1
|
Persson M, Kronstrand R, Evans-Brown M, Green H. In vitro activation of the CB 1 receptor by the semi-synthetic cannabinoids hexahydrocannabinol (HHC), hexahydrocannabinol acetate (HHC-O) and hexahydrocannabiphorol (HHC-P). Drug Test Anal 2024. [PMID: 38894658 DOI: 10.1002/dta.3750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Semi-synthetic cannabinoids (SSCs) including hexahydrocannabinol (HHC) are emerging on the drug market and sold openly as purportedly legal replacements for cannabis and Δ9-THC. By the beginning of 2024, 24 European countries had identified HHC, often sold openly in edibles (foods/candy), vapes and low-THC cannabis flowers and resins. The SSC market is developing rapidly, with HHC acetate (HHC-O), hexahydrocannabiphorol (HHC-P) and others recently identified. These developments may mark the first major change in the market for 'legal' replacements to cannabis since 'Spice' containing synthetic cannabinoids, such as JWH-018, emerged in 2008. Currently, there are some data available on the pharmacology of SSCs, which is crucial for understanding their effects, evaluating health risks and informing public health responses. This study focused on characterizing the in vitro activation of the human CB1 receptor by the (R)- and (S)-epimers of HHC, HHC-P and HHC-O. Using recombinant CHO-K1 cells expressing the human CB1 receptor, the potency (EC50) and efficacy were determined. It was established that (9R)-HHC and (9R)-HHC-P activated the CB1 receptor as partial agonists and with five and two times lower potency compared to JWH-018, respectively, while the (S)-epimers exhibited even lower potency. The (R)-epimer of HHC-O activate the CB1 receptor to even lesser extent and the (S)-epimer showed no activation. For HHC and HHC-P, all epimers exhibited similar level of efficacy. This available evidence suggests cannabimimetic effects of the tested SSC with the exception for the acetates that likely function as pro-drugs in vivo.
Collapse
Affiliation(s)
- Mattias Persson
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Robert Kronstrand
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Michael Evans-Brown
- European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), Lisbon, Portugal
| | - Henrik Green
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Ujváry I. Hexahydrocannabinol and closely related semi-synthetic cannabinoids: A comprehensive review. Drug Test Anal 2024; 16:127-161. [PMID: 37269160 DOI: 10.1002/dta.3519] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
Since the early 2000s, there has been a turmoil on the global illicit cannabinoid market. Parallel to legislative changes in some jurisdictions regarding herbal cannabis, unregulated and cheap synthetic cannabinoids with astonishing structural diversity have emerged. Recently, semi-synthetic cannabinoids manufactured from hemp extracts by simple chemical transformations have also appeared as recreational drugs. The burst of these semi-synthetic cannabinoids into the market was sparked by legislative changes in the United States, where cultivation of industrial hemp restarted. By now, hemp-derived cannabidiol (CBD), initially a blockbuster product on its own, became a "precursor" to semi-synthetic cannabinoids such as hexahydrocannabinol (HHC), which appeared on the drug market in 2021. The synthesis and cannabimimetic activity of HHC were first reported eight decades ago in quest for the psychoactive principles of marijuana and hashish. Current large-scale manufacture of HHC is based on hemp-derived CBD extract, which is converted first by cyclization into a Δ8 /Δ9 -THC mixture, followed by catalytic hydrogenation to afford a mixture of (9R)-HHC and (9S)-HHC epimers. Preclinical studies indicate that (9R)-HHC has THC-like pharmacological properties. The animal metabolism of HHC is partially clarified. The human pharmacology including metabolism of HHC is yet to be investigated, and (immuno)analytical methods for the rapid detection of HHC or its metabolites in urine are lacking. Herein, the legal background for the revitalization of hemp cultivation, and available information on the chemistry, analysis, and pharmacology of HHC and related analogs, including HHC acetate (HHC-O) is reviewed.
