1
|
Wang Y, Zhang D, Liu Y. Research Progress on the Regulating Factors of Muscle Fiber Heterogeneity in Livestock: A Review. Animals (Basel) 2024; 14:2225. [PMID: 39123750 PMCID: PMC11311112 DOI: 10.3390/ani14152225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The type of muscle fiber plays a crucial role in the growth, development, and dynamic plasticity of animals' skeletal muscle. Additionally, it is a primary determinant of the quality of both fresh and processed meat. Therefore, understanding the regulatory factors that contribute to muscle fibers' heterogeneity is of paramount importance. Recent advances in sequencing and omics technologies have enabled comprehensive cross-verification of research on the factors affecting the types of muscle fiber across multiple levels, including the genome, transcriptome, proteome, and metabolome. These advancements have facilitated deeper exploration into the related biological questions. This review focused on the impact of individual characteristics, feeding patterns, and genetic regulation on the proportion and interconversion of different muscle fibers. The findings indicated that individual characteristics and feeding patterns significantly influence the type of muscle fiber, which can effectively enhance the type and distribution of muscle fibers in livestock. Furthermore, non-coding RNA, genes and signaling pathways between complicated regulatory mechanisms and interactions have a certain degree of impact on muscle fibers' heterogeneity. This, in turn, changes muscle fiber profile in living animals through genetic selection or environmental factors, and has the potential to modulate the quality of fresh meat. Collectively, we briefly reviewed the structure of skeletal muscle tissue and then attempted to review the inevitable connection between the quality of fresh meat and the type of muscle fiber, with particular attention to potential events involved in regulating muscle fibers' heterogeneity.
Collapse
Affiliation(s)
| | | | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China; (Y.W.); (D.Z.)
| |
Collapse
|
2
|
Li Z, Huang Z, Jia G, Zhao H, Liu G, Chen X. L-theanine attenuates H 2O 2-induced inflammation and apoptosis in IPEC-J2 cells via inhibiting p38 MAPK signaling pathway. Food Chem Toxicol 2024; 186:114561. [PMID: 38438008 DOI: 10.1016/j.fct.2024.114561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
This study investigated the protective effects of L-theanine on hydrogen peroxide (H2O2)-induced intestinal barrier dysfunction in IPEC-J2 cells. Results showed that L-theanine reduced H2O2-induced IPEC-J2 cells inflammation and apoptosis, and decreased protein phosphorylation levels of p38 mitogen-activated protein kinase (p38 MAPK) and nuclear factor kappa-B (NF-κB). The p38 MAPK inhibitor (SB203580) decreased oxidative stress, the protein expression of phosphorylation of p38 MAPK and NF-κB, the H2O2-induced increase in mRNA expression of pro-apoptotic and pro-inflammatory related genes expression and secretion, and tight junction protein related genes expression, which was similar to the effect of L-theanine. In conclusion, L-theanine inhibited H2O2-induced oxidative damage and inflammatory reaction, eliminated apoptosis, and protected intestinal epithelial barrier damage by inhibiting the activation of p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Zhongqing Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
| |
Collapse
|
3
|
Liu Y, He Y, Fan S, Gong X, Zhou Y, Jian Y, Ouyang J, Jiang Q, Zhang P. Effects of LED Light Colors on the Growth Performance, Intestinal Morphology, Cecal Short-Chain Fatty Acid Concentrations and Microbiota in Broilers. Animals (Basel) 2023; 13:3731. [PMID: 38067082 PMCID: PMC10705592 DOI: 10.3390/ani13233731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 11/03/2024] Open
Abstract
This study aimed to explore the effects of light-emitting diode (LED) light colors on growth, intestinal morphology, and cecal microbiota in broilers. A total of 360 healthy male Arbor Acres (AA) broilers with similar weights were selected and divided into four groups with six replicates in each group and 15 broilers in each replicate: LED white light (W), LED green light (G), LED blue light (B), and LED blue-green composite light (BG). The experimental period was 42 d, the light cycle of each treatment group was 23L:1D (23 h of light, one hour of darkness) from 1 to 3 d, and the light cycle from 4 to 42 d was 16L:8D; light intensity was 20 Lux. The results showed that the average daily feed intake and final weight of broilers receiving the B group were the highest in 21 d and 42 d compared with other groups. The average daily feed intake of the BG group was lower than that of the B group. In the same light color, small intestine villus height grows with age. On days 21 and 42, compared with other groups, the ileal villus height was higher, the crypt depth was lower, and the V/C ratio (villus to crypt ratio) was higher in the BG group. The combination of blue-green composite light was beneficial to increase the content of propionate, isobutyrate, butyrate, isovalerate, and valerate in the cecum of 21-day-old broilers and the content of isobutyrate in the cecum of 42-day-old broilers, and a decrease in cecal short-chain fatty acid concentrations with age. The B group and the BG group had higher abundances of Bacteroidetes at day 21 of age and lower abundances of Phascolarctobacterium at day 42. However, no cecal microbiota differences were detected by the Bonferroni-corrected test. In general, our research results showed that light color could promote the growth of broilers by affecting intestinal morphology, microbiota abundance (needs to be validated by further experiments), and cecal short-chain fatty acid concentrations. And blue and blue-green composite lights are more suitable for broiler growth.
