1
|
Avcioglu NH. Enhanced bacterial cellulose production by Komagataeibacter species and Hibiscus sabdariffa herbal tea. Int J Biol Macromol 2024; 276:133904. [PMID: 39084992 DOI: 10.1016/j.ijbiomac.2024.133904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024]
Abstract
This study proposed Hibiscus sabdariffa as a novel substrate for BC production with Komagataeibacter species and their consortia. K. intermedius is found as the most efficient producer (5.98 g/L BC, 3.56 × 10-2 g-1 h-1 productivity rate) following K. maltaceti (4.44 g/L BC, 2.64 × 10-2 g-1 h-1 productivity rate) and K. nataicola (3.67 g/L BC, 2.18 × 10-2 g-1 h-1 productivity rate). Whereas agitation increased BC production with K. nataicola (1.22-fold, 4.49 g/L BC), K. maltaceti (1.24-fold, 5.52 g/L BC) and K. intermedius (1.27-fold, 7.63 g/L BC), irregular shaped BC was obtained. This could be a novel result as Komagataeibacter consortia increased BC production by 1.17-2.01-fold compared to monocultures resulting as 8.11 g/L BC through the co-cultivation of K. maltaceti-K. intermedius. Maximum increase was found to be 1.75-fold (1.79-fold WHC), occurring with monoculture of K. maltaceti, while 1.94-fold (1.26-fold WHC) with K. maltaceti-K. intermedius consortium when H. sabdariffa-based media compared Hestrin-Schramm media. Based on these results, this could be a novel result as H. sabdariffa-based media may replace the use of HS media in BC production by means of a bioactive content-rich plant and obtaining 3-D ultrafine porous structure with high thermal resistant (∼460-500 °C) BC with mono and co-cultivation of Komagataeibacter species to be used in industrial area.
Collapse
Affiliation(s)
- Nermin Hande Avcioglu
- Hacettepe University, Faculty of Science, Biology Department, Biotechnology Section, Beytepe, Ankara, Turkey.
| |
Collapse
|
2
|
Liu Y, Deng Y, Yang Y, Dong H, Li L, Chen G. Comparison of different drying pretreatment combined with ultrasonic-assisted enzymolysis extraction of anthocyanins from Lycium ruthenicum Murr. ULTRASONICS SONOCHEMISTRY 2024; 107:106933. [PMID: 38865900 PMCID: PMC11222793 DOI: 10.1016/j.ultsonch.2024.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
Extraction of anthocyanins from Lycium ruthenicum Murr. (L. ruthenicum) is a notable challenge in food production, requiring methods that balance efficiency and safety. In this study, we conducted a comparative analysis the extraction of anthocyanins by natural air drying (NAD), vacuum freeze drying (VFD), hot air drying (HAD), and vacuum microwave drying (MVD) combined with ultrasonic-assisted enzymolysis extraction (UAEE). The results demonstrated that the extraction yield and antioxidant activity of anthocyanins were significantly higher in VFD. This phenomenon can be attributed to the modification of raw material's microstructure, leading to an increased extraction yield of specific anthocyanins such as Cyanidin-3-galactoside, Delphinidin chloride, Cyanidin, and Petunidin. According to the pretreatment results, the extraction process of anthocyanins was further optimized. The highest yield (3.16 g/100 g) was obtained in following conditions: 0.24 % pectinase, 48 °C, solid:liquid = 1:21, and 21 min ultrasonic time. This study improves the commercial value and potential application of L. ruthenicum in food industry.