Collapse
|
3
|
Labadie M, Nardon A, Castaing N, Bragança C, Daveluy A, Gaulier JM, El Balkhi S, Grenouillet M. Hexahydrocannabinol poisoning reported to French poison centres. Clin Toxicol (Phila) 2024; 62:112-119. [PMID: 38426845 DOI: 10.1080/15563650.2024.2318409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Hexahydrocannabinol is a hexahydro derivative of cannabinol. Poisoning with hexahydrocannabinol was first observed in Europe in May 2022. METHOD This is a retrospective observational study of cases of self-reported hexahydrocannabinol exposure reported to French poison centres between 1 January 2022 and 31 May 2023. RESULTS There were 37 cases, including 19 in May 2023. The median age of the patients was 36 (interquartile range 28-43) years, and most were men. Eight patients had a history of substance use disorder. The route of exposure was ingestion in 24, inhalation (smoking or vaping) in 10, inhalation and ingestion in two and sublingual in one. Clinical features were neurological (85 per cent), cardiovascular (61 per cent), gastrointestinal (33 per cent), psychiatric (27 per cent) and ocular (21 per cent). Fifty-nine per cent of the patients were hospitalized. In four patients, the Poisoning Severity Score was 0 (asymptomatic); in 15 patients, the Score was 1 (minor); in 16, the Score was 2 (moderate); and in two cases, the Score was 3 (severe). In 70 per cent of patients, the outcome was known, and all recovered. Testing of biological samples was only undertaken in six cases. Five patients had positive blood or urine tests for hexahydrocannabinol; in two patients, tetrahydrocannabinol and metabolites were also detected. In addition, there was an additional patient in whom Δ8- and Δ9-tetrahydrocannabinol was detected in the substances used. DISCUSSION Clinical effects reported in this series included neuropsychiatric and somatic effects. Whilst these cases related to self-reported hexahydrocannabinol use, it is likely that tetrahydrocannabinol use also contributed to the effects in a substantial proportion of cases. This study has some limitations, such as the lack of available information due to the retrospective nature of the study. As a result, it probably overestimates the number of moderate and severe cases due to under-reporting of cases of little or no severity. Analysis of the patient's blood and urine was performed only in six patients, so we cannot be certain that the products consumed by the other patients were hexahydrocannabinol. CONCLUSION The clinical effects attributed to hexahydrocannabinol were neurological, cardiovascular, gastrointestinal, psychiatric and ocular predominantly and were sometimes serious.
Collapse
Affiliation(s)
| | - Audrey Nardon
- Centre antipoison, CHU de Bordeaux, Bordeaux, France
| | - Nadège Castaing
- Laboratoire de Pharmacologie et Toxicologie, CHU de Bordeaux, Bordeaux, France
| | | | | | | | - Souleiman El Balkhi
- Département de Pharmacologie, Toxicologie and Pharmacovigilance, CHU de Limoges, Limoges, France
| | | |
Collapse
|
4
|
Tanaka R, Kikura-Hanajiri R. Identification of hexahydrocannabinol (HHC), dihydro-iso-tetrahydrocannabinol (dihydro-iso-THC) and hexahydrocannabiphorol (HHCP) in electronic cigarette cartridge products. Forensic Toxicol 2024; 42:71-81. [PMID: 37365398 DOI: 10.1007/s11419-023-00667-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/03/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE Since 2021, products claiming to contain hexahydrocannabinol (HHC) and hexahydrocannabiphorol (HHCP), which are tetrahydrocannabinol (THC) analogs, have been distributed via the Internet. Owing to the presence of three asymmetric carbons in their structure, HHC and HHCP have multiple stereoisomers. This study aimed to identify the actual stereoisomers of HHC and HHCP isolated from electronic cigarette cartridge products using nuclear magnetic resonance (NMR) spectroscopy. METHODS Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-photodiode array-mass spectrometry (LC-PDA-MS) were used for the analyses of two major peaks and one minor peak in product A and two major peaks in product B. These five compounds were isolated by silica gel column chromatography, and their structures were analyzed by 1H, 13C-NMR and various two-dimensional NMR techniques, i.e., H-H correlation spectroscopy, heteronuclear multiple quantum coherence, heteronuclear multiple-bond correlation, and nuclear Overhauser effect spectroscopy. RESULTS Three compounds isolated from product A were identified as rel-(6aR,9R,10aR)-hexahydrocannabinol (11β-hexahydrocannabinol; 11β-HHC), rel-(6aR,9S,10aR)-hexahydrocannabinol (11α-hexahydrocannabinol, 11α-HHC), and a minor compound (2R,5S,6R)-dihydro-iso-tetrahydrocannabinol (dihydro-iso-THC). Meanwhile, the structural isomers of the major compound isolated from product B were identified as rel-(6aR, 9R, 10aR)-hexahydrocannabiphorol (11β-hexahydrocannabiphorol; 11β-HHCP) and rel-(6aR, 9S, 10aR)-hexahydrocannabiphorol (11α-hexahydrocannabiphorol; 11α-HHCP). CONCLUSIONS The presence of both 11β-HHC and 11α-HHC in the HHC products analyzed in this study suggests that they were most likely synthesized via the reduction reaction of Δ8-THC or Δ9-THC. Dihydro-iso-THC was probably obtained as a byproduct of the synthesis of Δ8-THC or Δ9-THC from cannabidiol. Similarly, 11β-HHCP and 11α-HHCP in the HHCP product could stem from Δ9-tetrahydrocannabiphorol.
