1
|
Dobre A, Koutsoukos S, Philippi F, Rauber D, Kay CWM, Palumbo O, Roessler MM, Welton T. Understanding the effects of targeted modifications on the 1 : 2 Choline And GEranate structure. Phys Chem Chem Phys 2024; 26:8858-8872. [PMID: 38426306 DOI: 10.1039/d3cp05271k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
1 : 2 Choline-and-geranate (CAGE) is an ionic liquid (IL) widely studied for its biomedical applications. However, both its industrial-scale preparation and its long-term storage are problematic so finding more suitable candidates which retain its advantageous properties is crucial. As a first step towards this we have conducted a targeted modification study to understand the effects of specific functional groups on the properties of CAGE. 1 : 2 Choline-and-octanoate and 1 : 2 butyltrimethylammonium-and-octanoate were synthesised and their thermal and rheological properties examined in comparison to those of CAGE. Using differential scanning calorimetry and polarising microscopy, the model compound was found to be an isotropic liquid, while the analogues were room-temperature liquid-crystals which transition to isotropic liquids upon heating. Dynamic mechanical analysis showed that the thermal behaviour of the studied systems was even more complex, with the ILs also undergoing a thermally-activated relaxation process. Furthermore, we have used electron paramagnetic resonance (EPR) spectroscopy, along with a variety of spin probes with different functional groups, in order to understand the chemical environment experienced by solutes in each system. The EPR spectra indicate that the radicals experience two distinct environments (polar and nonpolar) in the liquid-crystalline phase, but only one average environment in the isotropic phase. The liquid-crystalline phase experiments also showed that the relative populations of the two domains depend on the nature of the solutes, with polar or strongly hydrogen-bonding solutes preferring the polar domain. For charged solutes, the EPR spectra showed line-broadening, suggesting that their ionic nature leads to complex, unresolved interactions.
Collapse
Affiliation(s)
- Ana Dobre
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK.
| | - Spyridon Koutsoukos
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK.
- Centre for Pulse EPR Spectroscopy (PEPR), Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Frederik Philippi
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK.
| | - Daniel Rauber
- Department of Chemistry, Saarland University, Campus B2.2, Saarbrücken, Germany
| | - Christopher W M Kay
- Department of Chemistry, Saarland University, Campus B2.2, Saarbrücken, Germany
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
| | - Oriele Palumbo
- Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Maxie M Roessler
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK.
- Centre for Pulse EPR Spectroscopy (PEPR), Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Tom Welton
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK.
| |
Collapse
|
2
|
Chong JYT, Mulet X, Waddington LJ, Boyd BJ, Drummond CJ. High-throughput discovery of novel steric stabilizers for cubic lyotropic liquid crystal nanoparticle dispersions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:9223-9232. [PMID: 22630595 DOI: 10.1021/la301874v] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
High-throughput methodologies have been employed to establish structure-property relationships and assess the effectiveness of nonionic steric stabilizers for inverse bicontinuous cubic lyotropic liquid crystalline nanoparticulate dispersions of monoolein and phytantriol. The ability of the stabilizers to disperse the lipids was compared with that of the commonly employed triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) copolymer Pluronic F127, which was used as a positive control. The poly(ethylene oxide) stearate class of stabilizers (commercially known as Myrj) were discovered to be effective as steric stabilizers for cubosomes, while retaining the internal nanostructure of the "parent" bulk phase. In particular, Myrj 59, with an average of 100 poly(ethylene oxide) units, was more effective than F127 at dispersing phytantriol, forming stable phytantriol cubosome dispersions at a concentration of 0.1 wt %, 5-fold lower than that achievable with Pluronic F127. The discovery of this new effective class of stabilizers for cubosomes, specifically enabled by high-throughput approaches, broadens the versatility of components from which to construct these interesting potential drug delivery and medical imaging nanoparticles.