Collapse
Affiliation(s)
- Yihui Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.H.)
| | - Youkuan He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.H.)
| | - Siqin Fan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.H.)
| | - Xinyu Gong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.H.)
| | - Yuqiao Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.H.)
| | - Yaowei Jian
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.H.)
| | - Jiuyi Ouyang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.H.)
| | - Qianming Jiang
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Peihua Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.H.)
| |
Collapse
|
4
|
Liu Z, Li Z, Zheng Z, Li N, Mu S, Ma Y, Zhou Z, Yan J, Lu C, Wang W, Zhang H. Effects of L-theanine on intestinal morphology, barrier function, and MAPK signaling pathways in diquat-challenged piglets. Anim Biotechnol 2023; 34:1112-1119. [PMID: 34904512 DOI: 10.1080/10495398.2021.2013857] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study aimed to explore the protective effects of L-theanine supplementation on the diquat-challenged weaned piglets. A total of 160 weaned piglets were randomly divided into 4 groups using a 2 × 2 two-factor design, there were 4 replicates per group and 10 pigs per replicate. Piglets were fed diets (with 1000 mg/kg L-theanine addition or not), then challenged with diquat or saline on day 7. 21 days after challenge, two pigs from each replicate were selected for sample collection. Results showed that supplement with 1000 mg/kg L-theanine down-regulated the diarrhea rate, serum D-lactate level, tumor necrosis factor-α, and phosphorylation of extracellular regulated protein kinases (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) signaling in pigs without diquat challenge (p < 0.05). While for diquat-challenged piglets, L-theanine addition increased average daily gain, jejunum villus height, and interferon-γ level (p < 0.05). Meanwhile, L-theanine addition decreased the diarrhea rates and mortality, serum D-lactate level, and phosphorylation of ERK and JNK in diquat-challenged pigs (p < 0.05). These results demonstrate that L-theanine pretreatment could alleviate diquat-induced oxidative stress and improve intestinal barrier function in diquat-challenged weaned piglets, which can be attributed to suppression of MAPK phosphorylation signaling pathways.
Collapse
Affiliation(s)
- Zhengqun Liu
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zeqing Li
- Tianjin Agricultural Development Service Center, Tianjin, China
| | - Zi Zheng
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
| | - Ning Li
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
| | - Shuqin Mu
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
| | - Yong Ma
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
| | - Zhijiang Zhou
- College of Chemical Engineering, Tianjin University, Tianjin, China
| | - Jun Yan
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Chemical Engineering, Tianjin University, Tianjin, China
| | - Chunlian Lu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Wenjie Wang
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Chen X, Luo D, Jia G, Zhao H, Liu G, Huang Z. L-theanine attenuates porcine intestinal tight junction damage induced by LPS via p38 MAPK/NLRP3 signaling in IPEC-J2 cells. Food Chem Toxicol 2023:113870. [PMID: 37271275 DOI: 10.1016/j.fct.2023.113870] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
L-theanine is a natural bioactive component in tea leaves and has anti-inflammatory effects. The study aimed to investigated the effects and underlying mechanisms of L-theanine on lipopolysaccharide (LPS)-induced intestinal tight junction damage in IPEC-J2 cells. Results showed that LPS induced tight junction damage by increasing reactive oxygen species production and lactate dehydrogenase (LDH) release and decreasing the mRNA expression of tight junction proteins related genes zonula occludens-1 (ZO-1, also known as Tjp1), Occludin and Claudin-1, while L-theanine reversed such an effect and attenuated the increase of p38 mitogen-activated protein kinase (p38 MAPK) mRNA expression. The p38 MAPK inhibitor (SB203580) attenuated the mRNA expression of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (Nlrp3) inflammasome and interleukin-1β (Il-1β), and increased the mRNA expression of Tjp1, Occludin and Claudin-1, which showed a similar effect with L-theanine. In addition, NLRP3 inhibitor MCC950 attenuated the Il-1β expression and LDH release, while increased the expression of tight-junction protein-related genes. In conclusion, L-theanine could protect LPS-induced intestinal tight junction damage by inhibiting the activation of p38 MAPK-mediated NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Diaoyun Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
| |
Collapse
|
6
|
Chen X, Chen L, Jia G, Zhao H, Liu G, Huang Z. L-theanine improves intestinal barrier functions by increasing tight junction protein expression and attenuating inflammatory reaction in weaned piglets. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
7
|
L-Theanine Regulates the Abundance of Amino Acid Transporters in Mice Duodenum and Jejunum via the mTOR Signaling Pathway. Nutrients 2022; 15:nu15010142. [PMID: 36615799 PMCID: PMC9824403 DOI: 10.3390/nu15010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
The intestine is a key organ for the absorption of amino acids. L-theanine (LTA) is a structural analog of glutamine and a characteristic non-protein amino acid found in tea (Camellia sinensis) that regulates lipid and protein metabolism. The present study explored the role of LTA in intestinal amino acid absorption, protein synthesis, and its mechanisms. Overall, our findings suggest that LTA supplementation not only affects serum alkaline phosphatase (AKP), total protein (TP), and urea nitrogen (BUN) levels, but it also upregulates the mRNA and protein expression of amino acid transporters (EAAT3, EAAT1, 4F2hc, y+LAT1, CAT1, ASCT2, and B0AT1), and activates the mTOR signaling pathway. The downstream S6 and S6K1 proteins are regulated, and the expression of amino acid transporters is regulated. These findings suggest that LTA increases intestinal AA absorption, promotes protein metabolism, and increases nitrogen utilization by upregulating AAT expression, activating the mTOR signaling pathway, and phosphorylating the mTOR downstream proteins S6 and S6K1.