Collapse
Affiliation(s)
- Rie Tanaka
- Division of Pharmacognosy, Phytochemistry and Narcotics, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-Ku, Kawasaki, Kanagawa, 210-9501, Japan.
| | - Ruri Kikura-Hanajiri
- Division of Pharmacognosy, Phytochemistry and Narcotics, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-Ku, Kawasaki, Kanagawa, 210-9501, Japan
| |
Collapse
|
5
|
Docampo-Palacios ML, Ramirez GA, Tesfatsion TT, Okhovat A, Pittiglio M, Ray KP, Cruces W. Saturated Cannabinoids: Update on Synthesis Strategies and Biological Studies of These Emerging Cannabinoid Analogs. Molecules 2023; 28:6434. [PMID: 37687263 PMCID: PMC10490552 DOI: 10.3390/molecules28176434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Natural and non-natural hexahydrocannabinols (HHC) were first described in 1940 by Adam and in late 2021 arose on the drug market in the United States and in some European countries. A background on the discovery, synthesis, and pharmacology studies of hydrogenated and saturated cannabinoids is described. This is harmonized with a summary and comparison of the cannabinoid receptor affinities of various classical, hybrid, and non-classical saturated cannabinoids. A discussion of structure-activity relationships with the four different pharmacophores found in the cannabinoid scaffold is added to this review. According to laboratory studies in vitro, and in several animal species in vivo, HHC is reported to have broadly similar effects to Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive substance in cannabis, as demonstrated both in vitro and in several animal species in vivo. However, the effects of HHC treatment have not been studied in humans, and thus a biological profile has not been established.
Collapse
Affiliation(s)
- Maite L. Docampo-Palacios
- Colorado Chromatography Labs, 10505 S. Progress Way, Unit 105, Parker, CO 80134, USA; (G.A.R.); (T.T.T.); (A.O.); (M.P.); (K.P.R.)
| | | | | | | | | | | | - Westley Cruces
- Colorado Chromatography Labs, 10505 S. Progress Way, Unit 105, Parker, CO 80134, USA; (G.A.R.); (T.T.T.); (A.O.); (M.P.); (K.P.R.)
| |
Collapse
|
6
|
Graziano S, Varì MR, Pichini S, Busardò FP, Cassano T, Di Trana A. Hexahydrocannabinol Pharmacology, Toxicology, and Analysis: The First Evidence for a Recent New Psychoactive Substance. Curr Neuropharmacol 2023; 21:2424-2430. [PMID: 37357519 PMCID: PMC10616920 DOI: 10.2174/1570159x21666230623104624] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/11/2023] [Accepted: 05/28/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND During the last two years, hexahydrocannabinol (HHC), the hydrogenated derivative of tetrahydrocannabinol has been freely sold by internet websites as a "legal" replacement to THC and cannabis in a range of highly attractive branded and unbranded products, some of which are sold as "legal highs". Potentially, there could be a large demand for HHC products by individuals in Europe and internationally. METHODS Studies reporting HHC pharmacology, toxicology and analysis were identified from Pubmed and Scopus databases, and official international organizations' websites were considered. RESULTS HHC showed the effects of the typical cannabinoid on the central nervous system, with lower potency than Δ9-THC. A few studies highlighted that 9(R)-HHC is more potent than 9(S)-HHC. This molecule showed an affinity for cannabinoid receptor CB1 both in vitro and in vivo, suggesting a possible therapeutic effect in several pathologies. However, the affinity for the CB1 receptor suggests a possible addiction potential, inducing the users to misuse it. Since actual intoxication cases have not yet been reported, the HHC harmful potential was not described, probably due to the lack of effective analytical methods to detect HHC in biological matrices. Conversely, different analytical assays were developed and validated to separate HHC epimers in natural and non-natural sources. CONCLUSION Similarly to other NPS, the HHC represents a cheaper alternative to the controlled Δ9-THC. Its monitoring is a crucial challenge for toxicological and forensic purposes. To this concern, it is essential to further investigate HHC to support health providers in the identification of related intoxications.
