1
|
Ruan Y, Zhu X, Shen J, Chen H, Zhou G. Mechanism of Nicotiflorin in San-Ye-Qing rhizome for anti-inflammatory effect in ulcerative colitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155564. [PMID: 38554577 DOI: 10.1016/j.phymed.2024.155564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND The incidence of ulcerative colitis (UC) is on the rise globally and the development of drugs targeting UC is urgent. Finding the target of action of natural products is important for drug discovery, elucidation of drug action mechanism, and disease mechanism. San-Ye-Qing (SYQ), is an ancient herbal medicine, but whether the powder of its rhizome has pharmacological effects against UC and its mechanism of action are not clear. PURPOSE To evaluate the therapeutic effectiveness of rhizome powder of SYQ in treating UC, and conduct an isolation and characterization of the chemical constituents of the powder. Further, screen the most potent compounds among them and determine the potential mechanism for treating UC. METHODS In vivo, the therapeutic effect of SYQ's rhizome powder on UC was assessed by mice's body weight, DAI score, colon length, tissue MPO activity, serum inflammatory markers, etc. Additionally, HPLC was used to isolate and identify the specific chemical components of SYQ's rhizome powder. Then, the most effective compounds and their therapeutic targets were analysed and screened in SYQ rhizome powder using network pharmacology, combined with CCK-8 assay, NO release assay and molecular docking assay, in conjunction with CETSA, DARTS, SPR and enzyme activity assay. Finally, the biological effects of the key compound on the targets were validated using Western blot and ELISA. RESULTS In vivo, SYQ rhizome powder effectively restored mice's body weight, lowered DAI and pathological score, downregulated the expression of inflammatory biomarkers, and restored colon length, as well as the colonic epithelial and mucus barriers. Afterward, 9 compounds were isolated and identified from the powder of the rhizomes of SYQ by HPLC. Nicotiflorin is the primary compound in SYQ with the highest concentration. According to both CCK-8 and NO release tests, Nicotiflorin is also the most efficacious compound. Combined with network pharmacological prediction, molecular docking analysis, CETSA, DARTS, SPR and enzyme activity assay, Nicotiflorin may ultimately suppress inflammation by targeting p65 and inhibiting the NF-κB pathway, thereby attenuating the activation of NLRP3 inflammasome. To verify this conclusion, Western blot and ELISA experiments were conducted. CONCLUSIONS Our results suggest that the extract from SYQ rhizomes has therapeutic properties for UC. Its active ingredient Nicotiflorin exerted potent anti-UC effects by binding to p65 and inhibiting the activation of NF-κB and NLRP3 inflammasomes.
Collapse
Affiliation(s)
- Yun Ruan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, NO.20, Xisi Road, Nantong 226001, Jiangsu, China
| | - Xiaolin Zhu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, NO.20, Xisi Road, Nantong 226001, Jiangsu, China
| | - Jianbo Shen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, NO.20, Xisi Road, Nantong 226001, Jiangsu, China
| | - Hao Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, NO.20, Xisi Road, Nantong 226001, Jiangsu, China.
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, NO.20, Xisi Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
2
|
Ingrà C, Del Frari G, Favole M, Tumminelli E, Rossi D, Collina S, Prati M, Ferreira RB, Ferrandino A. Effects of Growing Areas, Pruning Wound Protection Products, and Phenological Stage on the Stilbene Composition of Grapevine ( Vitis vinifera L.) Canes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11465-11479. [PMID: 38739781 DOI: 10.1021/acs.jafc.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Applying plant protection products (PPP) on grapevine pruning wounds is a viticultural practice used to mitigate the spread of grapevine tuck disease, which is posing serious economic losses in the vine-wine industry. However, the impact of PPP on woody tissues remains unclear. Our study, conducted in two European vineyards, investigated the effects of Cuprocol, Tessior, Esquive, and Bentogran on stilbenes, in canes of Cabernet sauvignon and Syrah, at three phenological stages. Main stilbenes, quantified by HPLC-UV-DAD (1260 Agilent Infinity System) and identified by HPLC-ESI/MS (Thermo Scientific LCQ FLEET system), included E-resveratrol, E-ε-viniferin, E-piceatannol, and E-polydatin. Canes exhibited varying proportions of individual stilbenes, reflecting differences based on climatic conditions and phenological phases, rather than on the application of specific PPP. Vines grown in cool-climate conditions exhibited higher levels of E-resveratrol, whereas vines from the Mediterranean climate area exhibited higher levels of E-ε-viniferin. We also observed divergences in the accumulation trend of wood stilbenes throughout the season in canes collected in the two different growing areas.
