1
|
Kyler KE, Szefler SJ. Fifty Years of Unraveling the Clinical Pharmacology of Corticosteroids. J Pharm Sci 2024; 113:47-54. [PMID: 37844761 DOI: 10.1016/j.xphs.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
This review will highlight portions of Dr. William Jusko's and colleagues' work that affected the clinical use and study of corticosteroids in acute and chronic disease management. Selected publications related to corticosteroid pharmacokinetics and pharmacodynamics from the 1970s through today were included in this review, with a focus on the foundational human-based studies conducted in the 1970s-1990s. Dr. Jusko contributed significantly to early corticosteroid pharmacology across several domains including: 1) foundational corticosteroid pharmacokinetic methods and parameter development, 2) disease state-variation in corticosteroid pharmacokinetics, 3) drug interaction effects on corticosteroid pharmacokinetics, and 4) early corticosteroid pharmacodynamic studies. In an era where little was known about the pharmacokinetics and pharmacodynamics of corticosteroids, Dr. Jusko's work opened the eyes of researchers and clinicians to the potential for disease and drug interactions that could reduce or enhance the effects of corticosteroids. This significant body of work paved the way for alternative routes of administration that would be useful in concentrating the activity at the site of action and markedly reduced systemic drug exposure, minimizing the risk of adverse effects through application of the dose-sparing pharmacokinetic and pharmacodynamic principles.
Collapse
Affiliation(s)
- Kathryn E Kyler
- Division of Hospital Medicine, Children's Mercy Kansas City, Kansas City, MO, United States; School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Stanley J Szefler
- University of Colorado School of Medicine, Department of Pediatrics Pediatric Pulmonary and Sleep Medicine Section, United States; Children's Hospital Colorado, Breathing Institute, United States.
| |
Collapse
|
2
|
Wientjes MG, Lu Z, Chan CHF, Turaga K, Au JLS. Surgical management of peritoneal metastasis: Opportunities for pharmaceutical research. J Control Release 2023; 361:717-726. [PMID: 37574051 PMCID: PMC10560040 DOI: 10.1016/j.jconrel.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Cytoreductive surgery (CRS) has emerged as a survival-extending treatment of peritoneal metastasis (PM); recent advances include using intraperitoneal chemotherapy (IPC) at normothermic or hyperthermic temperatures, or under pressure (CRS + IPC). Clinical CRS + IPC research has established its highly variable efficacy and suggested tumor size, tumor locations and presence of ascites as potential determinants. On the other hand, there is limited knowledge on the effects of pharmaceutical properties on treatment outcomes. The present study investigated the inter-subject variability of paclitaxel binding to proteins in patient ascites because some PM patients show accumulation of ascites and because activity and transport of highly protein-bound drugs such as paclitaxel are affected by protein binding. Ascites samples were collected from 26 patients and investigated for their protein contents using LC/MS/MS proteomics analysis and for the concentrations of total proteins and two major paclitaxel-binding proteins (human serum albumin or HSA and α-1-acid glycoprotein or AAG). The association constants of paclitaxel to HSA and AAG and the extent of protein binding of paclitaxel in patient ascites were studied using equilibrium dialysis. Proteomic analysis of four randomly selected samples revealed 288 proteins, >90% of which are also present in human plasma. Between 72% - 94% of paclitaxel was bound to proteins in patient ascites. The concentrations of HSA and AAG in ascites showed substantial inter-subject variations, ranging from 14.7 - 46.3 mg/mL and 0.13-2.56 mg/mL, respectively. The respective paclitaxel association constants to commercially available HSA and AAG were ∼ 3.5 and ∼ 120 mM. Calculation using these constants and the HSA and AAG concentrations in individual patient ascites indicated that these two proteins accounted for >85% of the total protein-binding of paclitaxel in ascites. The extensive drug binding to ascites proteins, by reducing the pharmacologically active free fraction, may lead to the diminished CRS efficacy in PM patients with ascites. Clinical advances in CRS + IPC have outpaced current knowledge of pharmaceutical properties in this setting. IPC, as a locally acting therapy, is subjected to processes different from those governing systemic treatments. This study, to our knowledge, is the first to illustrate the implications of drug properties in the CRS + IPC efficacy against PM. While drugs are now an integral part of PM patient management, there is limited pharmaceutical research in this treatment setting (e.g., effects of hyperthermia or pressure on drug transport or release from delivery systems, pharmacokinetics, pharmacodynamics). Hence, CRS + IPC of PM represents an area where additional pharmaceutical research can assist further development and optimization.
Collapse
Affiliation(s)
| | - Ze Lu
- Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, USA
| | - Carlos H F Chan
- Department of Surgery and Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Kiran Turaga
- School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Jessie L S Au
- Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, USA; Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
Inatani S, Mizuno‐Yasuhira A, Kamiya M, Nishino I, Sabia HD, Endo H. Prediction of a clinically effective dose of THY1773, a novel V 1B receptor antagonist, based on preclinical data. Biopharm Drug Dispos 2021; 42:204-217. [PMID: 33734452 PMCID: PMC8252455 DOI: 10.1002/bdd.2273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/23/2021] [Accepted: 03/09/2021] [Indexed: 01/27/2023]
Abstract
THY1773 is a novel arginine vasopressin 1B (V1B ) receptor antagonist that is under development as an oral drug for the treatment of major depressive disorder (MDD). Here we report our strategy to predict a clinically effective dose of THY1773 for MDD in the preclinical stage, and discuss the important insights gained by retrospective analysis of prediction accuracy. To predict human pharmacokinetic (PK) parameters, several extrapolation methods from animal or in vitro data to humans were investigated. The fu correction intercept method and two-species-based allometry were used to extrapolate clearance from rats and dogs to humans. The physiologically based pharmacokinetics (PBPK)/receptor occupancy (RO) model was developed by linking free plasma concentration with pituitary V1B RO by the Emax model. As a result, the predicted clinically effective dose of THY1773 associated with 50% V1B RO was low enough (10 mg/day, or at maximum 110 mg/day) to warrant entering phase 1 clinical trials. In the phase 1 single ascending dose study, TS-121 capsule (active ingredient: THY1773) showed favorable PKs for THY1773 as expected, and in the separately conducted phase 1 RO study using positron emission tomography, the observed pituitary V1B RO was comparable to our prediction. Retrospective analysis of the prediction accuracy suggested that the prediction methods considering plasma protein binding, and avoiding having to apply unknown scaling factors obtained in animals to humans, would lead to better prediction. Selecting mechanism-based methods with reasonable assumptions would be critical for the successful prediction of a clinically effective dose in the preclinical stage of drug development.
Collapse
Affiliation(s)
- Shoko Inatani
- Drug Metabolism and PharmacokineticsDrug Safety and Pharmacokinetics LaboratoriesResearch HeadquartersTaisho Pharmaceutical Co., Ltd.SaitamaJapan
| | - Akiko Mizuno‐Yasuhira
- Drug Metabolism and PharmacokineticsDrug Safety and Pharmacokinetics LaboratoriesResearch HeadquartersTaisho Pharmaceutical Co., Ltd.SaitamaJapan
| | - Makoto Kamiya
- Development HeadquartersTaisho Pharmaceutical Co., Ltd.TokyoJapan
- Drug DevelopmentTaisho Pharmaceutical R&D Inc.NJUSA
| | - Izumi Nishino
- Development HeadquartersTaisho Pharmaceutical Co., Ltd.TokyoJapan
| | | | - Hiromi Endo
- Drug Metabolism and PharmacokineticsDrug Safety and Pharmacokinetics LaboratoriesResearch HeadquartersTaisho Pharmaceutical Co., Ltd.SaitamaJapan
| |
Collapse
|
4
|
Seyfinejad B, Khoubnasabjafari M, Ziaei SE, Ozkan SA, Jouyban A. Electromembrane extraction as a new approach for determination of free concentration of phenytoin in plasma using capillary electrophoresis. ACTA ACUST UNITED AC 2020; 28:615-624. [PMID: 32803689 DOI: 10.1007/s40199-020-00366-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/05/2020] [Indexed: 01/26/2023]
Abstract
PURPOSE Electromembrane extraction is a new membrane-based extraction method in which charged compounds are extracted by an electric field. So far, this method has been used to extract and isolate a variety of acidic and basic drugs from various samples, including blood and plasma. However, in this procedure, it is not yet clear whether only unbound fraction of a drug is extracted or the total drug. The aim of this study is to reveal the nature of drug extraction in the presence of plasma proteins. METHODS To determine the nature of the extraction, the electromembrane extraction was performed from plasma solutions of phenytoin with concentrations 0.03 and 1.0 μg/mL, then the result was compared with the values obtained from the electromembrane extraction of ultrafiltrate of the same solutions (free concentration) and protein-free ultrafiltrate of plasma with final concentration of 0.03 and 1.0 μg/mL (total concentration). For this purpose, EME followed by capillary electrophoresis coupled with diode array detection was optimized and validated. RESULTS The results showed that the electromembrane extraction method was only able to extract the unbound fraction of phenytoin from plasma samples. The method was validated over a concentration range of 0.03-4 μg/mL. The inter and intra-assay precisions were less than 6.7%. The phenytoin protein binding was also determined to be in agreement with the literature data and confirms the validity of this method. CONCLUSION This sensitive and quick EME approach for determining the free concentration of a phenytoin, can be a good alternative to classic methods for therapeutic drug monitoring and pharmacokinetic studies.
