1
|
Mu X, Li D, Xiao R, Guan K, Ma Y, Wang R, Niu T. Discovery of novel dipeptidyl peptidase-IV inhibitory peptides derived from walnut protein and their bioactivities in vivo and in vitro. Curr Res Food Sci 2024; 9:100893. [PMID: 39555024 PMCID: PMC11567926 DOI: 10.1016/j.crfs.2024.100893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
The inhibition of dipeptidyl peptidase IV (DPP-IV) has been regarded as a major target for treating type-2 diabetes (T2D). Food-derived peptides are a great source of DPP-IV inhibitory peptides. In this study, we utilized walnut protein as the raw material and hydrolyzed it using four different proteases. The trypsin hydrolysate exhibited the highest DPP-IV inhibitory activity. A DEAE-52 anion exchange column and a Sephadex G-25 gel filtration column were used to sequentially separate and purify the enzymatic hydrolysates. Mass spectrometry identified 117 peptide sequences, of which LPFA, VPFWA, and WGLP were three highly active DPP-IV inhibitory peptides. Molecular docking results revealed that three peptides primarily bind tightly to DPP-IV through hydrogen bonds and van der Waals forces. The inhibitory activity and absorption transport of the peptides were examined using a Caco-2 cell model. LPFA, VPFWA, and WGLP could cross the Caco-2 cell monolayer intact, with in situ IC50s of 267.9 ± 7.2 μM, 325.0 ± 8.4 μM, and 350.9 ± 8.3 μM, respectively. Oral glucose tolerance tests (OGTT) demonstrated that the three inhibitory peptides significantly improved glucose metabolism in normal ICR mice. This study establishes a theoretical basis for the high-value utilization of walnuts and the therapeutic treatment of T2D.
Collapse
Affiliation(s)
- Xinxin Mu
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Dan Li
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Ran Xiao
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing, 101100, China
| | - Kaifang Guan
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Ying Ma
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Rongchun Wang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Tianjiao Niu
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing, 101100, China
| |
Collapse
|
2
|
Yue J, Xu J, Li T, Li Y, Chen Z, Liang S, Liu Z, Wang Y. Discovery of potential antidiabetic peptides using deep learning. Comput Biol Med 2024; 180:109013. [PMID: 39137670 DOI: 10.1016/j.compbiomed.2024.109013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Antidiabetic peptides (ADPs), peptides with potential antidiabetic activity, hold significant importance in the treatment and control of diabetes. Despite their therapeutic potential, the discovery and prediction of ADPs remain challenging due to limited data, the complex nature of peptide functions, and the expensive and time-consuming nature of traditional wet lab experiments. This study aims to address these challenges by exploring methods for the discovery and prediction of ADPs using advanced deep learning techniques. Specifically, we developed two models: a single-channel CNN and a three-channel neural network (CNN + RNN + Bi-LSTM). ADPs were primarily gathered from the BioDADPep database, alongside thousands of non-ADPs sourced from anticancer, antibacterial, and antiviral peptide datasets. Subsequently, data preprocessing was performed with the evolutionary scale model (ESM-2), followed by model training and evaluation through 10-fold cross-validation. Furthermore, this work collected a series of newly published ADPs as an independent test set through literature review, and found that the CNN model achieved the highest accuracy (90.48 %) in predicting the independent test set, surpassing existing ADP prediction tools. Finally, the application of the model was considered. SeqGAN was used to generate new candidate ADPs, followed by screening with the constructed CNN model. Selected peptides were then evaluated using physicochemical property prediction and structural forecasts for pharmaceutical potential. In summary, this study not only established robust ADP prediction models but also employed these models to screen a batch of potential ADPs, addressing a critical need in the field of peptide-based antidiabetic research.
