1
|
Yang Y, Ye G, Qiu X. 3D sponge loaded with cisplatin-CS-calcium alginate MPs utilized as a void-filling prosthesis for the efficient postoperative prevention of tumor recurrence and metastasis. RSC Adv 2024; 14:7517-7527. [PMID: 38440275 PMCID: PMC10910265 DOI: 10.1039/d3ra07516h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Intraoperative bleeding is a pivotal factor in the initiation of early recurrence and tumor metastasis following breast cancer excision. Distinct advantages are conferred upon postoperative breast cancer treatment through the utilization of locally administered implant therapies. This study devised a novel 3D sponge implant containing cisplatin-loaded chitosan-calcium alginate MPs capable of exerting combined chemotherapy and hemostasis effects. This innovative local drug-delivery implant absorbed blood and residual tumor cells post-tumor resection. Furthermore, the cisplatin-loaded chitosan-calcium alginate MPs sustainably targeted and eliminated cancer cells, thereby diminishing the risk of local recurrence and distant metastasis. This hydrogel material can also contribute to breast reconstruction, indicating the potential application of the 3D sponge in drug delivery for breast cancer treatment.
Collapse
Affiliation(s)
- Yihong Yang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University Guangzhou Guangdong 510515 P. R. China
| | - Genlan Ye
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University Guangzhou Guangdong 510515 P. R. China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University Guangzhou Guangdong 510515 P. R. China
| |
Collapse
|
2
|
Chen J, Guan L, Liu Y, Song Y, Tang Y, Cao Y, Li M, Sheng A, Zhang Z, Liu H. Choroidal vascular changes in silicone oil-filled eyes after vitrectomy for rhegmatogenous retinal detachments. BMC Ophthalmol 2023; 23:442. [PMID: 37919665 PMCID: PMC10621110 DOI: 10.1186/s12886-023-03167-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
INTRODUCTION The tamponade of silicone oil (SO) can affect both the structure and blood flow of the retina. However, there are few studies on the effect of SO tamponade on choroidal blood flow. Our study aimed to compare the effects of SO tamponade on the choroidal vascular index (CVI) and choroidal thickness (CT) in patients with unilateral rhegmatogenous retinal detachment (RRD) with operated eyes and fellow healthy eyes. METHODS We retrospectively collected demographic and clinical data from 36 patients who underwent 23G pars plana vitrectomy and SO tamponade for unilateral complicated RRD. Enhanced depth imaging-optical coherence tomography (EDI-OCT) scans were performed both within 1 week before SO removal and at the last follow-up visit after SO removal. Using ImageJ software, images were binarized to segment the total choroidal area, luminal area, and stromal area, respectively. The CVI was calculated as CVI=(luminal area)/(total choroidal area), and CT was also evaluated. RESULTS During SO tamponade, the CVI and luminal area in operated eyes were significantly lower compared to fellow eyes (57.616 ± 0.030 vs. 60.042 ± 0.019, P < 0.0001; 0.909 [0.694; 1.185] vs. 1.091 [0.785; 1.296], P = 0.007). Even after SO removal, the CVI remained lower in operated eyes than in fellow eyes (59.530 ± 0.018 vs. 60.319 ± 0.020, P = 0.031). Both CVI and luminal area were lower in operated eyes before SO removal than after SO removal (57.616 ± 0.030 vs. 59.530 ± 0.018, P = 0.0003; 0.909 [0.694; 1.185] vs. 0.994 [0.712; 1.348], P = 0.028). The duration of SO tamponade was positively correlated with the difference in CVI between fellow eyes and operated eyes during SO tamponade (P = 0.035). Total choroidal area, stromal area, and CT did not differ significantly between fellow eyes and operated eyes or between pre- and post-SO removal. CONCLUSIONS SO tamponade reduces CVI and decreases choroidal blood circulation in patients with retinal detachments required vitrectomy combined with SO tamponade. The longer the SO tamponade time, the more CVI reduction. In future work, we will aim to reduce these side effects by shortening the duration of silicone oil filling.