Collapse
Affiliation(s)
- Behrouz Seyfinejad
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Eivaz Ziaei
- Neurosciences Research Center, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Ankara, Turkey
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. .,Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Ayyar VS, Song D, DuBois DC, Almon RR, Jusko WJ. Modeling Corticosteroid Pharmacokinetics and Pharmacodynamics, Part I: Determination and Prediction of Dexamethasone and Methylprednisolone Tissue Binding in the Rat. J Pharmacol Exp Ther 2019; 370:318-326. [PMID: 31197020 DOI: 10.1124/jpet.119.257519] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/10/2019] [Indexed: 01/18/2023] Open
Abstract
The plasma and tissue binding properties of two corticosteroids, dexamethasone (DEX) and methylprednisolone (MPL), were assessed in the rat in anticipation of developing physiologically based pharmacokinetic and pharmacokinetic/pharmacodynamic models. The tissue-to-plasma partition coefficients (K P) of DEX and MPL were measured in liver, muscle, and lung in vivo after steady-state infusion and bolus injection in rats. Since K P is often governed by reversible binding to macromolecules in blood and tissue, an attempt was made to assess K P values of DEX and MPL by in vitro binding studies using rat tissue homogenates and to compare these estimates to those obtained from in vivo kinetics after dosing. The K P values of both steroids were also calculated in rat tissues using mechanistic tissue composition-based equations. The plasma binding of DEX and MPL was linear with moderate binding (60.5% and 82.5%) in male and female rats. In vivo estimates of steroid uptake appeared linear across the tested concentrations and K P was highest in liver and lowest in muscle for both steroids. Assessment of hepatic binding of MPL in vitro was severely affected by drug loss at 37°C in male liver homogenates, whereas DEX was stable in both male and female liver homogenates. With the exception of MPL in liver, in vitro-derived K P estimates reasonably agreed with in vivo values. The mechanistic equations modestly underpredicted K P for both drugs. Tissue metabolism, saturable tissue binding, and active uptake are possible factors that can complicate assessments of in vivo tissue binding of steroids when using tissue homogenates. SIGNIFICANCE STATEMENT: Assuming the free hormone hypothesis, the ratio of the unbound drug fraction in plasma and in tissues defines the tissue-to-plasma partition coefficient (K P), an important parameter in physiologically based pharmacokinetic modeling that determines total drug concentrations within tissues and the steady-state volume of distribution. This study assessed the plasma and tissue binding properties of the synthetic corticosteroids, dexamethasone and methylprednisolone, in rats using ultrafiltration and tissue homogenate techniques. In vitro-in vivo and in silico-in vivo extrapolation of K P was assessed for both drugs in liver, muscle, and lung. Although the extrapolation was fairly successful across the tissues, in vitro homogenate studies severely underpredicted the K P of methylprednisolone in liver, partly attributable to the extensive hepatic metabolism.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Departments of Pharmaceutical Sciences (V.S.A., D.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Dawei Song
- Departments of Pharmaceutical Sciences (V.S.A., D.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Debra C DuBois
- Departments of Pharmaceutical Sciences (V.S.A., D.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Richard R Almon
- Departments of Pharmaceutical Sciences (V.S.A., D.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Departments of Pharmaceutical Sciences (V.S.A., D.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
6
|
Isbell J, Yuan D, Torrao L, Gatlik E, Hoffmann L, Wipfli P. Plasma Protein Binding of Highly Bound Drugs Determined With Equilibrium Gel Filtration of Nonradiolabeled Compounds and LC-MS/MS Detection. J Pharm Sci 2018; 108:1053-1060. [PMID: 30336155 DOI: 10.1016/j.xphs.2018.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/05/2018] [Indexed: 10/28/2022]
Abstract
Accurate determination of the free fraction of a drug in plasma can be challenging when it falls below 1% and even more so when below 0.1%. Equilibrium dialysis with diluted plasma has been used to determine unbound fraction below 1%, but some analytes are not amenable to this method. One robust alternative for accurately measuring very highly bound compounds is equilibrium gel filtration; however, radiolabeled compounds have been used with this technique to quantify the low analyte concentrations. This report examined results obtained using radiolabeled compounds with liquid scintillation detection and those obtained using their nonradiolabeled analogs with liquid chromatography-tandem mass spectrometry detection. The 2 methods provided comparable results over the range of 0.005%-4% free, with a slope of 1.0 and a R2 = 0.93. These results demonstrate that equilibrium gel filtration with liquid chromatography-tandem mass spectrometry detection can be used earlier in the drug discovery process to determine the unbound fraction of highly bound drugs and may help obviate the need for radiolabeled compound.
Collapse
Affiliation(s)
- John Isbell
- Discovery Chemistry, Genomics Institute of the Novartis Research Foundation, Metabolism and Pharmacokinetics, San Diego, California 92121.
| | - Ding Yuan
- Discovery Chemistry, Genomics Institute of the Novartis Research Foundation, Metabolism and Pharmacokinetics, San Diego, California 92121
| | - Leonel Torrao
- Novartis Institutes for BioMedical Research Basel, PK Sciences, Basel, Switzerland
| | - Ewa Gatlik
- Novartis Institutes for BioMedical Research Basel, PK Sciences, Basel, Switzerland
| | - Laurent Hoffmann
- Novartis Institutes for BioMedical Research Basel, PK Sciences, Basel, Switzerland
| | - Peter Wipfli
- Novartis Institutes for BioMedical Research Basel, PK Sciences, Basel, Switzerland
| |
Collapse
|
7
|
Nagahisa A, Okumura T. Pharmacology of grapiprant, a novel EP4 antagonist: receptor binding, efficacy in a rodent postoperative pain model, and a dose estimation for controlling pain in dogs. J Vet Pharmacol Ther 2016; 40:285-292. [DOI: 10.1111/jvp.12349] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/03/2016] [Indexed: 12/17/2022]
|
8
|
Shaik AN, Bohnert T, Williams DA, Gan LL, LeDuc BW. Mechanism of Drug-Drug Interactions Between Warfarin and Statins. J Pharm Sci 2016; 105:1976-1986. [PMID: 27103011 DOI: 10.1016/j.xphs.2016.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 11/25/2022]
Abstract
The anticoagulant drug warfarin and the lipid-lowering statin drugs are commonly co-administered to patients with cardiovascular diseases. Clinically significant drug-drug interactions (DDIs) between these drugs have been recognized through case studies for many years, but the biochemical mechanisms causing these interactions have not been explained fully. Previous theories include kinetic alterations in cytochrome P-450-mediated drug metabolism or disturbances of drug-protein binding, leading to anticoagulant activity of warfarin; however, neither the enantioselective effects on warfarin metabolism nor the potential disruption of drug transporter function have been well investigated. This study investigated the etiology of the DDIs between warfarin and statins. Liquid chromatography-mass spectrometry methods were developed and validated to quantify racemic warfarin, 6 of its hydroxylated metabolites, and pure enantiomers of warfarin; these methods were applied to study the role of different absorption, distribution, metabolism, and excretion properties, leading to DDIs. Plasma protein binding displacement of warfarin was performed in the presence of statins using equilibrium dialysis method. Substrate kinetics of warfarin and pure enantiomers were performed with human liver microsomes to determine the kinetic parameters (Km and Vmax) for the formation of all 6 hydroxywarfarin metabolites, inhibition of warfarin metabolism in the presence of statins, was determined. Uptake transport studies of warfarin were performed using overexpressing HEK cell lines and efflux transport using human adenocarcinoma colonic cell line cells. Fluvastatin significantly displaced plasma protein binding of warfarin and pure enantiomers; no other statin resulted in significant displacement of warfarin. All the statins that inhibited the formation of 10-hydroxywarfarin, atorvastatin, pitavastatin, and simvastatin were highly potent compared to other statins; in contrast, only fluvastatin was found to be a potent inhibitor of formation of 7-hydroxy warfarin. Uptake and efflux drug transporters do not play any role in these DDIs. The results showed that DDIs between warfarin and statins are primarily caused by cytochrome P-450 inhibition.