Collapse
|
8
|
Yang L, Zhang L, Zhang P, Zhou Y, Huang X, Yan Q, Tan Z, Tang S, Wan F. Alterations in nutrient digestibility and performance of heat-stressed dairy cows by dietary L-theanine supplementation. ANIMAL NUTRITION 2022; 11:350-358. [PMID: 36329682 PMCID: PMC9618971 DOI: 10.1016/j.aninu.2022.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to investigate the effects of dietary L-theanine supplementation on apparent nutrient digestibility, milk yield, milk composition, and blood biochemical indices of dairy cows under heat stress. Thirty Chinese Holstein cows (19.84 ± 2.42 kg milk/d, 192.36 ± 40.77 d in milk and 2 ± 0.93 parities) were divided into 3 groups of 10 animals each. The control group was fed a basal total mixed ration (TMR) diet, while treatment 1 (LTA16) and treatment 2 (LTA32) groups were fed a basal TMR diet supplemented with L-theanine at 16 and 32 g/cow per day, respectively. The results showed that feeding the dairy cows with LTA16 treatment decreased (P < 0.05) their rectal temperature, whereas feeding with LTA32 treatment decreased (P < 0.05) their rumen fluid ammonia nitrogen content. In comparison to the control group, the supplementation of L-theanine had no significant effect (P > 0.05) on the dry matter intake, nutrient digestibility, total volatile fatty acid (TVFA) concentration and molar proportion of volatile fatty acid, milk yield, milk composition, feed efficiency and antioxidant capacity of the dairy cows. The triglyceride (TG) content of the LTA32 group was significantly greater (P = 0.014) than that of the control group. With the increase in L-theanine dosage, the serum cholesterol (CHOL) content significantly increased (P = 0.013). The serum albumin (ALB; P = 0.067), low-density lipoprotein cholesterol (LDL-C; P = 0.053), and high-density lipoprotein cholesterol (HDL-C; P = 0.067) contents showed an upward trend as L-theanine dosage increased. Ultimately, the results of this study show that supplementing dairy cow diet with L-theanine could decrease dairy cow rectal temperature, affect lipid metabolism, and potentially relieve the heat stress of dairy cows to some extent.
Collapse
Affiliation(s)
- Lingyuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Lingmei Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Peihua Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yuli Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qiongxian Yan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Shaoxun Tang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
- Corresponding authors.
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
- Shandong Provincial Key Laboratory of Livestock and Poultry Disease Prevention and Breeding, Jinan, Shandong 250000, China
- Corresponding authors.
| |
Collapse
|
9
|
Wang Z, Tang Y, Long L, Zhang H. Effects of Dietary L-Theanine on Growth Performance, Antioxidation, Meat Quality, and Intestinal Microflora in White Feather Broilers With Acute Oxidative Stress. Front Vet Sci 2022; 9:889485. [PMID: 35812843 PMCID: PMC9267357 DOI: 10.3389/fvets.2022.889485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
In order to reduce the negative effects caused by oxidative stress on broilers, it is particularly important to find ways to alleviate oxidative stress. As a natural plant extract, L-theanine has a variety of biological effects, such as improving antioxidant capacity, promoting growth, and enhancing immunity and antitumor. This trial evaluated the effects of dietary supplementation of L-theanine on growth performance, antioxidation, meat quality, and intestinal microflora in 817 White Feather Broilers. A total of 108 21-day-old 817 broilers with similar body weight (BW) were randomly divided into three groups with six replicates per group and six chickens within each replicate. The three groups were corn-soybean-based diet (NC group); basal diet plus drinking water with 30 mg hydrocortisone/kg (PC group); and basal diet supplemented with 400 mg L-theanine/kg plus drinking water with 30 mg hydrocortisone/kg (LT group). Compared with the NC group, from 21 to 24 days of age, the PC and LT groups had decreased BW, average daily gain (ADG), and average daily feed intake (ADFI), and increased feed to gain ratio (F/G; p < 0.05). At 24 days of age, the LT group had improved superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in serum as compared to the NC group (p < 0.05). The LT group broilers also had significantly higher concentrations of malondialdehyde (MDA) in serum and liver (p < 0.05). On the 42nd days, the PC group had lower PH45min (p < 0.05) than the NC and LT groups and higher cooking loss and shear force (p < 0.05). Moreover, the villi height of the PC group was significantly lower in jejunum than the NC group (p < 0.05). The LT group had a higher ZO-1 content in duodenum than the NC and PC groups (p < 0.05). The activity of GSH-Px in the liver of the LT group was increased than in the PC group (p < 0.05). The relative abundance of Firmicutes in the LT group was significantly higher than in the NC and PC groups (p < 0.05). These results suggested that the effects of acute oxidative stress on growth performance and meat quality of broilers are continuous, and dietary supplementation of L-theanine could improve the growth performance and meat quality, enhance the intestinal mucosal barrier and antioxidant capacity, and improve the composition of the intestinal flora of broilers caused by acute oxidative stress.
Collapse
|
10
|
Li MY, Liu HY, Wu DT, Kenaan A, Geng F, Li HB, Gunaratne A, Li H, Gan RY. L-Theanine: A Unique Functional Amino Acid in Tea ( Camellia sinensis L.) With Multiple Health Benefits and Food Applications. Front Nutr 2022; 9:853846. [PMID: 35445053 PMCID: PMC9014247 DOI: 10.3389/fnut.2022.853846] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
Tea (Camellia sinensis L.) is a very popular health drink and has attracted increasing attention in recent years due to its various bioactive substances. Among them, L-theanine, a unique free amino acid, is one of the most important substances in tea and endows tea with a special flavor. Moreover, L-theanine is also a bioactive compound with plenty of health benefits, including antioxidant, anti-inflammatory, neuroprotective, anticancer, metabolic regulatory, cardiovascular protective, liver and kidney protective, immune regulatory, and anti-obesity effects. Due to the unique characteristics and beneficial functions, L-theanine has potential applications in the development of functional foods. This review summarized the influencing factors of L-theanine content in teas, the main health benefits and related molecular mechanisms of L-theanine, and its applications in food, understanding of which can provide updated information for the further research of L-theanine.
