Drug Absorption. YAKUGAKU ZASSHI 2013; 133:995-1006. [DOI: 10.1248/yakushi.13-00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masateru Miyake
- Bioavailability Research Project, Formulation Research Institute, Otsuka Pharmaceutical Co., Ltd
| |
Collapse
|