Collapse
Affiliation(s)
- Yuxing Liu
- College of Food, Shihezi University, Shihezi 832000, China
| | - Yu Deng
- College of Food, Shihezi University, Shihezi 832000, China
| | - Yulong Yang
- College of Food, Shihezi University, Shihezi 832000, China
| | - Hao Dong
- Shihezi Quality and Metrology Inspection Institute, Shihezi 832000, China
| | - Lingling Li
- College of Food, Shihezi University, Shihezi 832000, China.
| | - Guogang Chen
- College of Food, Shihezi University, Shihezi 832000, China.
| |
Collapse
|
3
|
Morya S, Menaa F, Lourenço-Lopes C, Jimenez-Lopez C, Khalid W, Moreno A, Ikram A, Khan KA, Ramniwas S, Mugabi R. An Overview on Flavor Extraction, Antimicrobial and Antioxidant Significance, and Production of Herbal Wines. ACS OMEGA 2024; 9:16893-16903. [PMID: 38645323 PMCID: PMC11024944 DOI: 10.1021/acsomega.3c09887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 04/23/2024]
Abstract
Wine has been utilized as a source for medicinal preparations, combined with various herbs, to treat particular ailments and disorders. By utilizing herb extracts, regular but limited consumption of these herbal wines helps to decrease the need for prescription medications to treat a variety of ailments. The diversity and the composition of the yeast micropopulation significantly contribute to the sensory characteristics of wine. A particular metabolic activity characterizes the growth of each wine yeast species, which determines the concentrations of flavor compounds in the final wine. Numerous herbs, such as tulsi, ginger, aloe vera, tea, amla, lemongrass, and peppermint, are used in the preparation of herbal wines, where either the herb or herbal blends are primarily used as the substrate. The variants provided improved accuracy, increased acceptability, and broader uses for the novel product. Herbal wines pave the way to provide nutraceuticals to consumers and protection against pathogenic microorganisms and inflammation through their richness in antioxidants. The existing herbal wines and their health advantages are discussed in this Review, along with some new directions for the herbal wine business.
Collapse
Affiliation(s)
- Sonia Morya
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Farid Menaa
- Department
of Internal Medicine and Nanomedicine, California
Innovations Corporation, San Diego, California 92037, United States
| | - Catarina Lourenço-Lopes
- Nutrition
and Bromatology Group, Analytical and Food Chemistry Department, Faculty
of Food Science and Technology, University
of Vigo, 36310 Vigo, Pontevedra, Spain
| | | | - Waseem Khalid
- Department
of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla La Mancha, 13071 Ciudad Real, Spain
- University
Institute of Food Science and Technology, The University of Lahore, Lahore, Punjab 54000, Pakistan
| | - Andres Moreno
- Department
of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla La Mancha, 13071 Ciudad Real, Spain
| | - Ali Ikram
- University
Institute of Food Science and Technology, The University of Lahore, Lahore, Punjab 54000, Pakistan
| | - Khalid Ali Khan
- Applied College,
Center of Bee Research and its Products, Unit of Bee Research and
Honey Production, and Research Center for Advanced Materials Science
(RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Applied College, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Seema Ramniwas
- University
Centre for Research and Development, Chandigarh
University, Gharuan, Mohali, Punjab 140413, India
| | - Robert Mugabi
- Department
of Food Technology and Nutrition, Makerere
University, Kampala, Uganda
| |
Collapse
|
4
|
Vega EN, Ciudad-Mulero M, Fernández-Ruiz V, Barros L, Morales P. Natural Sources of Food Colorants as Potential Substitutes for Artificial Additives. Foods 2023; 12:4102. [PMID: 38002160 PMCID: PMC10670170 DOI: 10.3390/foods12224102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, the demand of healthier food products and products made with natural ingredients has increased overwhelmingly, led by the awareness of human beings of the influence of food on their health, as well as by the evidence of side effects generated by different ingredients such as some additives. This is the case for several artificial colorants, especially azo colorants, which have been related to the development of allergic reactions, attention deficit and hyperactivity disorder. All the above has focused the attention of researchers on obtaining colorants from natural sources that do not present a risk for consumption and, on the contrary, show biological activity. The most representative compounds that present colorant capacity found in nature are anthocyanins, anthraquinones, betalains, carotenoids and chlorophylls. Therefore, the present review summarizes research published in the last 15 years (2008-2023) in different databases (PubMed, Scopus, Web of Science and ScienceDirect) encompassing various natural sources of these colorant compounds, referring to their obtention, identification, some of the efforts made for improvements in their stability and their incorporation in different food matrices. In this way, this review evidences the promising path of development of natural colorants for the replacement of their artificial counterparts.