Collapse
Affiliation(s)
- Ming-Yue Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China.,Research Center for Plants and Human Health, Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ahmad Kenaan
- National Graphene Institute, The University of Manchester, Manchester, United Kingdom
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Anil Gunaratne
- Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
| | - Hang Li
- Research Center for Plants and Human Health, Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ren-You Gan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China.,Research Center for Plants and Human Health, Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
11
|
Lyu Y, Liu D, Nguyen P, Peters I, Heilmann RM, Fievez V, Hemeryck LY, Hesta M. Differences in Metabolic Profiles of Healthy Dogs Fed a High-Fat vs. a High-Starch Diet. Front Vet Sci 2022; 9:801863. [PMID: 35252418 PMCID: PMC8891928 DOI: 10.3389/fvets.2022.801863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity is a common problem in dogs and overconsumption of energy-rich foods is a key factor. This study compared the inflammatory response and fecal metabolome of dogs fed a high-fat vs. a high-starch diet. Ten healthy lean adult beagles were equally allocated into two groups in a cross-over design. Each group received two diets in which fat (horse fat) and starch (pregelatinized corn starch) were exchanged in an isocaloric way to compare high fat vs. high starch. There was a tendency to increase the glucose and glycine concentrations and the glucose/insulin ratio in the blood in dogs fed with the high-fat diet, whereas there was a decrease in the level of Non-esterified fatty acids and a tendency to decrease the alanine level in dogs fed with the high-starch diet. Untargeted analysis of the fecal metabolome revealed 10 annotated metabolites of interest, including L-methionine, which showed a higher abundance in dogs fed the high-starch diet. Five other metabolites were upregulated in dogs fed the high-fat diet, but could not be annotated. The obtained results indicate that a high-starch diet, compared to a high-fat diet, may promote lipid metabolism, anti-oxidative effects, protein biosynthesis and catabolism, mucosal barrier function, and immunomodulation in healthy lean dogs.
Collapse
Affiliation(s)
- Yang Lyu
- ECAN Equine and Companion Animal Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Liu
- ECAN Equine and Companion Animal Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Patrick Nguyen
- Nutrition, Physiopathology and Pharmacology Unit, National College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| | - Iain Peters
- SYNLAB VPG, Exeter Science Park, Exeter, United Kingdom
| | - Romy M. Heilmann
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Veerle Fievez
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent, Belgium
| | - Lieselot Y. Hemeryck
- Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- *Correspondence: Myriam Hesta
| | - Myriam Hesta
- ECAN Equine and Companion Animal Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Lieselot Y. Hemeryck
| |
Collapse
|
12
|
Wang T, Cheng K, Li Q, Wang T. Effects of yeast hydrolysate supplementation on intestinal morphology, barrier, and anti-inflammatory functions of broilers. Anim Biosci 2022; 35:858-868. [PMID: 34991218 PMCID: PMC9066044 DOI: 10.5713/ab.21.0374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022] Open
Abstract
Objective This study was conducted to evaluate the effects of dietary yeast hydrolysate (YH) supplementation on intestinal morphology, barrier, and anti-inflammatory functions of broilers. Methods A total of 320 one day old male broilers were randomly allocated into four groups with eight replicates of ten broilers each. The broilers were supplemented with a basal diet (the control group) or basal diets adding 50, 100, 150 mg/kg YH, respectively. This trial lasted for 42 days. The orthogonal polynomial contrasts were used to determine the linear and quadratic effects of increasing levels of YH. Results In our previous research, supplementing YH improved growth performance by enhancing body weight gain but decreased feed-to-gain ratio. In this study, compared with the control group, dietary YH addition linearly and quadratically decreased serum diamine oxidase activity (p<0.05). Additionally, supplementing YH linearly and/or quadratically decreased jejunal crypt depth (CD), tumor necrosis factor-alpha (TNF-α) concentration as well as mucin 2, interleukin-6 (IL-6), IL-1β, TNF-α, nuclear factor kappa B, and myeloid differentiation factor 88 gene expression levels (p<0.05). Whereas the jejunal villus height (VH), VH/CD, IL-10 concentration as well as zonula occludens-1 and IL-10 gene expression levels were linearly and/or quadratically increased by YH supplementation (p<0.05). Conclusion Dietary YH supplementation improved intestinal morphology, barrier and anti-inflammatory functions while decreased intestinal permeability of broilers, which might be related with altering pertinent genes expression. This study provides evidence of YH as a promising feed additive for broilers.
Collapse
|
13
|
Zhang L, Yao X, Ma M, Ding Y, Zhang H, He X, Song Z. Protective Effect of l-Theanine against DSS-Induced Colitis by Regulating the Lipid Metabolism and Reducing Inflammation via the NF-κB Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14192-14203. [PMID: 34784210 DOI: 10.1021/acs.jafc.1c05839] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The present study revealed the phylactic effects of l-theanine on a DSS-induced colitis mice model. The results showed that 3% DSS treatment significantly induced intestinal damage as reflected by DAI, histopathological feature, and colon length, while l-theanine pretreatment markedly prevented these trends to exert protective effects. Meanwhile, l-theanine pretreatment decreased the levels of TNF-α, IL-1β, IL-6, iNOS, and COX2 on DSS-induced colitis. Notably, DSS inhibited the proliferation and promoted the apoptosis of intestinal epithelial cells, thereby damaging the integrity of the intestinal epithelial barrier, whereas l-theanine also played a protective role by attenuating these deteriorated effects. It was also observed that l-theanine treatment downregulated the levels of p-p65, p65, p-p53, p53, and p-AKT protein expression in acute DSS-induced colitis, which showed the protective function of l-theanine, mainly via the NF-κB signaling pathway. Furthermore, the results of lipid analysis and transcriptome analysis show that l-theanine reversed transcriptional profiles and lipid profiles of colitis models, mainly via the inflammatory reactivity-related pathway. Interestingly, the correlation analysis between transcriptional profiles and lipid profiles showed that inflammatory response-related genes were almost significantly correlated with differential lipid metabolites. In summary, l-theanine plays a protective role in DSS-induced colitis via downregulating the NF-κB signaling pathway and regulating lipid metabolism disorders.