Collapse
Affiliation(s)
- Jiayu Chen
- The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, 269 Daxue Road, Tongshan District, Xuzhou, 221000, China
- Department of Ophthalmology, Xuzhou First People's Hospital, 269 Daxue Road, Tongshan District, Xuzhou, 221000, China
- Xuzhou Medical University, 209 Tongshan Road, Yunlong District, Xuzhou, 221004, China
| | - Lina Guan
- The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, 269 Daxue Road, Tongshan District, Xuzhou, 221000, China
- Department of Ophthalmology, Xuzhou First People's Hospital, 269 Daxue Road, Tongshan District, Xuzhou, 221000, China
- Xuzhou Medical University, 209 Tongshan Road, Yunlong District, Xuzhou, 221004, China
- Eye Disease Prevention and Treatment Institute of Xuzhou, 269 Daxue Road, Tongshan District, Xuzhou, 2210004, China
| | - Yalu Liu
- The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, 269 Daxue Road, Tongshan District, Xuzhou, 221000, China
- Department of Ophthalmology, Xuzhou First People's Hospital, 269 Daxue Road, Tongshan District, Xuzhou, 221000, China
- Xuzhou Medical University, 209 Tongshan Road, Yunlong District, Xuzhou, 221004, China
- Eye Disease Prevention and Treatment Institute of Xuzhou, 269 Daxue Road, Tongshan District, Xuzhou, 2210004, China
| | - Yingying Song
- The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, 269 Daxue Road, Tongshan District, Xuzhou, 221000, China
- Department of Ophthalmology, Xuzhou First People's Hospital, 269 Daxue Road, Tongshan District, Xuzhou, 221000, China
- Xuzhou Medical University, 209 Tongshan Road, Yunlong District, Xuzhou, 221004, China
| | - Yu Tang
- The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, 269 Daxue Road, Tongshan District, Xuzhou, 221000, China
- Department of Ophthalmology, Xuzhou First People's Hospital, 269 Daxue Road, Tongshan District, Xuzhou, 221000, China
- Xuzhou Medical University, 209 Tongshan Road, Yunlong District, Xuzhou, 221004, China
| | - Yumei Cao
- The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, 269 Daxue Road, Tongshan District, Xuzhou, 221000, China
- Department of Ophthalmology, Xuzhou First People's Hospital, 269 Daxue Road, Tongshan District, Xuzhou, 221000, China
- Xuzhou Medical University, 209 Tongshan Road, Yunlong District, Xuzhou, 221004, China
| | - Meishuang Li
- The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, 269 Daxue Road, Tongshan District, Xuzhou, 221000, China
- Department of Ophthalmology, Xuzhou First People's Hospital, 269 Daxue Road, Tongshan District, Xuzhou, 221000, China
- Xuzhou Medical University, 209 Tongshan Road, Yunlong District, Xuzhou, 221004, China
| | - Aiqin Sheng
- The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, 269 Daxue Road, Tongshan District, Xuzhou, 221000, China
- Department of Ophthalmology, Xuzhou First People's Hospital, 269 Daxue Road, Tongshan District, Xuzhou, 221000, China
- Xuzhou Medical University, 209 Tongshan Road, Yunlong District, Xuzhou, 221004, China
- Eye Disease Prevention and Treatment Institute of Xuzhou, 269 Daxue Road, Tongshan District, Xuzhou, 2210004, China
| | - Zhengpei Zhang
- The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, 269 Daxue Road, Tongshan District, Xuzhou, 221000, China.
- Department of Ophthalmology, Xuzhou First People's Hospital, 269 Daxue Road, Tongshan District, Xuzhou, 221000, China.
- Xuzhou Medical University, 209 Tongshan Road, Yunlong District, Xuzhou, 221004, China.
- Eye Disease Prevention and Treatment Institute of Xuzhou, 269 Daxue Road, Tongshan District, Xuzhou, 2210004, China.
| | - Haiyang Liu
- The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, 269 Daxue Road, Tongshan District, Xuzhou, 221000, China.
- Department of Ophthalmology, Xuzhou First People's Hospital, 269 Daxue Road, Tongshan District, Xuzhou, 221000, China.
- Xuzhou Medical University, 209 Tongshan Road, Yunlong District, Xuzhou, 221004, China.