Collapse
Affiliation(s)
- Abdul Naveed Shaik
- Department of Pharmaceutical Sciences, MCPHS University, 179 Longwood Avenue, Boston, Massachusetts 02115; Department of Drug Metabolism and Pharmacokinetics, Biogen, 14 Cambridge Center, Cambridge, Massachusetts 02140.
| | - Tonika Bohnert
- Department of Drug Metabolism and Pharmacokinetics, Biogen, 14 Cambridge Center, Cambridge, Massachusetts 02140
| | - David A Williams
- Department of Pharmaceutical Sciences, MCPHS University, 179 Longwood Avenue, Boston, Massachusetts 02115
| | - Lawrence L Gan
- Development Center for Biotechnology, Taipei 221, Taiwan
| | - Barbara W LeDuc
- Department of Pharmaceutical Sciences, MCPHS University, 179 Longwood Avenue, Boston, Massachusetts 02115
| |
Collapse
|
9
|
Jung JW, Choi MR, Kwon YS, Jeong JS, Son M, Kang HE. Gender differences in corydaline pharmacokinetics in rats. Xenobiotica 2014; 45:456-63. [DOI: 10.3109/00498254.2014.988772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Wang J, Qu X, Qi Y, Li J, Song X, Li L, Yin D, Xu K, Li J. Pharmacokinetics of anti-HBV polyoxometalate in rats. PLoS One 2014; 9:e98292. [PMID: 24921932 PMCID: PMC4055585 DOI: 10.1371/journal.pone.0098292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 04/30/2014] [Indexed: 01/17/2023] Open
Abstract
Polyoxometalates are non-nucleoside analogs that have been proven to exhibit broad-spectrum antiviral activity. In particular, Cs2K4Na[SiW9Nb3O40].H2O 1 shows low toxicity and high activity against HBV. The preclinical pharmacokinetics of Compound 1 in rats were characterized by establishing and applying inductively coupled plasma-mass spectrometry method to determine the concentration of W in plasma, urine, feces, bile and organ samples. The quantitative ICP-MS method demonstrated good sensitivity and application in the pharmacokinetics study of polyoxometalates. The pharmacokinetic behavior of Compound 1 after intravenous or oral administration fit a two-compartment model. Tmax ranges from 0.1 h to 3 h and the T1/2 of Compound 1 is between 20 h and 30 h. The absolute bioavailability of Compound 1 at 45, 180 and 720 mg/kg groups were 23.68%, 14.67% and 11.93%, respectively. The rates of plasma protein binding of Compound 1 at 9, 18 and 36 mg/ml of Compound 1 are 62.13±9.41%, 71.20±24.98% and 49.00±25.59%, respectively. Compound 1 was widely distributed throughout the body, and high levels of compound 1 were found in the kidney and liver. The level of Compound 1 in excretion was lower: 30% for urine, 0.28% for feces and 0.42% for bile, respectively. For elaborate pharmacokinetic characteristics to be fully understood, the metabolism of Compound 1 needs to be studied further.
Collapse
Affiliation(s)
- Juan Wang
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xiaofeng Qu
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yanfei Qi
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xiuling Song
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Li Li
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Dehui Yin
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Kun Xu
- School of Public Health, Jilin University, Changchun, Jilin, China
- * E-mail: (JL); (KX)
| | - Juan Li
- School of Public Health, Jilin University, Changchun, Jilin, China
- * E-mail: (JL); (KX)
| |
Collapse
|
11
|
Jung JW, Kim JM, Jeong JS, Son M, Lee HS, Lee MG, Kang HE. Pharmacokinetics of chlorogenic acid and corydaline in DA-9701, a new botanical gastroprokinetic agent, in rats. Xenobiotica 2014; 44:635-43. [PMID: 24417753 DOI: 10.3109/00498254.2013.874610] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
1.Few studies describing the pharmacokinetic properties of chlorogenic acid (CA) and corydaline (CRD) which are marker compounds of a new prokinetic botanical agent, DA-9701, have been reported. The aim of the present study is to evaluate the pharmacokinetic properties CA and CRD following intravenous and oral administration of pure CA (1-8 mg/kg) or CRD (1.1-4.5 mg/kg) and their equivalent dose of DA-9701 to rats. 2. Dose-proportional AUC and dose-independent clearance (10.3-12.1 ml/min/kg) of CA were observed following its administration. Oral administration of CA as DA-9701 did not influence the oral pharmacokinetic parameters of CA. Incomplete absorption of CA, its decomposition in the gastrointestinal tract, and/or pre-systemic metabolism resulted in extremely low oral bioavailability (F) of CA (0.478-0.899%). 3. CRD showed greater dose-normalized AUC in the higher dose group than that in lower dose group(s) after its administration due to saturation of its metabolism via decreased non-renal clearance (by 51.3%) and first-pass extraction. As a result, the F of CRD following 4.5 mg/kg oral CRD (21.1%) was considerably greater than those of the lower dose groups (9.10 and 13.8%). However, oral administration of CRD as DA-9701 showed linear pharmacokinetics as a result of increased AUC and F in lower-dose groups (by 182% and 78.5%, respectively) compared to those of pure CRD. The greater oral AUC of CRD for DA-9701 than for pure CRD could be due to decreased hepatic and/or GI first-pass extraction of CRD by other components in DA-9701.
Collapse
Affiliation(s)
- Ji Won Jung
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea , Bucheon , South Korea and
| | | | | | | | | | | | | |
Collapse
|
12
|
Effect of para halogen modification of S-3-(phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamides on metabolism and clearance. Arch Pharm Res 2013; 37:1464-76. [DOI: 10.1007/s12272-013-0258-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/25/2013] [Indexed: 11/26/2022]
|
13
|
Krieger IV, Freundlich JS, Gawandi VB, Roberts JP, Gawandi VB, Sun Q, Owen JL, Fraile MT, Huss SI, Lavandera JL, Ioerger TR, Sacchettini JC. Structure-guided discovery of phenyl-diketo acids as potent inhibitors of M. tuberculosis malate synthase. ACTA ACUST UNITED AC 2013; 19:1556-67. [PMID: 23261599 DOI: 10.1016/j.chembiol.2012.09.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/14/2012] [Accepted: 09/19/2012] [Indexed: 11/16/2022]
Abstract
The glyoxylate shunt plays an important role in fatty acid metabolism and has been shown to be critical to survival of several pathogens involved in chronic infections. For Mycobacterium tuberculosis (Mtb), a strain with a defective glyoxylate shunt was previously shown to be unable to establish infection in a mouse model. We report the development of phenyl-diketo acid (PDKA) inhibitors of malate synthase (GlcB), one of two glyoxylate shunt enzymes, using structure-based methods. PDKA inhibitors were active against Mtb grown on acetate, and overexpression of GlcB ameliorated this inhibition. Crystal structures of complexes of GlcB with PDKA inhibitors guided optimization of potency. A selected PDKA compound demonstrated efficacy in a mouse model of tuberculosis. The discovery of these PDKA derivatives provides chemical validation of GlcB as an attractive target for tuberculosis therapeutics.
Collapse
Affiliation(s)
- Inna V Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kim JM, Yoon JN, Jung JW, Choi HD, Shin YJ, Han CK, Lee HS, Kang HE. Pharmacokinetics of hederacoside C, an active ingredient in AG NPP709, in rats. Xenobiotica 2013; 43:985-92. [PMID: 23607546 DOI: 10.3109/00498254.2013.788231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. Hederacoside C (HDC) is one of the active ingredients in Hedera helix leaf extract (Ivy Ex.) and AG NPP709, a new botanical drug to treat acute respiratory infection and chronic inflammatory bronchitis. However, information regarding its pharmacokinetic properties remains limited. 2. Here, we report the pharmacokinetics of HDC in rats after intravenous administration of HDC (3, 12.5, and 25 mg/kg) and after oral administration of HDC, Ivy Ex., and AG NPP709 (equivalent to 12.5, 25, and 50 mg/kg HDC). 3. Linear pharmacokinetics of HDC were identified upon its intravenous administration at doses of 3-25 mg/kg. Intravenous administration of HDC results in relatively slow clearance (1.46-2.08 mL/min/kg) and a small volume of distribution at steady state (138-222 mL/kg), while oral administration results in a low absolute oral bioavailability (F) of 0.118-0.250%. The extremely low F of HDC may be due to poor absorption of HDC from the gastrointestinal (GI) tract and/or its decomposition therein. 4. The oral pharmacokinetics of HDC did not differ significantly among pure HDC, Ivy Ex., and AG NPP709.
Collapse
Affiliation(s)
- Ju Myung Kim
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea , Bucheon , South Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lee YS, Yoon JN, Yoon IS, Lee MG, Kang HE. Pharmacokinetics of verapamil and its metabolite norverapamil in rats with hyperlipidaemia induced by poloxamer 407. Xenobiotica 2013; 42:766-74. [PMID: 22300394 DOI: 10.3109/00498254.2011.654001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, the pharmacokinetics of verapamil and its active metabolite norverapamil were evaluated following intravenous and oral administration of 10 mg/kg verapamil to rats with hyperlipidaemia (HL) induced by poloxamer 407 (HL rats). The total area under the plasma concentration time curve (AUC) of verapamil in HL rats following intravenous administration was significantly greater (by 11.2%) than in control rats due to their slower (by 11%) non-renal clearance. The oral AUC of verapamil in HL rats was also significantly greater (by 116%) compared with controls, with a larger magnitude than the data observed following intravenous administration. This may have been a result of the decreased intestinal metabolism of verapamil in HL rats. The AUC of norverapamil and AUC(norverapamil)/AUC(verapamil) ratios following intravenous and oral administration of verapamil were unchanged in HL rats. Assuming that the HL rat model qualitatively reflects similar changes in patients with HL, the findings of this study have potential therapeutic implications. Further studies in humans are required to determine whether modification of the oral verapamil dosage regimen in HL states is necessary.