Collapse
Affiliation(s)
- Longlin Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China
| | - Xiaofeng Yao
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China
| | - Mengmeng Ma
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China
| | - Yanan Ding
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China
| | - Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China
| |
Collapse
|
14
|
Alterations of endotoxin distribution across different biofluids and relevant inflammatory responses by supplementing L-theanine in dairy cows during heat stress. ANIMAL NUTRITION 2021; 7:1253-1257. [PMID: 34786498 PMCID: PMC8566959 DOI: 10.1016/j.aninu.2021.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 02/22/2021] [Accepted: 03/10/2021] [Indexed: 01/12/2023]
|
15
|
Song Y, Chen R, Yang M, Liu Q, Zhou Y, Zhuang S. Dietary betaine supplementation improves growth performance, digestive function, intestinal integrity, immunity, and antioxidant capacity of yellow-feathered broilers. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1986681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yuduo Song
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Rui Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mi Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qiang Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Su Zhuang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Zhang H, Zhou Y, Xu H, Liang C, Zhai Z. Bacillus amyloliquefaciens BLCC1-0238 Alone or in Combination with Mannan-Oligosaccharides Alleviates Subclinical Necrotic Enteritis in Broilers. Probiotics Antimicrob Proteins 2021; 14:158-168. [PMID: 34623584 DOI: 10.1007/s12602-021-09853-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 11/27/2022]
Abstract
Subclinical necrotic enteritis (SNE) is a severe intestinal disease in broilers which brings huge economic losses to poultry industry. Herein, the effects of Bacillus amyloliquefaciens BLCC1-0238 (B. amyloliquefaciens BLCC1-0238) alone or in combination with mannan-oligosaccharides (MOS) on the SNE challenge model in broilers were comprehensively explored. A total of 360 broilers were randomly divided into 4 groups, including an SNE infection control (IC), an antibiotic pretreatment control (AC), a B. amyloliquefaciens BLCC1-0238 pretreatment (BP), and a B. amyloliquefaciens BLCC1-0238 + MOS pretreatment (BMP). The results showed that compared with the IC, three pretreatment groups significantly improved the growth performance, lowered the overall mortality, and reduced intestinal mucosal lesions in broilers. Additionally, the expression levels of claudin-3 and peroxisome proliferator-activated receptor-gamma coactivator-1α in the BP and BMP groups and the levels of mucin-2 and mechanistic target of rapamycin in the BMP group were significantly upregulated compared with the IC. By contrast, the expression levels of interferon-γ, interleukin-10, and secretory immunoglobulin A in the BP and BMP groups were significantly downregulated. In conclusion, these findings show that B. amyloliquefaciens BLCC1-0238 in combination with MOS can exert synergetic effects by the interplay between them on improving growth performance and combating the SNE infection in broilers.
Collapse
Affiliation(s)
- Hongna Zhang
- College of Biological Science and Engineering, Hebei University of Economics and Business, Shijiazhuang 050061, China
| | - Yufa Zhou
- Center for Disease Control, Bureau of Animal Husbandry in Daiyue District, Tai'an 271000, China
| | - Hong Xu
- , Longkou Customs, Longkou 265700, China
| | - Chao Liang
- College of Biological Science and Engineering, Hebei University of Economics and Business, Shijiazhuang 050061, China
| | - Zhenzhen Zhai
- Central Hospital of Tai'an City, No. 29 Longtan Road, Tai'an 271000, China.
| |
Collapse
|
17
|
Xu W, Lin L, Liu A, Zhang T, Zhang S, Li Y, Chen J, Gong Z, Liu Z, Xiao W. L-Theanine affects intestinal mucosal immunity by regulating short-chain fatty acid metabolism under dietary fiber feeding. Food Funct 2021; 11:8369-8379. [PMID: 32935679 DOI: 10.1039/d0fo01069c] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To investigate the effects of l-Theanine (LTA) on intestinal mucosal immunity and the regulation of short-chain fatty acid (SCFA) metabolism under dietary fiber feeding, a 28-day feeding experiment was performed in Sprague-Dawley rats. The results show that LTA increased the proportion of Prevotella, Lachnospira, and Ruminococcus while increasing the total SCFA, acetic acid, propionic acid, and butyric acid contents in the feces. LTA also increased IgA, IgE, and IgG levels in the ileum, and increased villi height and crypt depth. Moreover, LTA upregulated the mRNA and protein expression of acetyl-CoA carboxylase 1, sterol element-binding protein 1c, fatty acid synthase, and 3-hydroxy-3-methylglutaryl coenzyme A reductase in the liver, while downregulating the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase 1 in the colon. Our study suggests that LTA can affect intestinal mucosal immunity by regulating SCFA metabolism under dietary fiber feeding.