- Eye Disease Prevention and Treatment Institute of Xuzhou, 269 Daxue Road, Tongshan District, Xuzhou, 2210004, China.
| |
Collapse
|
3
|
Sericultural By-Products: The Potential for Alternative Therapy in Cancer Drug Design. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020850. [PMID: 36677907 PMCID: PMC9861160 DOI: 10.3390/molecules28020850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Major progress has been made in cancer research; however, cancer remains one of the most important health-related burdens. Sericulture importance is no longer limited to the textile industry, but its by-products, such as silk fibroin or mulberry, exhibit great impact in the cancer research area. Fibroin, the pivotal compound that is found in silk, owns superior biocompatibility and biodegradability, representing one of the most important biomaterials. Numerous studies have reported its successful use as a drug delivery system, and it is currently used to develop three-dimensional tumor models that lead to a better understanding of cancer biology and play a great role in the development of novel antitumoral strategies. Moreover, sericin's cytotoxic effect on various tumoral cell lines has been reported, but also, it has been used as a nanocarrier for target therapeutic agents. On the other hand, mulberry compounds include various bioactive elements that are well known for their antitumoral activities, such as polyphenols or anthocyanins. In this review, the latest progress of using sericultural by-products in cancer therapy is discussed by highlighting their notable impact in developing novel effective drug strategies.
Collapse
|
4
|
Enshaei H, Molina BG, Puiggalí-Jou A, Saperas N, Alemán C. Polypeptide hydrogel loaded with conducting polymer nanoparticles as electroresponsive delivery system of small hydrophobic drugs. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Development of water-dispersible gelatin stabilized hydroxyapatite nanoformulation for curcumin delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Pudkon W, Laomeephol C, Damrongsakkul S, Kanokpanont S, Ratanavaraporn J. Comparative Study of Silk Fibroin-Based Hydrogels and Their Potential as Material for 3-Dimensional (3D) Printing. Molecules 2021; 26:molecules26133887. [PMID: 34202196 PMCID: PMC8271494 DOI: 10.3390/molecules26133887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Three-dimensional (3D) printing is regarded as a critical technology in material engineering for biomedical applications. From a previous report, silk fibroin (SF) has been used as a biomaterial for tissue engineering due to its biocompatibility, biodegradability, non-toxicity and robust mechanical properties which provide a potential as material for 3D-printing. In this study, SF-based hydrogels with different formulations and SF concentrations (1-3%wt) were prepared by natural gelation (SF/self-gelled), sodium tetradecyl sulfate-induced (SF/STS) and dimyristoyl glycerophosphorylglycerol-induced (SF/DMPG). From the results, 2%wt SF-based (2SF) hydrogels showed suitable properties for extrusion, such as storage modulus, shear-thinning behavior and degree of structure recovery. The 4-layer box structure of all 2SF-based hydrogel formulations could be printed without structural collapse. In addition, the mechanical stability of printed structures after three-step post-treatment was investigated. The printed structure of 2SF/STS and 2SF/DMPG hydrogels exhibited high stability with high degree of structure recovery as 70.4% and 53.7%, respectively, compared to 2SF/self-gelled construct as 38.9%. The 2SF/STS and 2SF/DMPG hydrogels showed a great potential to use as material for 3D-printing due to its rheological properties, printability and structure stability.
Collapse
Affiliation(s)
- Watcharapong Pudkon
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand;
- Biomedical Engineering for Medical and Health Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (C.L.); (S.D.); (S.K.)
| | - Chavee Laomeephol
- Biomedical Engineering for Medical and Health Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (C.L.); (S.D.); (S.K.)
| | - Siriporn Damrongsakkul
- Biomedical Engineering for Medical and Health Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (C.L.); (S.D.); (S.K.)
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sorada Kanokpanont
- Biomedical Engineering for Medical and Health Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (C.L.); (S.D.); (S.K.)
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Juthamas Ratanavaraporn
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand;
- Biomedical Engineering for Medical and Health Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (C.L.); (S.D.); (S.K.)
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +662-218-6793 (ext. 15)
| |
Collapse
|
7
|
Cetin Y, Sahin MG, Kok FN. Application potential of three-dimensional silk fibroin scaffold using mesenchymal stem cells for cardiac regeneration. J Biomater Appl 2021; 36:740-753. [PMID: 34039082 DOI: 10.1177/08853282211018529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cardiac tissue engineering focusing on biomaterial scaffolds incorporating cells from different sources has been explored to regenerate or repair damaged area as a lifesaving approach.The aim of this study was to evaluate the cardiomyocyte differentiation potential of human adipose mesenchymal stem cells (hAD-MSCs) as an alternative cell source on silk fibroin (SF) scaffolds for cardiac tissue engineering. The change in surface morphology of SF scaffolds depending on SF concentration (1-6%, w/v) and increase in their porosity upon application of unidirectional freezing were visualized by scanning electron microscopy (SEM). Swelling ratio was found to increase 2.4 fold when SF amount was decreased from 4% to 2%. To avoid excessive swelling, 4% SF scaffold with swelling ratio of 10% (w/w) was chosen for further studies.Biodegradation rate of SF scaffolds depended on enzymatic activity was found to be 75% weight loss of SF scaffolds at the day 14. The phenotype of hAD-MSCs and their multi-linage potential into chondrocytes, osteocytes, and adipocytes were shown by flow cytometry and immunohistochemical staining, respectively.The viability of hAD-MSCs on 3D SF scaffolds was determined as 90%, 118%, and 138% after 1, 7, and 14 days, respectively. The use of 3D SF scaffolds was associated with increased production of cardiomyogenic biomarkers: α-actinin, troponin I, connexin 43, and myosin heavy chain. The fabricated 3D SF scaffolds were proved to sustain hAD-MSCs proliferation and cardiomyogenic differentiation therefore, hAD-MSCs on 3D SF scaffolds may useful tool to regenerate or repair damaged area using cardiac tissue engineering techniques.