Collapse
Affiliation(s)
- Erika N. Vega
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (M.C.-M.); (V.F.-R.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - María Ciudad-Mulero
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (M.C.-M.); (V.F.-R.)
| | - Virginia Fernández-Ruiz
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (M.C.-M.); (V.F.-R.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Patricia Morales
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (M.C.-M.); (V.F.-R.)
| |
Collapse
|
5
|
Nansu W, Ross S, Waisarikit A, Ross GM, Charoensit P, Suphrom N, Mahasaranon S. Exploring the Potential of Roselle Calyx and Sappan Heartwood Extracts as Natural Colorants in Poly(butylene Succinate) for Biodegradable Packaging Films. Polymers (Basel) 2023; 15:4193. [PMID: 37896436 PMCID: PMC10610882 DOI: 10.3390/polym15204193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Recently, there has been a growing concern among consumers regarding the safety of packaging products, particularly due to the presence of potentially harmful substances like synthetic pigments and inorganic dyes. These substances, which are often used to attract consumer attention, can migrate and contaminate products over extended shelf storage periods. To address this issue, the focus of this research was the development of a biodegradable packaging film using poly(butylene succinate) (PBS) incorporated with natural colorants extracted from roselle (RS) and sappan heartwood (SP). RS and SP serve as non-toxic and alternative pigments when compared to synthetic colorants. The biodegradable packaging films were prepared using blown film extrusion, encompassing different weight percentages of RS and SP (0.1%, 0.2%, and 0.3%). The films exhibited distinct colors, with RS films appearing pink to purple and SP films exhibiting an orange hue. The water vapor transmission rate slightly decreased with an increasing content of RS and SP extracts, indicating improved barrier properties. Additionally, the films showed reduced light transmittance, as evidenced by the UV-Vis light barrier results. The degree of crystallinity in the films was enhanced, as confirmed by X-ray diffraction and differential scanning calorimetry techniques. Regarding mechanical properties, the PBS/RS and PBS/SP films exhibited slight increases in tensile strength and elongation compared to neat PBS films. Moreover, the blended films demonstrated higher stability after undergoing an aging test, further highlighting their potential for use in biodegradable packaging applications. The key advantages of these films lie in their non-toxicity, biodegradability, and overall environmental friendliness.
Collapse
Affiliation(s)
- Wordpools Nansu
- Department of Chemistry, Faculty of Science and Centre of Excellence in Biomaterials, Naresuan University, Phitsanulok 65000, Thailand; (W.N.); (S.R.); (A.W.); (G.M.R.); (N.S.)
| | - Sukunya Ross
- Department of Chemistry, Faculty of Science and Centre of Excellence in Biomaterials, Naresuan University, Phitsanulok 65000, Thailand; (W.N.); (S.R.); (A.W.); (G.M.R.); (N.S.)
| | - Amonrut Waisarikit
- Department of Chemistry, Faculty of Science and Centre of Excellence in Biomaterials, Naresuan University, Phitsanulok 65000, Thailand; (W.N.); (S.R.); (A.W.); (G.M.R.); (N.S.)
| | - Gareth M. Ross
- Department of Chemistry, Faculty of Science and Centre of Excellence in Biomaterials, Naresuan University, Phitsanulok 65000, Thailand; (W.N.); (S.R.); (A.W.); (G.M.R.); (N.S.)
| | - Pensri Charoensit
- Faculty of Pharmaceutical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand;
| | - Nungruthai Suphrom
- Department of Chemistry, Faculty of Science and Centre of Excellence in Biomaterials, Naresuan University, Phitsanulok 65000, Thailand; (W.N.); (S.R.); (A.W.); (G.M.R.); (N.S.)