Collapse
Affiliation(s)
- Wei Xu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| | - Ling Lin
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| | - An Liu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| | - Tuo Zhang
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| | - Sheng Zhang
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| | - Yinhua Li
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| | - Jinhua Chen
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| | - Zhihua Gong
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| | - Zhonghua Liu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| | - Wenjun Xiao
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| |
Collapse
|
18
|
Effects of Resveratrol on Growth Performance, Intestinal Development, and Antioxidant Status of Broilers under Heat Stress. Animals (Basel) 2021; 11:ani11051427. [PMID: 34067505 PMCID: PMC8155960 DOI: 10.3390/ani11051427] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Broilers have unique physiological characteristics, no sweat glands and full of feathers, which makes it difficult to dissipate heat in high-temperature environments and is prone to heat stress (HS). HS has strong adverse effects on the meat production, growth performance, intestinal morphology, mortality and welfare of broilers, which can be alleviated by nutrition regulation. Resveratrol has been found to reduce the damage of HS on meat quality, immune and inflammatory response of broilers. However, there are few reports on the effects of resveratrol on the intestinal development and antioxidant capacity of broilers under HS. We demonstrated that resveratrol could improve the intestinal development and growth performance of broilers under HS. Besides, these findings suggest that resveratrol may offer an effective nutritional strategy to improve intestinal antioxidant function by regulating the expression of critical factors in the Nrf2 signaling pathway. Abstract The study investigated resveratrol’s effect on growth performance, intestinal development, and antioxidant capacity of broilers subjected to heat stress (HS). A total of 162 21-day-old male AA broilers were randomly divided into 3 treatment groups with 6 replicates of 9 birds each. The 3 treatment groups were as follows: the control (CON), in which broilers were housed at 22 ± 1 °C for 24 h day−1, and the HS and HS + resveratrol (400 mg/kg) groups, in which broilers were housed at 33 ± 1 °C for 10 h a day from 8:00 to 18:00 and 22 ± 1 °C for rest of the time. Results indicated that birds in the HS group exhibited lower (p < 0.05) final body weight (BW) and average daily gain (ADG) compared with birds in the CON group. HS birds also had lower (p < 0.05) relative jejunum weight, relative ileum and jejunum length, jejunal villus height, and villus height to crypt depth ratios than the CON group. The activities of glutathione peroxidase (GPX), glutathione S-transferase (GST), superoxide dismutase (SOD), and the mRNA levels of NF-E2-related factor 2 (Nrf2), SOD1, and GPX were also lower (p < 0.05) in the HS than CON group. The HS group had higher (p < 0.05) protein carbonyl (PC) contents and Kelch-like ECH-associated protein 1 (Keap1) mRNA levels. Compared with HS group, the HS + resveratrol group exhibited higher (p < 0.05) BW and ADG, relative jejunum weight, relative length of ileum, jejunal villus height, activities of GPX and GST, and mRNA levels of Nrf2 and SOD1, but they had lower (p < 0.05) PC content and Keap1 mRNA levels. In conclusion, resveratrol can improve the intestinal development and antioxidant function of broilers under HS, and therefore improve growth performance. The mechanism by which resveratrol enhances the intestinal antioxidant capacity is mediated by Nrf2 signaling pathway.
Collapse
|
19
|
Liu H, Li J, Lin S, Liu T, Zheng C. Effects of dietary fennel ( Foeniculum vulgare Mill.) seed powder supplementation on growth performance, nutrient digestibility, small intestinal morphology, and carcass traits of broilers. PeerJ 2021; 9:e10308. [PMID: 33575119 PMCID: PMC7847707 DOI: 10.7717/peerj.10308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/15/2020] [Indexed: 11/20/2022] Open
Abstract
Background With the increasing demands in livestock and poultry breeding and the growing number of food-borne diseases, it is necessary to practice food safety and develop strategies to produce healthy livestock. Fennel (Foeniculum vulgare Mill.) has been used as an additive in poultry production by some researchers, but there are few studies on the systemic beneficial effects of dietary fennel seed powder supplementation on broilers. Therefore, this study aimed to investigate the effect of dietary fennel seed powder supplementation on feed intake, the apparent metabolic rate of nutrients, intestinal morphology, and carcass traits in Cobb broilers. Methods A single-factor experimental design was used. In total, 160 1-day-old Cobb broiler chicks were randomly assigned to four treatments, with four replicates each (n = 10/replicate). Broilers in the control (CN) group were fed a basal diet without fennel seed powder, and broilers in the treatment groups were fed a basal diet supplemented with 0.15% (LF), 0.30% (MF), or 0.45% (HF) fennel seed powder, respectively. Feeding trials lasted for 42 days under the conditions of ad libitum access to feed and water, and 24-h illumination. During the third and sixth weeks, digestive and metabolic assays were carried out. When the broilers were 42 days old, one chicken with a weight close to the average was selected from each repetition, euthanized by an intravenous injection of 5% sodium pentobarbital, and carcass traits were measured and intestinal samples were collected for morphological assessment. Results There was no significant difference in growth performance of broilers (P > 0.05). The breast muscle percentage, fat width and fat width index, breast muscle area, and breast muscle area index of broilers in the LF group were higher than those in other groups (P < 0.05). Jejunum weight and length were higher in MF than in CN and LF broilers (P < 0.05). Additionally, duodenal villi height, ileal villi height, and ileal wall thickness were higher in MF than in CN broilers (P < 0.05). There were no significant differences in nutrient utilization among all groups (P > 0.05), except that the ash apparent metabolic rate in MF broilers at 21 days of age was higher than that in LF broilers (P < 0.05). In conclusion, dietary supplementation with a moderate concentration of fennel affects carcass performance, and intestinal morphology, and promotes the growth and development of broilers.