Collapse
Affiliation(s)
- Jianda Yue
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Jiawei Xu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Tingting Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Zihui Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
3
|
Su H, Fan W, Xu Y, Tang S, Yue D, Liao Z. Preparation, identification, and molecular docking of novel angiotensin-converting enzyme inhibitory peptides derived from rice-based distillers' spent cakes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6506-6517. [PMID: 38507298 DOI: 10.1002/jsfa.13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Rice-based distillers' spent cake (RDSC), a by-product of the Chinese liquor (Baijiu) industry, is a potential source of angiotensin-converting enzyme (ACE) inhibitory peptide. Since ACE plays a crucial role in controlling hypertension, inhibition of ACE has been widely emphasized. The ACE inhibitory active peptide derived from by-products of food has been recognized as a safer and cheaper inhibitor. RESULTS Aimed to discover ACE-inhibiting active peptides in RDSC. Hydrolysis of RDSC by alcalase for 4 h followed by ultrafiltration yielded low-molecular-weight (< 3 kDa) fractions. Subsequently, a comprehensive method using a combination of liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) and LC-Q-Exactive-MS to identify the novel short peptides (3-5 amino acids residues; n = 7) and medium-sized peptides (more than 6 amino acids residues; n = 6). In vitro activity assay showed that the peptides KPFFPGL, GFPRPLL, GPPGVF, and VGK exhibited the highest activity with inhibitory concentration of 50% (IC50) of 11.63, 12.34, 19.55, and 33.54 μmol L-1. Molecular docking reveal that the active and inactive sites (Glu123, Asp121, Arg522, and Lys118) play important roles in enhancing the ACE inhibitory activity of peptides. CONCLUSION Here we report a comprehensive method that effectively extracted and identified the bioactive peptides from RDSC. Four highly active novel peptides may be the most promising candidates for functional foods against hypertension, provide significant information for enhancing value of rice-based distilled by-products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hanxing Su
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Wenlai Fan
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shaopei Tang
- Baijiu Fermentation Technology Research Center of Jiangnan University-Kweichow Zhen Distillery Co. Ltd, Wuxi, China
| | - Dehong Yue
- Baijiu Fermentation Technology Research Center of Jiangnan University-Kweichow Zhen Distillery Co. Ltd, Wuxi, China
| | - Zuyue Liao
- Baijiu Fermentation Technology Research Center of Jiangnan University-Kweichow Zhen Distillery Co. Ltd, Wuxi, China
| |
Collapse
|
4
|
Elisha C, Bhagwat P, Pillai S. Emerging production techniques and potential health promoting properties of plant and animal protein-derived bioactive peptides. Crit Rev Food Sci Nutr 2024:1-30. [PMID: 39206881 DOI: 10.1080/10408398.2024.2396067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bioactive peptides (BPs) are short amino acid sequences that that are known to exhibit physiological characteristics such as antioxidant, antimicrobial, antihypertensive and antidiabetic properties, suggesting that they could be exploited as functional foods in the nutraceutical industry. These BPs can be derived from a variety of food sources, including milk, meat, marine, and plant proteins. In the past decade, various methods including in silico, in vitro, and in vivo techniques have been explored to unravel underlying mechanisms of BPs. To forecast interactions between peptides and their targets, in silico methods such as BIOPEP, molecular docking and Quantitative Structure-Activity Relationship modeling have been employed. Additionally, in vitro research has examined how BPs affect enzyme activities, protein expressions, and cell cultures. In vivo studies on the contrary have appraised the impact of BPs on animal models and human subjects. Hence, in the light of recent literature, this review examines the multifaceted aspects of BPs production from milk, meat, marine, and plant proteins and their potential bioactivities. We envisage that the various concepts discussed will contribute to a better understanding of the food derived BP production, which could pave a way for their potential applications in the nutraceutical industry.
Collapse
Affiliation(s)
- Cherise Elisha
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
5
|
Yin H, Zhu J, Zhong Y, Wang D, Deng Y. Kinetic and thermodynamic-based studies on the interaction mechanism of novel R. roxburghii seed peptides against pancreatic lipase and cholesterol esterase. Food Chem 2024; 447:139006. [PMID: 38492305 DOI: 10.1016/j.foodchem.2024.139006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
Pancreatic lipase (PL) and cholesterol esterase (CE) are vital digestive enzymes that regulate lipid digestion. Three bioactive peptides (LFCMH, RIPAGSPF, YFRPR), possessing enzyme inhibitory activities, were identified in the seed proteins of R. roxburghii. It is hypothesized that these peptides could inhibit the activities of these enzymes by binding to their active sites or altering their conformation. The results showed that LFCMH exhibited superior inhibitory activity against these enzymes compared to the other peptides. The inhibition mechanisms of the three peptides were identified as either competitive or mixed, according to inhibition models. Further studies have shown that peptides could bind to the active sites of enzymes, thus affecting their spatial conformation and restricting substrate entry into the active site. Molecular simulation further proved that hydrogen bonds and hydrophobic interactions played a vital role in the binding of peptides to enzymes. This study enriches our understanding of interaction mechanisms of peptides on PL and CE.