Collapse
Affiliation(s)
- Josephine Y T Chong
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Materials Science and Engineering, Private Bag 10, Clayton, Victoria 3169, Australia
| | | | | | | | | |
Collapse
|
3
|
Sintov AC, Botner S. Transdermal drug delivery using microemulsion and aqueous systems: Influence of skin storage conditions on the in vitro permeability of diclofenac from aqueous vehicle systems. Int J Pharm 2006; 311:55-62. [PMID: 16431047 DOI: 10.1016/j.ijpharm.2005.12.019] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 12/04/2005] [Accepted: 12/05/2005] [Indexed: 11/25/2022]
Abstract
The objective of this study was to evaluate the transdermal delivery potential of diclofenac-containing microemulsion system in vivo and in vitro. It was found that the transdermal administration of the microemulsion to rats resulted in 8-fold higher drug plasma levels than those obtained after application of Voltaren Emulgel. After s.c. administration (3.5 mg/kg), the plasma levels of diclofenac reached a peak of 0.94 microg/ml at t=1 h and decreased rapidly to 0.19 microg/ml at t=6 h, while transdermal administration of the drug in microemulsion maintained constant levels of 0.7-0.9 microg/ml for at least 8 h. The transdermal fluxes of diclofenac were measured in vitro using skin excised from different animal species. In three rodent species, penetration fluxes of 53.35+/-8.19 (furry mouse), 31.70+/-3.83 (hairless mouse), 31.66+/-4.45 (rat), and 22.89+/-6.23 microg/cm(2)/h (hairless guinea pig) were obtained following the application of the microemulsion. These fluxes were significantly higher than those obtained by application of the drug in aqueous solution. In contrast to these results, a 'flip-flop' phenomenon was observed when frozen porcine skin (but not fresh skin) was significantly more permeable to diclofenac-in-water than to the drug-in-microemulsion. In fact, the drug penetration from the microemulsion was not affected by the skin storage conditions, but it was increased when an aqueous solution was applied. However, this unusual phenomenon observed in non-freshly used porcine skin places a question mark on its relevancy for in vitro penetration studies involving aqueous vehicle systems.
Collapse
Affiliation(s)
- Amnon C Sintov
- Department of Pharmacology and School of Pharmacy, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel.
| | | |
Collapse
|
4
|
Fonollosa J, Campos L, Martí M, de la Maza A, Parra JL, Coderch L. X-ray diffraction analysis of internal wool lipids. Chem Phys Lipids 2004; 130:159-66. [PMID: 15172832 DOI: 10.1016/j.chemphyslip.2004.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 02/25/2004] [Accepted: 03/01/2004] [Indexed: 11/17/2022]
Abstract
Polarised optical microscopy (POM) and X-ray diffraction techniques were applied to intercellular lipids extracted from wool to study their structural arrangement in order to determine their role in the diffusion properties of wool fibre. Intercellular wool lipids (IWL) arranged as concentrated liposomes were shown to be a good intercellular lipid model, allowing their study by X-ray diffraction techniques. The results confirm that intercellular lipids of wool fibre are organised in a lamellar structure of 5.0-8.0 nm width, termed beta-layer, which had been assumed to be lipids arranged as a bilayer. Structurally, internal wool lipids are distributed at least in two domains at low temperatures: an ordered phase made up of ceramides and free fatty acids (FFA) alone, arranged in crystal orthorhombic states separately, and a liquid crystal state when mixed together. At 40 degrees C there is a reversible phase transition produced by the melt of the crystal orthorhombic states, whereas the liquid crystal state remains until 65 degrees C.
Collapse
Affiliation(s)
- Jordi Fonollosa
- Instituto de Investigaciones Químicas y Ambientales de Barcelona, C.S.I.C. Jordi Girona 18-26, 08034, Spain
| | | | | | | | | | | |
Collapse
|
5
|
Chang CM, Bodmeier R. Swelling of and drug release from monoglyceride-based drug delivery systems. J Pharm Sci 1997; 86:747-52. [PMID: 9188059 DOI: 10.1021/js960256w] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Depending on the water content, unsaturated monoglycerides form various liquid crystalline phases, which can be used as sustained-release carriers. The aim of this study was to investigate the water uptake of and drug release from melt-congealed monoglyceride-based drug carriers. The water uptake of the unsaturated monoglycerides monoolein and monolinolein followed second-order swelling kinetics and levelled off at about 50% water content, at which a highly viscous cubic phase was formed. The rapid formation of the cubic phase suggested that the drug release occurred mainly from this phase. The drug release followed the square-root of time relationship during the initial release phase. Chlorpheniramine maleate, an amphiphilic drug was not completely released because of binding to the cubic phase. The rate of water uptake increased and the maximum water uptake decreased with increasing temperature. The drug release could be controlled by varying the surface-to-volume ratio, the drug loading, and the water content of the lipid matrix. It was independent of the source of monoolein.
Collapse
Affiliation(s)
- C M Chang
- College of Pharmacy, University of Texas at Austir 78712, USA
| | | |
Collapse
|
6
|
Parra J, Coderch L, Yuste I, de la Maza A. Incorporation of non-steroidal anti-inflammatory drugs into specific monophasic formulations. Colloids Surf A Physicochem Eng Asp 1997. [DOI: 10.1016/s0927-7757(96)03799-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|