Collapse
Affiliation(s)
- Huihui Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lan Zhou, Gansu, China
| | - Jinlu Li
- College of Animal Science and Technology, Gansu Agricultural University, Lan Zhou, Gansu, China
| | - Shuqin Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lan Zhou, Gansu, China
| | - Ting Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lan Zhou, Gansu, China
| | - Chen Zheng
- College of Animal Science and Technology, Gansu Agricultural University, Lan Zhou, Gansu, China
| |
Collapse
|
20
|
Yu M, Li Z, Wang G, Cui Y, Rong T, Tian Z, Liu Z, Li J, Chen W, Ma X. Dietary supplementation with citrus extract alters the plasma parameters, circulating amino acid profiles and gene expression of small intestinal nutrient transporters in Chinese yellow-feathered broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5126-5135. [PMID: 32469078 DOI: 10.1002/jsfa.10525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/11/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND This study evaluated the effects of citrus extract (CE) on growth performance, plasma amino acid (AA) profiles, intestinal development and small intestine AA and peptide transporter expression levels in broilers. A total of 540 one-day-old yellow-feathered broilers were fed a basal diet without any antibiotic (control group), or a basal diet containing 10 mg kg-1 zinc bacitracin (antibiotic group), or a basal diet supplemented with 10 mg kg-1 CE (CE group). After 63 days of feeding, two broilers per pen were slaughtered to collect tissues for further analysis. RESULTS Results showed that CE increased (P < 0.05) the final body weight and average daily gain from day 1 to 63, and decreased (P < 0.05) the feed/gain ratio from day 1 to 63. Dietary CE supplementation increased (P < 0.05) plasma total protein, albumin and glucose concentration, and decreased (P < 0.05) urea concentration. CE supplementation increased (P < 0.05) the villus height in the ileum and the villus height/crypt depth in the jejunum and ileum, but decreased (P < 0.05) the crypt depth in the jejunum and ileum. CE supplementation increased (P < 0.05) most plasma essential AA concentrations. Additionally, CE supplementation upregulated (P < 0.05) ASCT1, b0,+ AT, B0 AT1, EAAT3, rBAT, y+ LAT2 and PepT1 expression in the jejunum, and b0,+ AT, EAAT3, rBAT, y+ LAT2, CAT1 and PepT1 in the ileum. CONCLUSIONS Collectively, our results indicated that CE supplementation promotes intestinal physiological absorption of AAs by upregulating gene expression of small intestinal key AA and peptide transporters, thereby enhancing the growth performance of broilers. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miao Yu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhenming Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Gang Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yiyan Cui
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ting Rong
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhimei Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhichang Liu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiazhou Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Weidong Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
21
|
Zhang C, Wang C, Zhao X, Chen K, Geng Z. Effect of L-theanine on meat quality, muscle amino acid profiles, and antioxidant status of broilers. Anim Sci J 2020; 91:e13351. [PMID: 32219964 DOI: 10.1111/asj.13351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/31/2019] [Accepted: 01/20/2020] [Indexed: 11/30/2022]
Abstract
This study investigated the effect of L-theanine on carcass traits, meat quality, muscle antioxidant capacity, and amino acid (AA) profiles of broilers. Three hundred 1-day-old Ross 308 male broilers were randomly allotted to five groups with six replicates. Birds were fed the basal diet or basal diet with 300, 600, 900, or 1,500 mg/kg L-theanine for 42 consecutive days. The results showed that L-theanine quadratically increased dressing percentage, eviscerated percentage, and leg muscle yield (p < .05). Meanwhile, drip loss, cooking loss, shear force, L*24h, and muscle lactate content decreased quadratically in response to dietary L-theanine supplementation (p < .05), while pH24h and muscle glycogen content were quadratically improved by L-theanine (p < .05). Notably, the contents of muscle malondialdehyde and protein carbonyl, and the activities of muscle total antioxidant capacity, catalase, and glutathione peroxidase decreased quadratically in response to dietary L-theanine supplementation (p < .05), suggesting that the oxidative stress level of muscle was decreased quadratically. Moreover, L-theanine quadratically increased the concentrations of most of muscle essential AA, nonessential AA, and flavor AA (p < .05). In conclusion, L-theanine can be used as a valuable feed additive to modulate carcass traits, meat quality, muscle antioxidant status, and AA profiles of boilers, and its optimum addition level is 600 mg/kg based on the present study.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China.,Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding of Anhui Province, Hefei, Anhui, China
| | - Chi Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaohui Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Kaikai Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China.,Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
22
|
Saeed M, Khan MS, Kamboh AA, Alagawany M, Khafaga AF, Noreldin AE, Qumar M, Safdar M, Hussain M, Abd El-Hack ME, Chao S. L-theanine: an astounding sui generis amino acid in poultry nutrition. Poult Sci 2020; 99:5625-5636. [PMID: 33142480 PMCID: PMC7647716 DOI: 10.1016/j.psj.2020.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/14/2020] [Accepted: 07/25/2020] [Indexed: 01/30/2023] Open
Abstract
L-theanine (γ-Glutamylethylamide) is a nonprotein water soluble amino acid (AA) mostly found in leaves of Camellia sinensis (green tea). This is a key component of green tea and is considered as the most abundant form of total AAs in green tea (i.e., about 50%). L-theanine is an exclusive taste ingredient of tea producing an attractive flavor and aroma in tea. It has biological effects such as antioxidant, growth promoter, immune booster, anti-stresser, hepatoprotective, antitumor, antiaging, antimicrobial, anti-inflammatory, and antianxiety activities that are worth noticing. It could reduce the oxidative impairment by reducing the synthesis of reactive oxygen species, oxidative parameters, and lipid damage as well as increasing the activity of antioxidant enzymes. The oral ingestion of L-theanine enhanced γδ T-cell proliferation. Therefore, it is being considered an essential compound of green tea that has the ability to improve immune function. The L-theanine can be used as a potential treatment for hepatic injury and immune-related liver diseases via the downregulation of the inflammatory response through the initiation of nitric oxide synthesis and glutathione production which are likely to be critical for the control of hepatic diseases as well as for the improvement of immune function. In addition, it could be used as a best natural feed additive with a potent antistressor by decreasing the levels of corticosterone, dopamine, and noradrenaline. After systematically reviewing the literature, it is noticed that most studies were carried out on mice, pig, human, and butterfly; while dietary supplementation studies of L-theanine in animal and poultry especially among broilers are very limited because of less awareness of this AA. So, the aim of this review is to encourage the veterinarian and poultry researchers to conduct more research at the molecular level about this AA to expose its more beneficial effects and its mechanism of absorption for potential use of this unique green tea AA in poultry nutrition.