Collapse
Affiliation(s)
- Silvia Graziano
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Maria Rosaria Varì
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Simona Pichini
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Francesco Paolo Busardò
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Tommaso Cassano
- Department of Medical and Surgical Sciences, University of Foggia, Via Luigi Pinto, c/o Policlinico “Riuniti” di Foggia, 71122, Foggia, Italy
| | - Annagiulia Di Trana
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, 00161, Rome, Italy
| |
Collapse
|
7
|
Maurya V, Appayee C. Enantioselective Total Synthesis of Potent 9β-11-Hydroxyhexahydrocannabinol. J Org Chem 2020; 85:1291-1297. [PMID: 31833372 DOI: 10.1021/acs.joc.9b02962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first total synthesis of potent cannabinoid, 9β-11-hydroxyhexahydrocannabinol, is achieved through a proline-catalyzed inverse-electron-demand Diels-Alder reaction. Using this asymmetric catalysis, the cyclohexane ring is constructed with two chiral centers as a single diastereomer with 97% ee. The creation of the third chiral center and benzopyran ring is demonstrated with the elegant synthetic strategies. This mild and efficient synthetic methodology provides a new route for the asymmetric synthesis of the other potent hexahydrocannabinols.
Collapse
Affiliation(s)
- Vidyasagar Maurya
- Discipline of Chemistry , Indian Institute of Technology Gandhinagar , Palaj, Gandhinagar , Gujarat 382355 , India
| | - Chandrakumar Appayee
- Discipline of Chemistry , Indian Institute of Technology Gandhinagar , Palaj, Gandhinagar , Gujarat 382355 , India
| |
Collapse
|
8
|
Banister SD, Arnold JC, Connor M, Glass M, McGregor IS. Dark Classics in Chemical Neuroscience: Δ 9-Tetrahydrocannabinol. ACS Chem Neurosci 2019; 10:2160-2175. [PMID: 30689342 DOI: 10.1021/acschemneuro.8b00651] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cannabis ( Cannabis sativa) is the most widely used illicit drug in the world, with an estimated 192 million users globally. The main psychoactive component of cannabis is (-)- trans-Δ9-tetrahydrocannabinol (Δ9-THC), a compound with a diverse range of pharmacological actions. The unique and distinctive intoxication caused by Δ9-THC primarily reflects partial agonist action at central cannabinoid type 1 (CB1) receptors. Δ9-THC is an approved therapeutic treatment for a range of conditions, including chronic pain, chemotherapy-induced nausea and vomiting, and multiple sclerosis, and is being investigated in indications such as anorexia nervosa, agitation in dementia, and Tourette's syndrome. It is available as a regulated pharmaceutical in products such as Marinol, Sativex, and Namisol as well as in an ever-increasing range of unregistered medicinal and recreational cannabis products. While cannabis is an ancient medicament, contemporary use is embroiled in legal, scientific, and social controversy, much of which relates to the potential hazards and benefits of Δ9-THC itself. Robust contemporary debate surrounds the therapeutic value of Δ9-THC in different diseases, its capacity to produce psychosis and cognitive impairment, and the addictive and "gateway" potential of the drug. This review will provide a profile of the chemistry, pharmacology, and therapeutic uses of Δ9-THC as well as the historical and societal import of this unique, distinctive, and ubiquitous psychoactive substance.
Collapse
Affiliation(s)
- Samuel D. Banister
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Faculty of Science and School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathon C. Arnold
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Science and Discipline of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mark Connor
- Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Iain S. McGregor
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Faculty of Science and School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
Conversion of cannabidiol to Δ9-tetrahydrocannabinol and related cannabinoids in artificial gastric juice, and their pharmacological effects in mice. Forensic Toxicol 2007. [DOI: 10.1007/s11419-007-0021-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Clark WG, Clark YL. Changes in body temperature after administration of antipyretics, LSD, delta 9-THC, CNS depressants and stimulants, hormones, inorganic ions, gases, 2,4-DNP and miscellaneous agents. Neurosci Biobehav Rev 1981; 5:1-136. [PMID: 6112723 DOI: 10.1016/0149-7634(81)90039-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This survey concludes a series of complications of data from the literature, primarily published since 1965, on thermoregulatory effects of antipyretics in afebrile as well as in febrile subjects, LSD and other hallucinogens, cannabinoids, general CNS depressants, CNS stimulants including xanthines, hormones, inorganic ions, gases and fumes, 2,4-dinitrophenol and miscellaneous agents including capsaicin, cardiac glycosides, chemotherapeutic agents, cinchona alkaloids, cyclic nucleotides, cycloheximide, 2-deoxy-D-glucose, dimethylsulfoxide, insecticides, local anesthetics, poly I:poly C, spermidine and spermine, sugars, toxins and transport inhibitors. The information listed includes the species used, route of administration and dose of drug, the environmental temperature at which the experiments were performed, the number of tests, the direction and magnitude of body temperature change and remarks on the presence of special conditions such as age or lesions, or on the influence of other drugs, such as antagonists, on the response to the primary agents.
Collapse
|