Collapse
Affiliation(s)
- Young Sun Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, South Korea
| | | | | | | | | |
Collapse
|
16
|
Lv H, Zhang X, Sharma J, Reddy MVR, Reddy EP, Gallo JM. Integrated pharmacokinetic-driven approach to screen candidate anticancer drugs for brain tumor chemotherapy. AAPS JOURNAL 2012. [PMID: 23180160 DOI: 10.1208/s12248-012-9428-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The goal of the study was to develop an effective screening strategy to select new agents for brain tumor chemotherapy from a series of low molecular weight anticancer agents [ON123x] by the combined use of in silico, in vitro cytotoxicity, and in vitro ADME profiling studies. The results of these studies were cast into a pipeline of tier 1 and tier 2 procedures that resulted in the identification of ON123300 as the lead compound. Of the 154 ON123xx compounds, 13 met tier 1 screening criteria based on physicochemical properties [i.e., MW < 450 Da, predicted log P between 2 and 3.5] and in vitro glioma cell cytotoxicity [i.e., IC50 < 10 μM] and were further tested in tier 2 assays. The tier 2 profiling studies consisted of metabolic stability, MDCK-MDR1 cell permeability and plasma and brain protein binding that were combined to globally assess whether favorable pharmacokinetic properties and brain penetration could be achieved in vivo. In vivo cassette dosing studies were conducted in mice for 12 compounds that permitted examination of in vitro/in vivo relationships that confirmed the suitability of the in vitro assays. A parameter derived from the in vitro assays accurately predicted the extent of drug accumulation in the brain based on the area under the drug concentration-time curve in brain measured in the cassette dosing study (r (2) = 0.920). Overall, the current studies demonstrated the value of an integrated pharmacokinetic-driven approach to identify potentially efficacious agents for brain tumor chemotherapy.
Collapse
Affiliation(s)
- Hua Lv
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
17
|
Improved preclinical cardiovascular therapeutic indices with long-term inhibition of norepinephrine reuptake using reboxetine. Toxicol Appl Pharmacol 2012; 264:343-50. [DOI: 10.1016/j.taap.2012.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 01/24/2023]
|
18
|
Preclinical Pharmacokinetic and Pharmacodynamic Evaluation of Novel Anticancer Agents, ON01910.Na (Rigosertib, Estybon™) and ON013105, for Brain Tumor Chemotherapy. Pharm Res 2012; 29:2499-511. [DOI: 10.1007/s11095-012-0780-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 05/14/2012] [Indexed: 11/26/2022]
|
19
|
Lukka PB, Paxton JW, Kestell P, Baguley BC. Comparison of a homologous series of benzonaphthyridine anti-cancer agents in mice: divergence between tumour and plasma pharmacokinetics. Cancer Chemother Pharmacol 2012; 70:151-60. [DOI: 10.1007/s00280-012-1892-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/09/2012] [Indexed: 10/28/2022]
|
20
|
Effects of poloxamer 407-induced hyperlipidemia on the pharmacokinetics of carbamazepine and its 10,11-epoxide metabolite in rats: Impact of decreased expression of both CYP3A1/2 and microsomal epoxide hydrolase. Eur Neuropsychopharmacol 2012; 22:431-40. [PMID: 22137858 DOI: 10.1016/j.euroneuro.2011.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/06/2011] [Accepted: 10/21/2011] [Indexed: 11/21/2022]
Abstract
The pharmacokinetics of carbamazepine (CBZ) and its active 10,11-epoxide metabolite (CBZ-E) were evaluated after intravenous and oral administration of 5 mg/kg CBZ to rats with hyperlipidemia induced by poloxamer 407 (HL rats) and controls. The total area under the plasma concentration-time curve (AUC) of CBZ in HL rats after intravenous administration was significantly greater than that in controls due to their slower non-renal clearance (CL(NR)). This was due to slower hepatic CL(int) for metabolism of CBZ to CBZ-E in HL rats via CYP3A1/2. This result was consistent with a previous study indicating reduced hepatic CYP3A1/2 expression in HL rats. Interestingly, the AUC of CBZ-E was also increased in HL rats, while AUC(CBZ-E)/AUC(CBZ) ratios remained unchanged. These results suggested that further metabolism of CBZ-E to the inactive metabolite trans-10,11-dihydoxyl-10,11-dihydro-CBZ (CBZ-D) via microsomal epoxide hydrolase (mEH) was also slowed in HL rats. The significantly reduced hepatic mRNA level and expression of mEH protein in HL rats compared to controls confirmed the above hypothesis. Similar pharmacokinetic changes were observed in HL rats after oral administration of CBZ. These findings have potential therapeutic implications assuming that the HL rat model qualitatively reflects similar changes in patients with hyperlipidemia. Caution is required regarding pharmacotherapy in the hyperlipidemic state in cases where drugs that are metabolized principally by CYP3A1/2 or mEH and have a narrow therapeutic range are in use.
Collapse
|
21
|
Choi YH, Lee MG. Pharmacokinetic and pharmacodynamic interaction between nifedipine and metformin in rats: competitive inhibition for metabolism of nifedipine and metformin by each other via CYP isozymes. Xenobiotica 2012; 42:483-95. [PMID: 22416982 DOI: 10.3109/00498254.2011.633177] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It has been reported that hypertension exponentially increases in the patients with type 2 diabetes mellitus. Thus, this study was performed to investigate the pharmacokinetic and pharmacodynamic interactions between nifedipine and metformin, since both drugs were commonly metabolized via hepatic CYP2C and 3A subfamilies in rats. Nifedipine (3 mg/kg) and metformin (100 mg/kg) were simultaneously administered intravenously or orally to rats. Concentrations (I) of each drug in the liver and intestine, maximum velocity (V(max)), Michaelis-Menten constant (K(m)), and intrinsic clearance (CL(int)) for the disappearance of each drug, apparent inhibition constant (K(i)) and [I]/K(i) ratios of each drug in liver and intestine were determined. Also the metabolism of each drug in rat and human CYPs and blood pressure were also measured. After the simultaneous single intravenous administration of both drugs together, the AUCs of each drug were significantly greater than that in each drug alone due to the competitive inhibition for the metabolism of nifedipine by metformin via hepatic CYP3A1/2 and of metformin by nifedipine via hepatic CYP2C6 and 3A1/2. After the simultaneous single oral administration of both drugs, the significantly greater AUCs of each drug than that in each drug alone could have mainly been due to the competitive inhibition for the metabolism of nifedipine and metformin by each other via intestinal CYP3A1/2 in addition to competitive inhibition for the hepatic metabolism of each drug as same as the intravenous study.
Collapse
Affiliation(s)
- Young H Choi
- College of Pharmacy, Dongguk University-Seoul, Seoul, South Korea
| | | |
Collapse
|
22
|
Direct measurement of free estradiol in human serum by equilibrium dialysis-liquid chromatography-tandem mass spectrometry and reference intervals of free estradiol in women. Clin Chim Acta 2012; 413:1008-14. [PMID: 22421268 DOI: 10.1016/j.cca.2012.02.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/27/2012] [Accepted: 02/29/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND Measurement of free estradiol offers a better representation of the bioactive fraction of the hormone. We describe a direct equilibrium dialysis-liquid chromatography-tandem mass spectrometry (ED-LC-MS/MS) method for serum free estradiol. METHODS Two hundred fifty microliter aliquots of serum were dialyzed for 22h followed by liquid-liquid extraction and derivatization with dansyl chloride. Free estradiol was measured using LC-MS/MS with an AB SCIEX 5500 mass spectrometer in positive ion and multiple reaction monitoring (MRM) mode. RESULTS The limits of detection and quantification for free estradiol were 0.25 and 0.5pg/ml (0.9 and 1.8pmol/l) respectively. Total imprecision was less than 10%. Results of method comparison showed 3 times overestimation using indirect methods of measurement. Reference intervals in pre-menopausal women in follicular, mid-cycle, and luteal phases of cycle were <2.4, <3.1 and <2.6pg/ml (8.8, 11.4, 9.5pmol/l) respectively; in post menopausal women the concentrations were ≤0.5pg/ml (1.8pmol/l). CONCLUSIONS ED-LC-MS/MS is a direct method for accurately measuring free estradiol, independent of total estradiol or sex hormone binding globulin concentrations. Imprecision and sensitivity of the method are adequate for clinical diagnostic applications. The degree of variation observed in the method comparison reinforces the relevance of method specific reference ranges.