Collapse
Affiliation(s)
- Yuksel Cetin
- TUBITAK, Marmara Research Center, Genetic Engineering and Biotechnology Institute, Kocaeli, Turkey
| | - Merve G Sahin
- Istanbul Technical University, Molecular Biology-Genetics and Biotechnology Program - Ayazaga Campus, Istanbul, Turkey
| | - Fatma N Kok
- Istanbul Technical University, Molecular Biology-Genetics and Biotechnology Program - Ayazaga Campus, Istanbul, Turkey
| |
Collapse
|
8
|
Ding Z, Zhang Y, Guo P, Duan T, Cheng W, Guo Y, Zheng X, Lu G, Lu Q, Kaplan DL. Injectable Desferrioxamine-Laden Silk Nanofiber Hydrogels for Accelerating Diabetic Wound Healing. ACS Biomater Sci Eng 2021; 7:1147-1158. [PMID: 33522800 DOI: 10.1021/acsbiomaterials.0c01502] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dysangiogenesis and chronic inflammation are two critical reasons for diabetic foot ulcers. Desferrioxamine (DFO) was used clinically in the treatment of diabetic foot ulcers by repeated injections because of its capacity to induce vascularization. Biocompatible carriers that release DFO slowly and facilitate healing simultaneously are preferable options to accelerate the healing of diabetic wounds. Here, DFO-laden silk nanofiber hydrogels that provided a sustained release of DFO for more than 40 days were used to treat diabetic wounds. The DFO-laden hydrogels stimulated the healing of diabetic wounds. In vitro cell studies revealed that the DFO-laden hydrogels modulated the migration and gene expression of endothelial cells, and they also tuned the inflammation behavior of macrophages. These results were confirmed in an in vivo diabetic wound model. The DFO-laden hydrogels alleviated dysangiogenesis and chronic inflammation in the diabetic wounds, resulting in a more rapid wound healing and increased collagen deposition. Both in vitro and in vivo studies suggested potential clinical applications of these DFO-laden hydrogels in the treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Yunhua Zhang
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, P. R. China
| | - Peng Guo
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, P. R. China
| | - Tianbi Duan
- Center of Technology, Shuanghai Inoherb Cosmetics Co. Ltd., Shanghai 200444, P. R. China
| | - Weinan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen 361000, P. R. China
| | - Yang Guo
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen 361000, P. R. China
| | - Xin Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou 318000, P. R. China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
9
|
Osorio M, Martinez E, Naranjo T, Castro C. Recent Advances in Polymer Nanomaterials for Drug Delivery of Adjuvants in Colorectal Cancer Treatment: A Scientific-Technological Analysis and Review. Molecules 2020; 25:E2270. [PMID: 32408538 PMCID: PMC7288015 DOI: 10.3390/molecules25102270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is the type with the second highest morbidity. Recently, a great number of bioactive compounds and encapsulation techniques have been developed. Thus, this paper aims to review the drug delivery strategies for chemotherapy adjuvant treatments for CRC, including an initial scientific-technological analysis of the papers and patents related to cancer, CRC, and adjuvant treatments. For 2018, a total of 167,366 cancer-related papers and 306,240 patents were found. Adjuvant treatments represented 39.3% of the total CRC patents, indicating the importance of adjuvants in the prognosis of patients. Chemotherapy adjuvants can be divided into two groups, natural and synthetic (5-fluorouracil and derivatives). Both groups can be encapsulated using polymers. Polymer-based drug delivery systems can be classified according to polymer nature. From those, anionic polymers have garnered the most attention, because they are pH responsive. The use of polymers tailors the desorption profile, improving drug bioavailability and enhancing the local treatment of CRC via oral administration. Finally, it can be concluded that antioxidants are emerging compounds that can complement today's chemotherapy treatments. In the long term, encapsulated antioxidants will replace synthetic drugs and will play an important role in curing CRC.