| | - Sararat Mahasaranon
- Department of Chemistry, Faculty of Science and Centre of Excellence in Biomaterials, Naresuan University, Phitsanulok 65000, Thailand; (W.N.); (S.R.); (A.W.); (G.M.R.); (N.S.)
| |
Collapse
|
6
|
Duque-Soto C, Expósito-Almellón X, García P, Pando ME, Borrás-Linares I, Lozano-Sánchez J. Extraction, Characterization, and Bioactivity of Phenolic Compounds-A Case on Hibiscus Genera. Foods 2023; 12:foods12050963. [PMID: 36900480 PMCID: PMC10000862 DOI: 10.3390/foods12050963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Phenolic compounds have recently gained interest, as they have been related to improvements in health and disease prevention, such as inflammatory intestinal pathologies and obesity. However, their bioactivity may be limited by their instability or low concentration in food matrices and along the gastrointestinal tract once consumed. This has led to the study of technological processing with the aim of optimizing phenolic compounds' biological properties. In this sense, different extraction systems have been applied to vegetable sources for the purpose of obtaining enriched phenolic extracts such as PLE, MAE, SFE, and UAE. In addition, many in vitro and in vivo studies evaluating the potential mechanisms of these compounds have also been published. This review includes a case study of the Hibiscus genera as an interesting source of phenolic compounds. The main goal of this work is to describe: (a) phenolic compound extraction by designs of experiments (DoEs) applied to conventional and advanced systems; (b) the influence of the extraction system on the phenolic composition and, consequently, on the bioactive properties of these extracts; and (c) bioaccessibility and bioactivity evaluation of Hibiscus phenolic extracts. The results have pointed out that the most used DoEs were based on response surface methodologies (RSM), mainly the Box-Behnken design (BBD) and central composite design (CCD). The chemical composition of the optimized enriched extracts showed an abundance of flavonoids, as well as anthocyanins and phenolic acids. In vitro and in vivo studies have highlighted their potent bioactivity, with particular emphasis on obesity and related disorders. This scientific evidence establishes the Hibiscus genera as an interesting source of phytochemicals with demonstrated bioactive potential for the development of functional foods. Nevertheless, future investigations are needed to evaluate the recovery of the phenolic compounds of the Hibiscus genera with remarkable bioaccessibility and bioactivity.
Collapse
Affiliation(s)
- Carmen Duque-Soto
- Department of Food Science and Nutrition, University of Granada, Campus Universitario s/n, 18071 Granada, Spain
| | - Xavier Expósito-Almellón
- Department of Food Science and Nutrition, University of Granada, Campus Universitario s/n, 18071 Granada, Spain
| | - Paula García
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - María Elsa Pando
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Isabel Borrás-Linares
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-958637083
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, University of Granada, Campus Universitario s/n, 18071 Granada, Spain
| |
Collapse
|
7
|
Basavaraja T, Joshi A, Sethi S, Arora B, Tomar BS, Varghese E, Yadav A. Extraction procedure of betalains pigments from hardy beetroot matrix and its stabilization. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Thippeswamy Basavaraja
- Division of Food Science and Postharvest Technology ICAR‐Indian Agricultural Research Institute New Delhi India
| | - Alka Joshi
- Division of Food Science and Postharvest Technology ICAR‐Indian Agricultural Research Institute New Delhi India
| | - Shruti Sethi
- Division of Food Science and Postharvest Technology ICAR‐Indian Agricultural Research Institute New Delhi India
| | - Bindvi Arora
- Division of Food Science and Postharvest Technology ICAR‐Indian Agricultural Research Institute New Delhi India
| | - Bhoopal Singh Tomar
- Division of Vegetable Sciences ICAR‐Indian Agricultural Research Institute New Delhi India
| | - Eldho Varghese
- Fishery Resources Assessment Division ICAR‐Central Marine Fisheries Research Institute Kochi India
| | - Ajay Yadav
- Division of Agro Produce Processing ICAR‐Central Institute of Agricultural Engineering Bhopal India
| |