Collapse
|
23
|
Screening candidate anticancer drugs for brain tumor chemotherapy: pharmacokinetic-driven approach for a series of (E)-N-(substituted aryl)-3-(substituted phenyl)propenamide analogues. Invest New Drugs 2012; 30:2263-73. [PMID: 22383114 DOI: 10.1007/s10637-012-9806-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
Abstract
A pharmacokinetic [PK]-driven screening process was implemented to select new agents for brain tumor chemotherapy from a series of low molecular weight anticancer agents [ON27x] that consisted of 141 compounds. The screening procedures involved a combination of in silico, in vitro and in vivo mouse studies that were cast into a pipeline of tier 1 and tier 2 failures that resulted in a final investigation of 2 analogues in brain tumor-bearing mice. Tier 1 failures included agents with a molecular weight of > 450 Da, a predicted log P (log P) of either <2 or > 3.5, and a cytotoxicity IC(50) value of > 2 uM. Next, 18 compounds underwent cassette dosing studies in normal mice that identified compounds with high systemic clearance, and low blood-brain barrier [BBB] penetration. These indices along with a derived parameter, referred to as the brain exposure index, comprised tier 2 failures that led to the administration of 2 compounds [ON27570, ON27740] as single agents [discrete dosing] to mice bearing intracerebral tumors. Comparison of ON27570's resultant PK parameters to those obtained in the cassette dosing format suggested a drug-drug interaction most likely at the level of BBB transport, and prompted the use of the in vitro MDCK-MDR1 transport model to help assess the nature of the discrepancy. Overall, the approach was able to identify candidate compounds with suitable PK characteristics yet further revisions to the method, such as the use of in vitro metabolism and transport assays, may improve the PK-directed approach to identify efficacious agents for brain tumor chemotherapy.
Collapse
|
24
|
A kinetic method for the determination of plasma protein binding of compounds unstable in plasma: Specific application to enalapril. J Pharm Biomed Anal 2011; 55:385-90. [DOI: 10.1016/j.jpba.2011.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 11/24/2022]
|
25
|
Bowersox SS, Lightning LK, Rao S, Palme M, Ellis D, Coleman R, Davies AM, Kumaraswamy P, Druzgala P. Metabolism and pharmacokinetics of naronapride (ATI-7505), a serotonin 5-HT(4) receptor agonist for gastrointestinal motility disorders. Drug Metab Dispos 2011; 39:1170-80. [PMID: 21447732 DOI: 10.1124/dmd.110.037564] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The absorption and disposition of the serotonin 5-HT(4) receptor agonist, naronapride (6-[(3S,4R)-4-(4-amino-5-chloro-2-methoxy-benzoylamino)-3-methoxy-piperidin-1-yl]-hexanoic acid 1-aza-bicyclo[2,2,2]oct-(R)-3-yl ester dihydrochloride; ATI-7505), were evaluated in healthy males given a single 120-mg oral dose of (14)C-labeled compound. Serial blood samples and complete urine and feces were collected up to 552 h postdose. Naronapride was extensively metabolized, undergoing rapid hydrolysis to 6-[(3S,4R)-4-(4-amino-5-chloro-2-methoxy-benzoylamino)-3-methoxy-piperidin-1-yl]-hexanoic acid (ATI-7500) with stoichiometric loss of quinuclidinol. ATI-7500 was either N-glucuronidated on the phenyl ring or its hexanoic acid side chain underwent two-carbon cleavage, probably through a β-oxidation metabolic pathway, to form 4-[(3S,4R)-4-(4-amino-5-chloro-2-methoxy-benzoylamino)-3-methoxy-piperidin-1-yl]-butanoic acid (ATI-7400). ATI-7400 underwent further side-chain oxidation to form 2-[(3S,4R)-4-(4-amino-5-chloro-2-methoxy-benzoylamino)-3-methoxy-piperidin-1-yl]-acetic acid (ATI-7100). Quinuclidinol, ATI-7500, ATI-7400, and ATI-7100 were the major metabolites, with plasma area under the curve values approximately 72-, 17-, 8-, and 2.6-fold that of naronapride. Naronapride, ATI-7500, ATI-7400, and ATI-7100 accounted for 32.32, 36.56, 16.28, and 1.58%, respectively, of the dose recovered in urine and feces. ATI-7400 was the most abundant radioactive urinary metabolite (7.77%), and ATI-7500 was the most abundant metabolite in feces (35.62%). Fecal excretion was the major route of elimination. Approximately 32% of the dose was excreted unchanged in feces. Naronapride, ATI-7500, and quinuclidinol reached peak plasma levels within 1 h postdose. Peak ATI-7400 and ATI-7100 concentrations were reached within 1.7 h, suggesting rapid ATI-7500 metabolism. Naronapride plasma terminal half-life was 5.36 h, and half-lives of the major metabolites ranged from 17.69 to 33.03 h. Naronapride plasma protein binding was 30 to 40%. The mean blood/plasma radioactivity ratio indicated minimal partitioning of (14)C into red blood cells.
Collapse
Affiliation(s)
- S Scott Bowersox
- ARYx Therapeutics, 6300 Dumbarton Circle, Fremont, CA 94555, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Plise EG, Tran D, Salphati L. Semi-automated protein binding methodology using equilibrium dialysis and a novel mixed-matrix cassette approach. J Pharm Sci 2011; 99:5070-8. [PMID: 20821380 DOI: 10.1002/jps.22188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A semi-automated protein binding assay using equilibrium dialysis (ED) and a novel mixed-matrix methodology has been developed. This method decreases mass spectrometer run time and reduces the likelihood of experimental artifacts. In this cassette-based approach, a single matrix is prepared following dialysis by mixing dialyzed plasma and buffer containing different test compounds from the same dialysis plate. This approach differs from the traditional mixed-matrix method where fresh plasma and fresh buffer are mixed with opposing dialyzed samples. This new mixed-matrix methodology is compatible with various high-throughput ED and ultrafiltration devices, many liquid handling systems, and can be used for plasma, serum, albumin, alpha-1 acid glycoprotein, microsomal, and fine tissue homogenate binding studies. The utility of the method can be further enhanced by varying the number of replicates, concentrations, and matrices with simple modifications. Using 29 structurally diverse marketed drugs with a wide range of protein binding values reported in the literature, we have shown the new procedure reduces the total number of samples by nearly half compared to traditional methods, eliminates the need for standard curves, and increases the uniformity of the sample matrix for LC/MS/MS analysis.
Collapse
Affiliation(s)
- Emile G Plise
- Drug Metabolism and Pharmacokinetics Department, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | |
Collapse
|
27
|
Kang HE, Sohn SI, Baek SR, Lee JW, Lee MG. Effects of acute renal failure induced by uranyl nitrate on the pharmacokinetics of liquiritigenin and its two glucuronides, M1 and M2, in rats. ACTA ACUST UNITED AC 2010; 63:49-57. [PMID: 21155815 DOI: 10.1111/j.2042-7158.2010.01175.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Liver disease and acute renal failure (ARF) are closely associated. The pharmacokinetics of liquiritigenin (LQ), a candidate therapy for inflammatory liver disease, and its metabolites M1 and M2 were evaluated in rats with ARF induced by uranyl nitrate (U-ARF rats). METHODS LQ was administered intravenously (20 mg/kg) or orally (50 mg/kg) in U-ARF and control rats, and uridine diphosphate-glucuronosyltransferases (UGT) activity and uridine 5'-diphosphoglucuronic acid (UDPGA) concentrations were determined in the liver and intestine. KEY FINDINGS After intravenous LQ administration, U-ARF rats displayed significantly slower LQ renal clearance but no significant changes in the LQ area under the plasma concentration-time curve (AUC) compared with controls. This was because of similar hepatic UGT activity and UDPGA levels between two groups, which resulted in comparable non-renal clearance, as well as the limited contribution of LQ renal clearance to total LQ clearance. However, the AUC and AUC(M) /AUC(LQ) ratios of M1 and M2 were significantly increased in U-ARF rats because of decreased urinary excretion of M1 and M2. Similar results were observed following oral administration because of the comparable LQ intestinal metabolism in both groups and decreased urinary excretion of M1 and M2 in U-ARF rats. CONCLUSIONS U-ARF rats displayed decreased urinary excretion of LQ glucuronides, resulting in significantly greater AUC and metabolite ratios of M1 and M2 following LQ administration.