Collapse
Affiliation(s)
- Marlon Osorio
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| | - Estefanía Martinez
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| | - Tonny Naranjo
- School of Health Sciences, Universidad Pontificia Bolivariana, Calle 78 B # 72 A-109, Medellín 050034, Colombia;
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas, Carrera 72 A # 78 B-141, Medellín 050034, Colombia
| | - Cristina Castro
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| |
Collapse
|
10
|
Baptista M, Joukhdar H, Alcala-Orozco CR, Lau K, Jiang S, Cui X, He S, Tang F, Heu C, Woodfield TBF, Lim KS, Rnjak-Kovacina J. Silk fibroin photo-lyogels containing microchannels as a biomaterial platform for in situ tissue engineering. Biomater Sci 2020; 8:7093-7105. [DOI: 10.1039/d0bm01010c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Silk photo-lyogels fabricated by di-tyrosine photo-crosslinking and ice-templating silk fibroin on 3D printed templates toward in situ tissue engineering applications.
Collapse
|
11
|
Kaewprasit K, Kobayashi T, Damrongsakkul S. Alcohol‐triggered silk fibroin hydrogels having random coil and β‐turn structures enhanced for cytocompatible cell response. J Appl Polym Sci 2019. [DOI: 10.1002/app.48731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Kanyaluk Kaewprasit
- Department of Chemical Engineering, Faculty of EngineeringChulalongkorn University, Phayathai Road Bangkok 10330 Thailand
| | - Takaomi Kobayashi
- Department of Materials Science and TechnologyNagaoka University of Technology, 1603‐1 Kamitomioka Nagaoka Niigata 940‐2188 Japan
| | - Siriporn Damrongsakkul
- Department of Chemical Engineering, Faculty of EngineeringChulalongkorn University, Phayathai Road Bangkok 10330 Thailand
- Biomaterial Engineering for Medical and Health Research UnitChulalongkorn University, Phayathai Road Bangkok 10330 Thailand
| |
Collapse
|
12
|
Chantong N, Damrongsakkul S, Ratanavaraporn J. Gelation Process and Physicochemical Properties of Thai Silk Fibroin Hydrogels Induced by Various Anionic Surfactants for Controlled Release of Curcumin. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Nattakan Chantong
- Biomedical Engineering Program, Faculty of EngineeringChulalongkorn University Phaya Thai Road, Bangkok 10330 Thailand
| | - Siriporn Damrongsakkul
- Department of Chemical Engineering, Faculty of EngineeringChulalongkorn University Phaya Thai Road, Bangkok 10330 Thailand
| | - Juthamas Ratanavaraporn
- Biomedical Engineering Program, Faculty of EngineeringChulalongkorn University Phaya Thai Road, Bangkok 10330 Thailand
- Skeletal Disorders Research Unit, Faculty of DentistryChulalongkorn University Phaya Thai Road, Bangkok 10330 Thailand
| |
Collapse
|
13
|
Comparative study in physico-chemical properties of gelatin derivatives and their microspheres as carriers for controlled release of green tea's extract. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Wu P, Liu Q, Wang Q, Qian H, Yu L, Liu B, Li R. Novel silk fibroin nanoparticles incorporated silk fibroin hydrogel for inhibition of cancer stem cells and tumor growth. Int J Nanomedicine 2018; 13:5405-5418. [PMID: 30271137 PMCID: PMC6149978 DOI: 10.2147/ijn.s166104] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background A multi-drug delivery platform is needed as the intra-tumoral heterogeneity of cancer leads to different drug susceptibility. Cancer stem cells (CSCs), a small population of tumor cells responsible for tumor seeding and recurrence, are considered chemotherapy-resistant and have been reported to be sensitive to salinomycin (Sal) instead of paclitaxel (Ptx). Here we report a novel silk fibroin (SF) hydrogel-loading Sal and Ptx by incorporating drug-loaded silk fibroin nanoparticles (SF-NPs) to simultaneously kill CSCs and non-CSCs. Methods Using the method we have previously reported to prepare Ptx-loaded SF-NPs (Ptx-SF-NPs), Sal-loaded SF-NPs (Sal-SF-NPs) were fabricated under mild and non-toxic conditions. The drug-loaded SF-NPs were dispersed in the ultrasound processed SF solution prior to gelation. Results The resulting SF hydrogel (Sal-Ptx-NP-Gel) retained its injectable properties, exhibited bio-degradability and demonstrated homogeneous drug distribution compared to the non-NP incorporated hydrogel. Sal-Ptx-NP-Gel showed superior inhibition of tumor growth compared to single drug-loaded hydrogel and systemic dual drug administration in the murine hepatic carcinoma H22 subcutaneous tumor model. Sal-Ptx-NP-Gel also significantly reduced CD44+CD133+ tumor cells and demonstrated the least tumor formation in the in vivo tumor seeding experiment, indicating superior inhibition of cancer stem cells. Conclusion These results suggest that SF-NPs incorporated SF hydrogel is a promising drug delivery platform, and Sal-Ptx-NP-Gel could be a novel and powerful locoregional tumor treatment regimen in the future.