Collapse
Affiliation(s)
- Muhammad Saeed
- Northwest A&F University, Yangling 712100, PR China; Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Muhammad Sajjad Khan
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan.
| | - Asghar Ali Kamboh
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam 70060, Pakistan
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22516, Egypt
| | - Muhammad Qumar
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Muhammad Safdar
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Mubashar Hussain
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Sun Chao
- Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
23
|
Protective effects of L-theanine on rats with dextran sulfate sodium-induced inflammatory bowel disease. Arch Pharm Res 2020; 43:821-862. [PMID: 32720164 DOI: 10.1007/s12272-020-01248-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
The aim of this study is to evaluate the anti-inflammatory and protective effects of L-theanine in inflammatory bowel disease (IBD) and to identify the underlying molecular mechanisms. Rats were pre-treated with L-theanine at 0, 50, 200, or 800 mg/kg/day. IBD was induced in rats using dextran sulfate sodium (DSS). Histopathological analysis suggests that L-theanine can suppress DSS-induced IBD with significant inhibition of inflammation in large and small intestinal tissues. Moreover, the 200 mg/kg/day L-theanine-treated DSS group had higher body and small intestine weights, a lower disease activity index and expression of inflammatory factors than the DSS group without pre-treatment. In RNA sequencing and tandem mass tag labeling analyses, large number of mRNAs and proteins expression level differed when compared with the DSS-induced rats with and without 200 mg/kg/day L-theanine pre-treatment. Moreover, Kyoto Encyclopedia of Genes and Genomes pathway analysis indicates the anti-inflammatory activities of L-theanine in DSS-induced IBD, with a high representation of genes in "Cholesterol metabolism" and "Retinol metabolism" pathways. Analysis of protein-protein interaction networks further indicates the involvement of these two pathways. These studies suggest that medium-dose L-theanine pre-treatment could ameliorate DSS-induced IBD through molecular mechanisms involving cholesterol and retinol metabolism.
Collapse
|
24
|
Lu Y, Zou T, Wang Z, Yang J, Li L, Guo X, He Q, Chen L, You J. Dietary guanidinoacetic acid improves the growth performance and skeletal muscle development of finishing pigs through changing myogenic gene expression and myofibre characteristics. J Anim Physiol Anim Nutr (Berl) 2020; 104:1875-1883. [PMID: 32227536 DOI: 10.1111/jpn.13351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 02/02/2023]
Abstract
This study aimed to evaluate the effects of dietary guanidine acetic acid (GAA) supplementation on growth performance, carcass traits and the expression of muscle growth-related genes in finishing pigs. A total of 128 (81.03 ± 1.09 kg body weight) crossbred pigs (Duroc × Landrace ×Yorkshire) were blocked by body weight and allotted to 16 pens (eight pigs per pen), and pens were randomly assigned within blocks to one of five dietary treatments, with a basal diet (control group) or a basal diet supplemented with 0.03%, 0.06% and 0.09% GAA respectively. During the 60-day trial, GAA increased the average dairy gain (ADG) and average daily feed intake (ADFI) (p < .05). The back fat thickness of pigs fed 0.06% GAA was lower than other groups (p < .05). Pigs fed 0.06% GAA had improved lean meat percentage, loin muscle area, shear force and cross-sectional area of muscle fibre in comparison with control group (p < .05). The drop loss and the muscle fibre density in pigs fed 0.06% GAA were lower than control (p < .05). In addition, dietary GAA enhanced the expression of myosin heavy chain gene (MYH4), myogenic determination (Myod) and myogenic factor 5 (Myf5) in longissimus dorsi and carnitine palmitoyltransferase-1(CPT-1) in liver (p < .05). Meanwhile, GAA decreased the expression of Myostatin in longissimus dorsi and fatty acid synthase (FAS) in liver (p < .05). In conclusion, our results showed that appropriate dietary GAA supplementation (0.06%) promotes skeletal muscle development through changing myogenic gene expression and myofibre characteristics.
Collapse
Affiliation(s)
- Yafei Lu
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production, Nanchang, China
| | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production, Nanchang, China
| | - Zirui Wang
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production, Nanchang, China
| | - Jin Yang
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production, Nanchang, China
| | - Lanhai Li
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production, Nanchang, China
| | - Xiaobo Guo
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production, Nanchang, China
| | - Qin He
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production, Nanchang, China
| | - Liling Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production, Nanchang, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production, Nanchang, China
| |
Collapse
|
25
|
Hu H, Chen L, Dai S, Li J, Bai X. Effect of Glutamine on Antioxidant Capacity and Lipid Peroxidation in the Breast Muscle of Heat-stressed Broilers via Antioxidant Genes and HSP70 Pathway. Animals (Basel) 2020; 10:ani10030404. [PMID: 32121383 PMCID: PMC7143643 DOI: 10.3390/ani10030404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
This study investigated whether Glutamine (Gln) could be used as an additive to improve antioxidant capacity in the breast muscle of heat-stressed broilers. Two hundred and forty 22-day-old Arbor Acres broilers in the G1, G2, G3, and G4 groups (n = 60 each) were housed in a cyclic hot environment and fed the basal diet with 0%, 0.5%, 1.0%, and 1.5% Gln, respectively. Compared with the G1 group, dietary 1.5% Gln increased (p < 0.05) pH and b* values, but decreased (p < 0.05) L* cooking loss, drip loss, and water loss rate in breast meat of heat-stressed broilers. Malondialdehyde levels in the breast muscle were lower (p < 0.05) in 1.0% and 1.5% Gln groups than that of the heat-stress group. Compared with the G1 group, dietary 1.5% Gln increased (p < 0.05) catalase (CAT), glutathione, glutathione peroxidase (GSH-Px,) and total antioxidant capacity in the breast muscle of heat-stressed broilers. Furthermore, the CAT, GSH-Px, HSP70 mRNA expression levels, and HSP70 protein expression levels were increased (p < 0.05) in the G3 and G4 groups compared with the G1 group. In sum, Gln alleviated antioxidant capacity and lipid peroxidation in the breast muscle of heat-stressed broilers through antioxidant genes and HSP70 pathways.
Collapse
Affiliation(s)
- Hong Hu
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (H.H.); (J.L.)
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agriculture Science, Beijing 100193, China;
| | - Sifa Dai
- Department of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang 332005, China;
| | - Jiaqi Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (H.H.); (J.L.)
| | - Xi Bai
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (H.H.); (J.L.)
- Correspondence: ; Tel.: +86-0550-6732-040
| |
Collapse
|