Collapse
Affiliation(s)
- Hee E Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
28
|
Ahn CY, Bae SK, Bae SH, Kang HE, Kim SH, Lee MG, Shin WG. Pharmacokinetics of sildenafil and its metabolite, N-desmethylsildenafil, in rats with liver cirrhosis and diabetes mellitus, alone and in combination. Xenobiotica 2010; 41:164-74. [PMID: 21070144 DOI: 10.3109/00498254.2010.532885] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pharmacokinetics of sildenafil and its metabolite, N-desmethylsildenafil, in humans and rats with liver cirrhosis (LC) and diabetes mellitus (DM), alone and in combination (LCD) did not seem to be reported. Sildenafil was administered intravenously (10 mg/kg) and orally (20 mg/kg) to control, LC, DM, and LCD rats. Expression of intestinal CYP isozymes in those rats was also measured. In LC, DM, and LCD rats, the areas under the curve (AUCs) of intravenous sildenafil were significantly greater (by 195%, 54.2%, and 127%, respectively) than controls. In LC and LCD rats, AUCs of oral sildenafil were significantly greater (3010% and 2030%, respectively) than controls. In LC, DM, and LCD rats, significantly greater AUCs of intravenous sildenafil were due to the slower hepatic extraction of sildenafil (because of decrease in the protein expression of hepatic CYP2C11 and 3A subfamily in LC and LCD rats, and CYP2C11 in DM rats). In LC and LCD rats, greater magnitude of increase in AUCs of oral sildenafil than those after the intravenous administration could be mainly due to the decrease in the intestinal extraction of sildenafil (because of decrease in the protein expression of intestinal CYP2C11 in LC and LCD rats).
Collapse
Affiliation(s)
- C Y Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Kang HE, Sohn SI, Baek SR, Lee JW, Lee MG. Liquiritigenin pharmacokinetics in a rat model of diabetes mellitus induced by streptozotocin: greater formation of glucuronides in the liver, especially M2, due to increased hepatic uridine 5'-diphosphoglucuronic acid level. Metabolism 2010; 59:1472-80. [PMID: 20170928 DOI: 10.1016/j.metabol.2010.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/18/2010] [Accepted: 01/19/2010] [Indexed: 01/07/2023]
Abstract
Liquiritigenin (LQ) is a candidate for the treatment of inflammatory liver disease. Many studies have confirmed that hepatic disease and diabetes mellitus are closely associated. Thus, the pharmacokinetic changes of LQ and its 2 glucuronides, M1 and M2, in a rat model of diabetes mellitus induced by streptozotocin (DMIS rats) were evaluated. Liquiritigenin was administered intravenously (20 mg/kg) or orally (50 mg/kg) in DMIS and control rats. Changes in in vitro activity and in vivo uridine 5'-diphosphoglucuronic acid level in the liver and intestine of DMIS rats compared with controls were also studied. After intravenous administration of LQ in DMIS rats, no significant changes in the pharmacokinetic parameters of LQ were observed. However, the AUC(M2)/AUC(LQ) ratio was significantly greater (by 53.0%) than that of controls. After oral administration of LQ, the AUC of LQ and metabolite ratios of M1 and M2 were comparable to controls. The increase in the formation of glucuronides of LQ, especially M2, after intravenous administration of LQ was due to the increased in vivo hepatic uridine 5'-diphosphoglucuronic acid level in DMIS rats as a result of alteration in carbohydrate metabolism in diabetes. The comparable pharmacokinetics of LQ, M1, and M2 after oral administration of LQ were mainly due to the comparable intestinal metabolism of LQ between the control and DMIS rats.
Collapse
Affiliation(s)
- Hee E Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | |
Collapse
|
30
|
Kang H, Kim Y, Sohn S, Baek S, Lee J, Kim S, Lee I, Lee M. Pharmacokinetics of liquiritigenin and its two glucuronides, M1 and M2, in rats with acute hepatitis induced byd-galactosamine/lipopolysaccharide or CCl4. Xenobiotica 2010; 40:424-36. [DOI: 10.3109/00498251003734251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Bae SK, Lee SJ, Kwon JW, Kim WB, Lee MG. Effects of protein-calorie malnutrition on the pharmacokinetics of DA-7867, a new oxazolidinone, in rats. J Pharm Pharmacol 2010; 56:635-42. [PMID: 15142341 DOI: 10.1211/0022357023277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
The pharmacokinetic parameters of DA-7867, a new oxazolidinone, were compared after intravenous and oral administration at a dose of 10mg kg−1 to control rats and rats with protein-calorie malnutrition (rats with PCM). After intravenous administration of 10mg kg−1 DA-7867 to rats, metabolism of the drug was not considerable and after 14 days approximately 85.0% of the dose was recovered as unchanged drug from urine and faeces. After intravenous administration to rats with PCM, the area under the plasma concentration-time curve from time zero to time infinity (AUC) was significantly smaller (10800 vs 6990μg min mL−1) compared with control rats. This may have been due to significantly faster total body clearance (CL, 0.930 vs 1.44mL min−1 kg−1). The faster CL in PCM rats could have been due to significantly faster non-renal clearance (0.842 vs 1.39mL min−1 kg−1 due to significantly greater gastrointestinal (including biliary) excretion; the amount of unchanged DA-7867 recovered from the entire gastrointestinal tract at 24h was significantly greater (1.19 vs 4.28% of intravenous dose)) because the renal clearance was significantly slower in PCM rats (0.0874 vs 0.0553mL min−1 kg−1). After oral administration to PCM rats, the AUC was significantly smaller compared with control rats (7900 vs 4310μgmin mL−1). This could have been due to a decrease in absorption from the gastrointestinal tract.
Collapse
Affiliation(s)
- Soo Kyung Bae
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, San 56-1, Shinlim-Dong, Kwanak-Gu, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
32
|
Yang KH, Choi YH, Lee U, Lee JH, Lee MG. Effects of cytochrome P450 inducers and inhibitors on the pharmacokinetics of intravenous furosemide in rats: involvement of CYP2C11, 2E1, 3A1 and 3A2 in furosemide metabolism. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.01.0007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
It has been reported that the non-renal clearance of furosemide was significantly faster in rats pretreated with phenobarbital but was not altered in rats pretreated with 3-methylcholanthrene. However, no studies on other cytochrome P450 (CYP) isozymes have yet been reported in rats.
Method
Furosemide 20 mg/kg was administered intravenously to rats pretreated with various CYP inducers –3-methylcholanthrene, orphenadrine citrate and isoniazid, inducers of CYP1A1/2, 2B1/2 and 2E1, respectively, in rats – and inhibitors – SKF-525A (a nonspecific inhibitor of CYP isozymes), sulfaphenazole, cimetidine, quinine hydrochloride and troleandomycin, inhibitors of CYP2C6, 2C11, 2D and 3A1/2, respectively, in rats.
Key findings
The non-renal clearance of furosemide was significantly faster (55.9% increase) in rats pretreated with isoniazid, but slower in those pretreated with cimetidine or troleandomycin (38.5% and 22.7% decreases, respectively), than controls. After incubation of furosemide with baculovirus-infected insect cells expressing CYP2C11, 2E1, 3A1 or 3A2, furosemide was metabolized via CYP2C11, 2E1, 3A1 and 3A2.
Conclusions
These findings could help explain possible pharmacokinetic changes of furosemide in various rat disease models (where CYP2C11, 2E1, 3A1 and/or CYP3A2 are altered) and drug–drug interactions between furosemide and other drugs (mainly metabolized via CYP2C11, 2E1, 3A1 and/or 3A2).
Collapse
Affiliation(s)
- Kyung H Yang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Young H Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Unji Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Joo H Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Myung G Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
33
|
Kang HE, Jung HY, Cho YK, Kim SH, Sohn SI, Baek SR, Lee MG. Pharmacokinetics of Liquiritigenin in Mice, Rats, Rabbits, and Dogs, and Animal Scale-Up. J Pharm Sci 2009; 98:4327-42. [DOI: 10.1002/jps.21702] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Jung HY, Kang HE, Choi YH, Kim SH, Lee MG. Time-dependent effects of Klebsiella pneumoniae endotoxin on the pharmacokinetics of chlorzoxazone and its main metabolite, 6-hydroxychlorzoxazone, in rats: restoration of the parameters in 96 hour in KPLPS rats to control levels. Biopharm Drug Dispos 2009; 30:485-93. [PMID: 19753555 DOI: 10.1002/bdd.685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It has been reported that chlorzoxazone (CZX) was primarily metabolized via hepatic Cyp2e1 to form 6-hydroxychlorzoxazone (OH-CZX) in rats, and the activity of aniline hydroxylase (a Cyp2e1 marker) in the liver was significantly decreased in rats at 24 h after pretreatment with lipopolysaccharide derived from Klebsiella pneumoniae (24 h KPLPS rats), whereas the levels were not changed at 2 h and 96 h in the KPLPS rats. Thus, the time-dependent pharmacokinetic parameters of CZX and OH-CZX were evaluated after the intravenous administration of CZX (20 mg/kg) to control rats, and the 2 h, 24 h and 96 h KPLPS rats along with the time-dependent changes in the protein expression of hepatic Cyp2e1. After the intravenous administration of CZX to 24 h KPLPS rats, the AUC(0-2 h) of OH-CZX and AUC(OH-CZX, 0-2 h)/AUC(CZX) were significantly smaller (by 40.5% and 71.2%, respectively) than those of controls due to the significant decrease (by 75.3%) in the protein expression of hepatic Cyp2e1. However, in 96 h KPLPS rats, the pharmacokinetic parameters of both CZX and OH-CZX were unchanged compared with controls due to the restoration of the protein expression of hepatic Cyp2e1 to control levels. These observations highlighted the existence of the time-dependent effects of KPLPS on the pharmacokinetics of CZX and OH-CZX in rats.