Collapse
Affiliation(s)
- Puyuan Wu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China, ;
| | - Qin Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China, ;
| | - Qin Wang
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China, ;
| | - Hanqing Qian
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China, ;
| | - Lixia Yu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China, ;
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China, ;
| | - Rutian Li
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China, ;
| |
Collapse
|
15
|
Thai silk fibroin gelation process enhancing by monohydric and polyhydric alcohols. Int J Biol Macromol 2018; 118:1726-1735. [PMID: 30017976 DOI: 10.1016/j.ijbiomac.2018.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
Abstract
Silk fibroin hydrogel is an interesting natural material in various biomedical applications. However, the self-assembled gelation takes a long time. In this work, different alcohol types are used as gelation enhancers for aqueous silk fibroin solution. Monohydric alcohols having carbon chain length from C1 to C4 and polyhydric alcohols with the number of mono- to tri- hydroxyl groups were used as the enhancers which are effective for rapid gelation. The addition of monohydric alcohol distinctively reduced the gelation time, comparing to the polyhydric alcohol. The gelation process is directly dependent on the polarity of alcohol and hydrophobicity. The alcohol mediated gelation imparts strong viscoelastic property and enhanced compressive modulus of resulting hydrogels. This is due to the effective formation of self-assembled beta sheet network of the silk fibroin chains facilitates the gelation process.
Collapse
|
16
|
Jiang S, Agarwal S, Greiner A. Offenzellige Schwämme mit niedrigen Dichten als Funktionsmaterialien. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shaohua Jiang
- Makromolekulare Chemie II, Bayerisches Polymerinstitut; Universität Bayreuth; Universitätsstraße 30 95440 Bayreuth Deutschland
- College of Materials Science and Engineering; Nanjing Forestry University; Nanjing 210037 China
| | - Seema Agarwal
- Makromolekulare Chemie II, Bayerisches Polymerinstitut; Universität Bayreuth; Universitätsstraße 30 95440 Bayreuth Deutschland
| | - Andreas Greiner
- Makromolekulare Chemie II, Bayerisches Polymerinstitut; Universität Bayreuth; Universitätsstraße 30 95440 Bayreuth Deutschland
| |
Collapse
|
17
|
Abstract
Low-density macroporous sponges with densities less than 100 mg cm-3 are both a challenge and an opportunity for advanced chemistry and material science. The challenge lies in the precise preparation of the sponges with property combinations that lead to novel applications. Bottom-up and top-down chemical and engineering methods for the preparation of sponges are a major focus of this Review, with an emphasis on carbon and polymer materials. The light weight, sustainability, breathability, special wetting characteristics, large mass transfer, mechanical stability, and large pore volume are typical characteristics of sponges made of advanced materials and could lead to novel applications. Some selected sponge properties and potential applications are discussed.
Collapse
Affiliation(s)
- Shaohua Jiang
- Macromolecular Chemistry II, Department of Chemistry, Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany.,College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Seema Agarwal
- Macromolecular Chemistry II, Department of Chemistry, Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Andreas Greiner
- Macromolecular Chemistry II, Department of Chemistry, Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| |
Collapse
|
18
|
Yang L, Zheng Z, Qian C, Wu J, Liu Y, Guo S, Li G, Liu M, Wang X, Kaplan DL. Curcumin-functionalized silk biomaterials for anti-aging utility. J Colloid Interface Sci 2017; 496:66-77. [DOI: 10.1016/j.jcis.2017.01.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
|