Collapse
|
8
|
Sahraee S, Ghanbarzadeh B, Falcone PM. Application of mixture design methodology for development of high antioxidant fruity functional beverage. Food Sci Nutr 2022; 10:2245-2254. [PMID: 35844924 PMCID: PMC9281929 DOI: 10.1002/fsn3.2834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 11/19/2022] Open
Abstract
Three red color fruit juice (pomegranate (PJ), barberry (BJ), and grape juice (GJ)) and three plant extracts (cardamom essential oil (CE), ginger extract (GE), and hibiscus solution (HS)) were used for the development of different functional beverages. Organoleptic analysis was done to detect the most acceptable fruit juice blend. The physicochemical properties of the samples including total phenols, 1,1-diphenyl-2-picrylhydrazyl (DPPH) inhibition percent, anthocyanin, flavonoid, and vitamin C content of optimum fruit juice blend (60% PJ/20% BJ/20% GJ) were 121.57 µg gallic acid equivalent (GAE)/ml, 80.28%, 4.03 mg/L, 64.87 mg/100 ml, and 51.10 mg/100 ml, respectively. To determine the optimum level of extracts and essential oil (GE, CE, and HS) in fruit juice blends, the mixture design method was used and 14 runs (formulations) were obtained. In all formulations, samples containing HS had the highest content of antioxidant and active components and the statistical analysis indicated that the sample containing 0.5 CE/0.5 GE/1 HS (ml/100 ml) had the optimum content of antioxidant components. Thus, the results of this study introduce a functional drink possessing high polyphenols, antioxidants, anthocyanin, and vitamin C content.
Collapse
Affiliation(s)
- Samar Sahraee
- Department of Food Science and TechnologyFaculty of AgricultureUniversity of TabrizTabrizIran
| | - Babak Ghanbarzadeh
- Department of Food Science and TechnologyFaculty of AgricultureUniversity of TabrizTabrizIran
- Department of Food EngineeringFaculty of EngineeringNear East UniversityMersinTurkey
| | - Pasquale M. Falcone
- Department of Agricultural, Food and Environmental SciencesMarche Polytechnic UniversityAnconaItaly
| |
Collapse
|
9
|
A stability-indicating HPLC-UV method for the quantification of anthocyanin in Roselle ( Hibiscus Sabdariffa L.) spray-dried extract, oral powder, and lozenges. Heliyon 2022; 8:e09177. [PMID: 35368538 PMCID: PMC8971634 DOI: 10.1016/j.heliyon.2022.e09177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/17/2021] [Accepted: 03/17/2022] [Indexed: 11/22/2022] Open
Abstract
Hibiscus sabdariffa L. (H.S.) plant and its calyces have received much attention from researchers because of their potential medicinal and nutritional values. Calyces are the major source of anthocyanin in this plant. Therefore, a well-developed, efficient, and accurate analytical method is needed to assure proper standardization and control the quality of H.S. plant herbal and nutraceutical products. The objective of this work is to develop a simple, rapid, stability-indicating HPLC-UV method for the quantitative determination of anthocyanin in spray-dried aqueous extract (SDE), oral powder, and compressible lozenges formulations using Delphinidin-3-O-sambubioside (Dp3S) as a marker compound. The chromatographic conditions were optimized using Eclipse plus® C18 column. The mobile phase comprised water acidified with 0.2% formic acid (FA) and acetonitrile (ACN) (90:10, v/v) using a gradient system at a flow rate of 0.8 mL/min. The detection wavelength was 525 nm. The column was maintained at 45 °C, and the injection volume was 15 μL. The developed method was validated according to the international conference of harmonization (ICH) guidelines for linearity, detection and quantitation limits, accuracy, precision, specificity, and robustness. Forced degradation studies under acid, base, oxidation, heat, and U.V light, were performed on the pure compound, extract, and the H.S. developed formulations. Significant degradation of the compound was observed under all tested conditions except U.V. light, where degradation was minimum. There was no interference from impurities, degradation products, or excipients at the retention time of Dp3S 3.2 min indicating the specificity of the method. The developed method was statistically confirmed to be accurate, precise, and reproducible. This simple, rapid, and specific method can be employed efficiently to determine anthocyanin in H.S. plant extract and nutraceutical products.