Collapse
Affiliation(s)
- Chiara Ingrà
- DISAFA-Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Largo Braccini 2, 10095 Torino, Grugliasco, Italy
| | - Giovanni Del Frari
- LEAF-Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Miriam Favole
- DISAFA-Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Largo Braccini 2, 10095 Torino, Grugliasco, Italy
| | - Elisabetta Tumminelli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Daniela Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Marco Prati
- DISAFA-Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Largo Braccini 2, 10095 Torino, Grugliasco, Italy
| | - Ricardo Boavida Ferreira
- LEAF-Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Alessandra Ferrandino
- DISAFA-Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Largo Braccini 2, 10095 Torino, Grugliasco, Italy
| |
Collapse
|
3
|
Peng J, Lu C, Luo Y, Su X, Li S, Ho CT. Hypoglycemic effects and associated mechanisms of resveratrol and related stilbenes in diet. Food Funct 2024; 15:2381-2405. [PMID: 38376230 DOI: 10.1039/d3fo04761j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Hyperglycemia has become a global health problem due to changes in diet and lifestyle. Most importantly, persistent hyperglycemia can eventually develop into type II diabetes. While the usage of current drugs is limited by their side effects, stilbenes derived from fruits and herbal/dietary plants are considered as important phytochemicals with potential hypoglycemic properties. Herein, the most common stilbenoids in consumed foods, i.e. resveratrol, pterostilbene, piceatannol, oxyresveratrol, and 2,3,5,4'-tetrahydroxystilbene-2-O-β-glucopyranoside (THSG), are reviewed in this paper. These stilbenes are found to regulate glucose homeostasis via (a) modulation of feeding behaviour and nutrition absorption; (b) restoration of insulin signalling by enhancing insulin production/insulin sensitivity; (c) improvement of gut permeability, gut microbial profile and resulting metabolomes; and (d) amelioration of circadian rhythm disruption. In this review, we have summarized the underlying mechanisms for the hypoglycemic effects of the five most common dietary stilbenoids listed above, providing a comprehensive framework for future study and applications.
Collapse
Affiliation(s)
- Jie Peng
- Department of Food Science, Rutgers University, New Brunswick 08901, USA
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China.
| | - Yue Luo
- Department of Food Science, Rutgers University, New Brunswick 08901, USA
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China.
| | - Shiming Li
- Department of Food Science, Rutgers University, New Brunswick 08901, USA
- College of Life Sciences, Huanggang Normal University, Hubei 438000, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick 08901, USA
| |
Collapse
|
4
|
Ferreyra S, Bottini R, Fontana A. Background and Perspectives on the Utilization of Canes' and Bunch Stems' Residues from Wine Industry as Sources of Bioactive Phenolic Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37267502 DOI: 10.1021/acs.jafc.3c01635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Viticulture activity produces a significant amount of grapevine woody byproducts, such as bunch stems and canes, which constitute potential sources of a wide range of phenolic compounds (PCs) with purported applications. Recently, the study of these byproducts has been increased as a source of health-promoting phytochemicals. Antioxidant, antimicrobial, antifungal, and antiaging properties have been reported, with most of these effects being linked to the high content of PCs with antioxidant properties. This Review summarizes the data related to the qualitative and quantitative composition of PCs recovered from canes and bunch stems side streams of the wine industry, the influence that the different environmental and storage conditions have on the final concentration of PCs, and the current reported applications in specific technological fields. The objective is to give a complete valuation of the key factors to consider, starting from the field to the final extracts, to attain the most suitable and stable characterized product.