Collapse
Affiliation(s)
- Hye Y Jung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
35
|
Chung HJ, Kang HE, Yang KH, Kim SY, Lee MG. Ipriflavone pharmacokinetics in mutant Nagase analbuminemic rats. Biopharm Drug Dispos 2009; 30:294-304. [DOI: 10.1002/bdd.667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Ahn CY, Bae SK, Bae SH, Kim T, Jung YS, Kim YC, Lee MG, Shin WG. Pharmacokinetics of oltipraz in diabetic rats with liver cirrhosis. Br J Pharmacol 2009; 156:1019-28. [PMID: 19226288 DOI: 10.1111/j.1476-5381.2008.00105.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE The incidence of diabetes mellitus is increased in patients with liver cirrhosis. Oltipraz is currently in trials to treat patients with liver fibrosis and cirrhosis induced by chronic hepatitis types B and C and is primarily metabolized via hepatic cytochrome P450 isozymes CYP1A1/2, 2B1/2, 2C11, 2D1 and 3A1/2 in rats. We have studied the influence of diabetes mellitus on pharmacokinetics of oltipraz and on expression of hepatic, CYP1A, 2B1/2, 2C11, 2D and 3A in rats with experimental liver cirrhosis. EXPERIMENTAL APPROACH Oltipraz was given intravenously (10 mg x kg(-1)) or orally (30 mg x kg(-1)) to rats with liver cirrhosis induced by N-dimethylnitrosamine (LC rats) or with diabetes, induced by streptozotocin (DM rats) or to rats with both liver cirrhosis and diabetes (LCD rats) and to control rats, and pharmacokinetic variables measured. Protein expression of hepatic CYP1A, 2B1/2, 2C11, 2D and 3A was measured using Western blot analysis. KEY RESULTS After i.v. or p.o. administration of oltipraz to LC and DM rats, the AUC was significantly greater and smaller, respectively, than that in control rats. In LCD rats, the AUC was that of LC and DM rats (partially restored towards control rats). Compared with control rats, the protein expression of hepatic CYP1A increased, that of CYP2C11 and 3A decreased, but that of CYP2B1/2 and 2D was not altered in LCD rats. CONCLUSIONS AND IMPLICATIONS In rats with diabetes and liver cirrhosis, the AUC of oltipraz was partially restored towards that of control rats.
Collapse
Affiliation(s)
- C Y Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Sun H, He P. Characterization of interaction between doxycycline and human serum albumin by capillary electrophoresis‐frontal analysis. Electrophoresis 2009; 30:1991-7. [DOI: 10.1002/elps.200800470] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Lee DY, Jung YS, Kim YC, Kim SY, Lee MG. Faster clearance of omeprazole in mutant Nagase analbuminemic rats: possible roles of increased protein expression of hepatic CYP1A2 and lower plasma protein binding. Biopharm Drug Dispos 2009; 30:107-16. [DOI: 10.1002/bdd.651] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Choi YH, Lee DC, Lee I, Lee MG. Changes in metformin pharmacokinetics after intravenous and oral administration to rats with short‐term and long‐term diabetes induced by streptozotocin. J Pharm Sci 2008; 97:5363-75. [DOI: 10.1002/jps.21349] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Chung HJ, Kang HE, Bae EJ, Lee I, Kim SG, Lee MG. Effects of E. Coli lipopolysaccharide on the pharmacokinetics of ipriflavone and its metabolites, M1 and M5, after intravenous and oral administration of ipriflavone to rats: Decreased metabolism of ipriflavone due to decreased expression of hepatic CYP1A2 and 2C11. J Pharm Sci 2008; 97:5024-36. [DOI: 10.1002/jps.21343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Yang SH, Lee MG. Dose-independent pharmacokinetics of ondansetron in rats: contribution of hepatic and intestinal first-pass effects to low bioavailability. Biopharm Drug Dispos 2008; 29:414-26. [DOI: 10.1002/bdd.628] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
42
|
Lee JH, Lee MG. Telithromycin Pharmacokinetics in Rat Model of Diabetes Mellitus Induced by Alloxan or Streptozotocin. Pharm Res 2008; 25:1915-24. [DOI: 10.1007/s11095-008-9610-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 04/24/2008] [Indexed: 01/21/2023]
|
43
|
Yang KH, Lee JH, Lee MG. Effects of CYP inducers and inhibitors on the pharmacokinetics of intravenous theophylline in rats: involvement of CYP1A1/2 in the formation of 1,3-DMU. J Pharm Pharmacol 2008; 60:45-53. [PMID: 18088504 DOI: 10.1211/jpp.60.1.0006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The types of hepatic cytochrome P450 (CYP) isozymes responsible for the metabolism of theophylline and for the formation of 1,3-dimethyluric acid (1,3-DMU) in rats in-vivo does not seem to have been studied at the dose ranges of dose-independent metabolic disposition of theophylline in rats (up to 10 mg kg(-1)). Therefore, theophylline (5 mg kg(-1)) was administered i.v. to male Sprague-Dawley rats pretreated with various inducers and inhibitors of CYP isozymes. In rats pretreated with 3-methylcholanthrene (3-MC), orphenadrine or dexamethasone (main inducers of CYP1A1/2, CYP2B1/2 and CYP3A1/2, respectively, in rats), the time-averaged non-renal clearance (CLNR) of theophylline was significantly faster than in their respective controls (1260, 42.7 and 69.0% increases, respectively). However, in rats pretreated with troleandomycin (a major inhibitor of CYP3A1/2 in rats), CLNR was significantly slower than in the controls (50.7% decrease). The 24 h urinary excretion of 1,3-DMU was increased significantly only in rats pretreated with 3-MC. The ratio of area under the curve for 1,3-DMU and theophylline (AUC1,3-DMU/AUCtheophylline) was increased significantly in rats pretreated with 3-MC (160% increase) and decreased significantly in rats pretreated with troleandomycin (50.1% decrease); however, the ratio was not increased in rats pretreated with dexamethasone. These data suggest that theophylline is primarily metabolized via CYP1A1/2, CYP2B1/2, and CYP3A1/2, and that 1,3-DMU is primarily formed via CYP1A1/2, and possibly CYP3A1/2, in rats.
Collapse
Affiliation(s)
- Kyung H Yang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, San 56-1, Shinlim-Dong, Kwanak-Gu, Seoul 151-742, South Korea
| | | | | |
Collapse
|
44
|
Ahn CY, Bae SK, Jung YS, Lee I, Kim YC, Lee MG, Shin WG. Pharmacokinetic Parameters of Chlorzoxazone and Its Main Metabolite, 6-Hydroxychlorzoxazone, after Intravenous and Oral Administration of Chlorzoxazone to Liver Cirrhotic Rats with Diabetes Mellitus. Drug Metab Dispos 2008; 36:1233-41. [DOI: 10.1124/dmd.107.017442] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
45
|
Choi HD, Kang HE, Chung HJ, Bae SK, Shin KN, Lee MG. Effects of water deprivation on the pharmacokinetics of theophylline and one of its metabolites, 1,3-dimethyluric acid, after intravenous and oral administration of aminophylline to rats. Biopharm Drug Dispos 2007; 28:445-54. [PMID: 17847127 DOI: 10.1002/bdd.573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It has been reported that the expressions of hepatic microsomal cytochrome P450 (CYP) 1A1/2, 2B1/2 and 3A1/2 were not changed in rats with water deprivation for 72 h (rat model of dehydration) compared with the controls. It has been also reported that 1,3-dimethyluric acid (1,3-DMU) was formed from theophylline via CYP1A1/2 in rats. Hence, it could be expected that the formation of 1,3-DMU could be comparable between the two groups of rats. As expected, after both intravenous and oral administration of theophylline at a dose of 5 mg/kg to the rat model of dehydration, the AUC of 1,3-DMU was comparable to the controls. After both intravenous and oral administration of theophylline to the rat model of dehydration, the Cl(r) of both theophylline and 1,3-DMU was significantly slower than the controls. This could be due to significantly smaller urinary excretions of both theophylline and 1,3-DMU since the AUC of both theophylline and 1,3-DMU were comparable between the two groups of rats. The smaller urinary excretion of both theophylline and 1,3-DMU could be due to urine flow rate-dependent timed-interval renal clearance of both theophylline and 1,3-DMU in rats.