Collapse
|
10
|
Idham Z, Putra NR, Aziz AHA, Zaini AS, Rasidek NAM, Mili N, Yunus MAC. Improvement of extraction and stability of anthocyanins, the natural red pigment from roselle calyces using supercritical carbon dioxide extraction. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101839] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Wang ZC, Yin YX, Ao HP, Yin H, Ren DF, Lu J. The shelf-life of chestnut rose beverage packaged in PEN/PET bottles under long term storage: A comparison to packaging in ordinary PET bottles. Food Chem 2021; 370:131044. [PMID: 34509940 DOI: 10.1016/j.foodchem.2021.131044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/21/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022]
Abstract
The shelf life of chestnut rose beverage is largely dependent on packaging method and storage temperature. In this study, we investigated the effects of packaging beverages in bottles made of either polyethylene terephthalate (PET) or PEN (polyethylene naphthalate)/PET and storage temperature (4, 25, 37, and 55 ℃) on the shelf life of chestnut rose beverage. The physicochemical parameters and enzyme activity of beverages were evaluated, and we found that at 4 °C, the vitamin C, superoxide dismutase, and total polyphenol contents of beverages stored in PEN/PET bottles increased by 9.95 ± 0.49%, 2.86 ± 0.13%, and 3.23 ± 0.09% respectively, compared to beverages in ordinary PET bottles. In addition, other characteristic indicators including total soluble solids, browning index, and color value were also significantly improved. A shelf-life model was established based on the Arrhenius equation, and it will help distributors and consumers to determine the storage time and optimal shelf life of chestnut rose beverage.
Collapse
Affiliation(s)
- Zi-Chun Wang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, People's Republic of China
| | - Yu-Xi Yin
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, People's Republic of China
| | - Huan-Ping Ao
- Guizhou Hongcai Gather Agriculture Investment Co., Ltd., Guizhou 561601, People's Republic of China
| | - Hao Yin
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, People's Republic of China
| | - Di-Feng Ren
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, People's Republic of China.
| | - Jun Lu
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food & Fermentation Industries, 100015 Beijing, People's Republic of China.
| |
Collapse
|
12
|
Phenolic Compounds from Leaves and Flowers of Hibiscus roseus: Potential Skin Cosmetic Applications of an Under-Investigated Species. PLANTS 2021; 10:plants10030522. [PMID: 33802222 PMCID: PMC8000889 DOI: 10.3390/plants10030522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
The use of plant extracts in skin-care cosmetics is a modern trend due to their richness in polyphenols that act as anti-aging molecules. Hibiscus roseus is a perennial species naturalized in Italy, with beautiful soft pink flowers; its phenolic composition and biological activities have not been studied yet. The aim of this study was to characterize and quantify the phenolics and to evaluate the antioxidant, sun protection factor (SPF), and anti-collagenase activities of the ethanolic extracts of H. roseus leaves (HL) and flowers (HF). p-Coumaric, chlorogenic, and trans-ferulic acids derivatives as well as quercetin and kaempferol flavonoids were the main phenolic compounds detected. Catechin, epicatechin, kaempferol-3-O-rutinoside, kaempferol-3-O-glucoside, kaempferol-7-O-glucoside, tiliroside, oenin, and peonidin-3-O-glucoside were detected only in HF, while phloridzin was exclusive from HL, which also showed greater amounts of hydroxycinnamic acid derivatives. HF was richer in flavonoids and total phenolics, also exhibiting greater antioxidant capacity. The SPF and anti-collagenase activity of both extracts were similar and comparable to those of synthetic standards. The overall results demonstrate that H. roseus extracts are promising sources of bioactive phenolic compounds that could be potentially applied as anti-aging agents in skin-care cosmetics.
Collapse
|