Collapse
Affiliation(s)
- Susana Ferreyra
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina
| | - Rubén Bottini
- Instituto de Veterinaria Ambiente y Salud, Universidad Juan A. Maza, Lateral Sur del Acceso Este 2245, 5519 Guaymallén, Argentina
| | - Ariel Fontana
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina
| |
Collapse
|
5
|
Mohan Kumar R, Anantapur R, Peter A, H V C. Computational investigation of phytoalexins as potential antiviral RAP-1 and RAP-2 (Replication Associated Proteins) inhibitor for the management of cucumber mosaic virus (CMV): a molecular modeling, in silico docking and MM-GBSA study. J Biomol Struct Dyn 2022; 40:12165-12183. [PMID: 34463218 DOI: 10.1080/07391102.2021.1968500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Replication Associated Proteins (RAP-1 and RAP-2) encoded by CMV ORF 1a and ORF 2a are required for the different stages of the viral replication cycle; being multi-functional, they are good inhibitory targets for anti-CMV compounds. As a new perspective for sustainable crop improvement, we investigated the natural plant-based antimicrobial phytoalexins for their anti-CMV potential. Here, we modeled and predicted the functional domains of RAP-1 and RAP-2, docked with a ligand library comprising 128 phytoalexins reported with broad-spectrum activity, determined their binding energies (BEs), molecular interactions, and inhibition constant (Ki), and compared with the reference plant antiviral compounds ribavirin, ningnanmycin, and benzothiadiazole (BTH). Further, the change in Gibb's free energy of binding (ΔG) and the per residue contribution of the selected top-scored ligand molecules was assessed by the prime MM-GBSA approach. Our results revealed RAP-1 as a discontinuous two-domain and RAP-2 as a multi-domain protein. The compounds glyceollidin (9.8 kcal/mol) and moracin D (7.8 kcal/mol) topped the list for RAP-1 and RAP-2 protein targets respectively and also, the lead molecules had energetically more favorable and comparative ΔG values than the top-scored plant antiviral agent ningnanmycin. The evaluation of in vitro toxicity and agrochemical-like properties showed the least toxicity of these anti-CMV compounds. Taken together, our results provide new insights in understanding the inhibitory effects of phytoalexins towards the RAP proteins and could be employed as new promising anti-CMV candidate compounds for their application in agriculture as biopesticides to combat the CMV disease incidence.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Roshni Mohan Kumar
- Department of Plant Biotechnology, GKVK, University of Agricultural Sciences, Bengaluru, India
| | - Ramachandra Anantapur
- Department of Plant Biotechnology, GKVK, University of Agricultural Sciences, Bengaluru, India
| | - Anitha Peter
- Department of Plant Biotechnology, GKVK, University of Agricultural Sciences, Bengaluru, India
| | - Chaitra H V
- Department of Plant Biotechnology, GKVK, University of Agricultural Sciences, Bengaluru, India
| |
Collapse
|
6
|
Temperature and light conditions affect stability of phenolic compounds of stored grape cane extracts. Food Chem 2022; 405:134718. [DOI: 10.1016/j.foodchem.2022.134718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
|
7
|
Besrukow P, Irmler J, Schmid J, Stoll M, Winterhalter P, Schweiggert R, Will F. Variability of Constitutive Stilbenoid Levels and Profiles in Grape Cane ( Vitis vinifera L.) Depending upon Variety and Clone, Location in the Vineyard, Pruning Time, and Vintage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4342-4352. [PMID: 35352562 DOI: 10.1021/acs.jafc.2c00276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stilbenoids in grape cane (Vitis vinifera L.) are bioactive compounds relevant for plant defense and the potential valorization of this byproduct. Our screening of grape cane from 102 varieties showed constitutive stilbenoid levels in a wide range (557-7748 mg/kg of dry weight). Analyses of genetically distinct clones of selected cultivars unraveled that intravarietal variability (e.g., cv. Riesling, 3236-6541 mg/kg) was higher than that across samples from a single clone but different vineyard positions (3017-3710 mg/kg). Furthermore, stilbenoid levels in samples obtained in October, December, and February (3 years, 2017-2019) showed pronounced quantitative and qualitative variability and the highest yields upon December pruning. For instance, vitisin B and ε-viniferin in cv. Pinot Noir and Accent were predominant in 2017 and 2019 (both >90% of total stilbenoids) but not in 2018 (both <55%) when temperatures were high and precipitation low. In brief, we report the variability of stilbenoid levels in grape cane depending upon genetic and environmental factors.