Collapse
Affiliation(s)
- Hye D Choi
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
46
|
Lee JH, Lee MG. Effects of acute renal failure on the pharmacokinetics of telithromycin in rats: negligible effects of increase in CYP3A1 on the metabolism of telithromycin. Biopharm Drug Dispos 2007; 28:157-66. [PMID: 17377958 DOI: 10.1002/bdd.542] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It was reported that the expression of CYP3A1 increased in rats with acute renal failure induced by uranyl nitrate (rat model of U-ARF) compared with controls. It was shown that telithromycin was mainly metabolized via CYP3A1/2 in rats in this study. Hence, the pharmacokinetic parameters of telithromycin were compared after both intravenous and oral administration at a dose of 50 mg/kg to control rats and a rat model of U-ARF. After intravenous administration of telithromycin to rats with U-ARF, the AUC and renal clearance (Cl(r)) were significantly greater (35.0% increase) and slower (99.1% decrease), respectively, than the controls. Unexpectedly, the nonrenal clearance (Cl(nr)) of telithromycin was comparable between the two groups of rats, suggesting that CYP3A isozyme responsible for the metabolism of telithromycin seemed not to be expressed considerably in the rat model of U-ARF. After oral administration of telithromycin to rats with U-ARF, the AUC was also significantly greater (127% increase) than the controls and the value, 127%, was considerably greater than 35.0% after intravenous administration of telithromycin. This may be due mainly to the decrease in the intestinal first-pass effect of telithromycin compared with controls in addition to significantly slower Cl(r) than controls.
Collapse
Affiliation(s)
- Joo H Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | | |
Collapse
|
47
|
Fossa AA, Gorczyca W, Wisialowski T, Yasgar A, Wang E, Crimin K, Volberg W, Zhou J. Electrical alternans and hemodynamics in the anesthetized guinea pig can discriminate the cardiac safety of antidepressants. J Pharmacol Toxicol Methods 2007; 55:78-85. [PMID: 16678449 DOI: 10.1016/j.vascn.2006.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 03/24/2006] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The arrhythmogenic risk of fluoxetine, citalopram, and venlafaxine were evaluated through preclinical assays measuring hERG, blood pressure and electrical alternans over their respective clinical unbound concentration ranges. METHODS Anesthetized guinea pigs were instrumented with jugular and carotid cannulae for drug infusion and blood pressure monitoring respectively; a thoracotomy was performed for placement of a monophasic action potential probe on the left ventricle and for placement of pacing wires on the left ventricular apex. Drugs were infused as a 5-min loading dose immediately followed by a 10-min maintenance dose to achieve clinically relevant plasma concentrations; blood samples were taken at the end of each maintenance dose. Ventricular pacing was performed twice at baseline and at each dose level as follows: 50 preconditioning-beats at S1=220 (or 240) ms immediately followed by 30 test-beats at S2=200 ms. This S1-S2 protocol was repeated for S2=190 to 140 ms. HERG and calcium current measurements were recorded in HEK-293 cells stably expressing hERG potassium currents and freshly isolated guinea pig cardiac myocytes using the whole-cell configuration of the patch clamp technique. RESULTS Physiologically relevant inhibition (IC(20)) of hERG occurred at concentrations 22-fold (fluoxetine), 9-fold (citalopram), and 11-fold (venlafaxine) beyond their respective clinically effective concentration (C(eff)). At the highest achievable levels, fluoxetine (20-fold C(eff)) and citalopram (28-fold C(eff)) significantly decreased heart rate and/or blood pressure as well as increasing electrical alternans by 5 and 18 ms respectively. Venlafaxine increased blood pressure at only 1.3-fold C(eff), but did not increase electrical alternans at the highest achievable dose (3.1-fold C(eff)). DISCUSSION These data suggest that evaluating other dose limiting side effects in relation to a drug's therapeutic range may be crucial for accurate assessment of arrhythmia liability.
Collapse
Affiliation(s)
- Anthony A Fossa
- Pfizer Global Research and Development, Groton, CT 06340, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Xiang H, McSurdy-Freed J, Moorthy GS, Hugger E, Bambal R, Han C, Ferrer S, Gargallo D, Davis CB. Preclinical Drug Metabolism and Pharmacokinetic Evaluation of GW844520, A Novel Anti-Malarial Mitochondrial Electron Transport Inhibitor. J Pharm Sci 2006; 95:2657-72. [PMID: 16892205 DOI: 10.1002/jps.20681] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
GW844520 is a potent and selective inhibitor of the cytochrome bc1 complex of mitochondrial electron transport in P. falciparum, the parasite primarily responsible for the mortality associated with malaria worldwide. GW844520 is fully active against the parasite including resistance isolates, showing no cross resistance with agents in use. To evaluate full potential of this development candidate, we conducted drug metabolism and pharmacokinetic studies of this novel anti-malarial. GW844520 had low blood clearance of about 0.5-4% of hepatic blood flow and a steady-state volume of distribution of 2-4 times total body water in mouse, rat, dog, and monkey. Oral bioavailability was high (51-100%). Consistent with the in vivo data, GW844520 had low intrinsic clearance in liver microsomes and hepatocytes of animal and human origin, high passive cellular permeability and was not a P-glycoprotein substrate. GW844520 did not associate appreciably with blood cells but was highly bound to plasma proteins (>99%) in all species. GW844520 was a substrate and inhibitor of human CYP2D6 but not of CYP1A2, 2C9, 2C19, and 3A4. This conjunctive analysis supports continued evaluation of this compound in definitive pre-IND studies and exemplifies our strategy supporting the discovery of novel agents to treat diseases of the developing world.
Collapse
Affiliation(s)
- Hong Xiang
- Drug Metabolism and Pharmacokinetics, Microbial, Musculoskeletal and Proliferative Diseases, Center of Excellence for Drug Discovery, GlaxoSmithKline R&D, 1250 South Collegeville Rd, Collegeville, PA 19426, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Berezhkovskiy LM. Determination of drug binding to plasma proteins using competitive equilibrium binding to dextran-coated charcoal. J Pharmacokinet Pharmacodyn 2006; 33:595-608. [PMID: 16841186 DOI: 10.1007/s10928-006-9024-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 06/05/2006] [Indexed: 11/25/2022]
Abstract
A method for determination of drug binding to plasma proteins, which is based on the comparison of drug affinities to plasma proteins and dextran-coated charcoal, is described. The method is free of nonspecific binding feature. The fractions unbound obtained by the charcoal method are in good agreement with values from a traditional ultrafiltration method for various low and highly bound compounds. The method presently requires drug concentrations much less than that of plasma proteins. A possibility of using the method to determine protein binding at an arbitrary drug concentration is discussed. A mechanism of nonspecific binding of drug to ultrafiltration membranes, which yields a good agreement with experimental observations, is suggested.
Collapse
|
50
|
Teshima M, Fumoto S, Nishida K, Nakamura J, Ohyama K, Nakamura T, Ichikawa N, Nakashima M, Sasaki H. Prolonged blood concentration of prednisolone after intravenous injection of liposomal palmitoyl prednisolone. J Control Release 2006; 112:320-8. [PMID: 16631272 DOI: 10.1016/j.jconrel.2006.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 03/08/2006] [Accepted: 03/09/2006] [Indexed: 10/24/2022]
Abstract
We compared the pharmacokinetic behavior of drugs after an intravenous administration of prednisolone (PLS), palmitoyl prednisolone (Pal-PLS), and liposomal Pal-PLS in rats. Pal-PLS showed higher lipophilicity and higher binding to plasma protein than PLS, and PLS regeneration in rat blood and liver homogenates. After the intravenous administration of Pal-PLS solution in polyethylene glycol (PEG) 400 to rats, Pal-PLS disappeared from the blood in a two-phase mode and PLS was rapidly regenerated. Pal-PLS showed a significantly higher accumulation than PLS in the liver and lung. The administration of Pal-PLS incorporated into egg yolk phosphatidylcholine (EggPC)/cholesterol (Chol) liposomes enhanced Pal-PLS concentrations in the blood, liver, and lung compared to that of Pal-PLS solution in PEG 400, suggesting the rapid removal of liposomes by the mononuclear phagocytic system. Pal-PLS incorporated into PEGylated liposomes constituted with EggPC/Chol/1% L-alpha-distearoylphosphatidylethanolamine (DSPE)-PEG 2000 and EggPC/Chol/10% DSPE-PEG 2000 decreased the initial distribution of Pal-PLS, and successfully maintained the blood concentrations of Pal-PLS and PLS. Thus, we could change the pharmacokinetics of PLS by introducing the palmitoyl function into the molecule and its liposomal formulation including PEGylation. This is the first study to evaluate liposomal PLS constituted with a lipophilic derivative and PEG lipids.
Collapse
Affiliation(s)
- Mugen Teshima
- Department of Hospital Pharmacy, Nagasaki University Hospital of Medicine and Dentistry, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|