Collapse
Affiliation(s)
- Paul Besrukow
- Department of Beverage Research, Geisenheim University, von-Lade-Straße 1, 65366 Geisenheim, Germany
| | - Jan Irmler
- Department of Beverage Research, Geisenheim University, von-Lade-Straße 1, 65366 Geisenheim, Germany
| | - Joachim Schmid
- Department of Grapevine Breeding, Geisenheim University, von-Lade-Straße 1, 65366 Geisenheim, Germany
| | - Manfred Stoll
- Department of General and Organic Viticulture, Geisenheim University, von-Lade-Straße 1, 65366 Geisenheim, Germany
| | - Peter Winterhalter
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany
| | - Ralf Schweiggert
- Department of Beverage Research, Geisenheim University, von-Lade-Straße 1, 65366 Geisenheim, Germany
| | - Frank Will
- Department of Beverage Research, Geisenheim University, von-Lade-Straße 1, 65366 Geisenheim, Germany
| |
Collapse
|
8
|
Loupit G, Prigent S, Franc C, De Revel G, Richard T, Cookson SJ, Fonayet JV. Polyphenol Profiles of Just Pruned Grapevine Canes from Wild Vitis Accessions and Vitis vinifera Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13397-13407. [PMID: 32227944 DOI: 10.1021/acs.jafc.9b08099] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Grapevine canes are an abundant byproduct of the wine industry. The stilbene contents of Vitis vinifera cultivars have been largely studied, but little is known about the stilbene contents of wild Vitis accessions. Moreover, there have only been few studies on the quantification of other phenolic compounds in just pruned grapevine canes. In our study, we investigated the polyphenol profile of 51 genotypes belonging to 15 Vitis spp. A total of 36 polyphenols (20 stilbenes, 6 flavanols, 7 flavonols, and 3 phenolic acids) were analyzed by high-performance liquid chromatography coupled with a triple quadrupole mass spectrometer. Our results suggest that some wild Vitis accessions could be of interest in terms of the concentration of bioactive polyphenols and that flavanols contribute significantly to the antioxidant activity of grapevine cane extracts. To the best of our knowledge, this is the most exhaustive study of the polyphenolic composition of grapevine canes of wild Vitis spp.
Collapse
Affiliation(s)
- Grégoire Loupit
- Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), Bordeaux Sciences Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut des Sciences de la Vigne et du Vin (ISVV), Université de Bordeaux, 33882 Villenave d'Ornon, France
| | - Sylvain Prigent
- UMR 1332 Biologie du Fruit et Pathologie, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre INRAE de Nouvelle Aquitaine-Bordeaux, Avenue Edouard Bourlaux, 33140 Villenave d'Ornon, France
- Plateforme Bordeaux Metabolome, INRAE, Université de Bordeaux, CNRS, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d'Ornon, France
| | - Céline Franc
- Université de Bordeaux, Unité de Recherche Oenologie, EA 4577, USC 1366 Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut des Sciences de la Vigne et du Vin (ISVV), 33882 Villenave d'Ornon France
| | - Gilles De Revel
- Université de Bordeaux, Unité de Recherche Oenologie, EA 4577, USC 1366 Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut des Sciences de la Vigne et du Vin (ISVV), 33882 Villenave d'Ornon France
| | - Tristan Richard
- Université de Bordeaux, Unité de Recherche Oenologie, EA 4577, USC 1366 Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut des Sciences de la Vigne et du Vin (ISVV), 33882 Villenave d'Ornon France
- Plateforme Bordeaux Metabolome, Université de Bordeaux, INRAE, CNRS, MetaboHUB, 33140 Villenave d'Ornon, France
| | - Sarah Jane Cookson
- Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), Bordeaux Sciences Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut des Sciences de la Vigne et du Vin (ISVV), Université de Bordeaux, 33882 Villenave d'Ornon, France
| | - Josep Valls Fonayet
- Université de Bordeaux, Unité de Recherche Oenologie, EA 4577, USC 1366 Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut des Sciences de la Vigne et du Vin (ISVV), 33882 Villenave d'Ornon France
- Plateforme Bordeaux Metabolome, Université de Bordeaux, INRAE, CNRS, MetaboHUB, 33140 Villenave d'Ornon, France
| |
Collapse
|