Collapse
Affiliation(s)
- Hao Yin
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Jiao Tong University Yunnan (Dali) Research Institute, Dali, Yunnan 671000, China
| | - Jiangxiong Zhu
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yu Zhong
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Danfeng Wang
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yun Deng
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Jiao Tong University Yunnan (Dali) Research Institute, Dali, Yunnan 671000, China.
| |
Collapse
|
6
|
Apud GR, Kristof I, Ledesma SC, Stivala MG, Aredes Fernandez PA. Health-promoting peptides in fermented beverages. Rev Argent Microbiol 2024; 56:336-345. [PMID: 38599912 DOI: 10.1016/j.ram.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/15/2023] [Accepted: 02/03/2024] [Indexed: 04/12/2024] Open
Abstract
Since ancient times, the consumption of fermented low-alcoholic beverages has enjoyed widespread popularity in various countries, because of their distinct flavors and health benefits. Several studies have demonstrated that light to moderate alcohol consumption is associated with beneficial effects on human health, mainly in cardiovascular disease prevention. Fermented beverages have different non-ethanol components that confer beneficial health effects. These bioactive compounds are mainly peptides that have often been overlooked or poorly explored in numerous fermented beverages. The aim of this review is to provide knowledge and generate interest in the biological activities of peptides that are present and/or released during the fermentation process of widely consumed traditional fermented beverages. Additionally, a brief description of the microorganisms involved in these beverages is provided. Furthermore, this review also explores topics related to the detection, isolation, and identification of peptides, addressing the structure-activity relationships of both antioxidant and angiotensin-converting enzyme inhibitory (ACE-I) activities.
Collapse
Affiliation(s)
- Gisselle Raquel Apud
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 San Miguel de Tucumán, Argentina
| | - Irina Kristof
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 San Miguel de Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Silvana Cecilia Ledesma
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 San Miguel de Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Maria Gilda Stivala
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 San Miguel de Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Pedro Adrian Aredes Fernandez
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 San Miguel de Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
7
|
Zeng Y, Ahmed HGMD, Li X, Yang L, Pu X, Yang X, Yang T, Yang J. Physiological Mechanisms by Which the Functional Ingredients in Beer Impact Human Health. Molecules 2024; 29:3110. [PMID: 38999065 PMCID: PMC11243521 DOI: 10.3390/molecules29133110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Nutritional therapy, for example through beer, is the best solution to human chronic diseases. In this article, we demonstrate the physiological mechanisms of the functional ingredients in beer with health-promoting effects, based on the PubMed, Google, CNKI, and ISI Web of Science databases, published from 1997 to 2024. Beer, a complex of barley malt and hops, is rich in functional ingredients. The health effects of beer against 26 chronic diseases are highly similar to those of barley due to the physiological mechanisms of polyphenols (phenolic acids, flavonoids), melatonin, minerals, bitter acids, vitamins, and peptides. Functional beer with low purine and high active ingredients made from pure barley malt, as well as an additional functional food, represents an important development direction, specifically, ginger beer, ginseng beer, and coix-lily beer, as consumed by our ancestors ca. 9000 years ago. Low-purine beer can be produced via enzymatic and biological degradation and adsorption of purines, as well as dandelion addition. Therefore, this review paper not only reveals the physiological mechanisms of beer in overcoming chronic human diseases, but also provides a scientific basis for the development of functional beer with health-promoting effects.
Collapse
Affiliation(s)
- Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Hafiz Ghulam Muhu-Din Ahmed
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Xia Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Li'e Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Xiaoying Pu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Xiaomeng Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Tao Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Jiazhen Yang
- Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China
| |
Collapse
|
8
|
Rodríguez Longarela N, Paredes Ramos M, López Vilariño JM. Bioinformatics tools for the study of bioactive peptides from vegetal sources: evolution and future perspectives. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38907628 DOI: 10.1080/10408398.2024.2367571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Bioactive peptides from vegetal sources have been shown to have functional properties as anti-inflammatory, antioxidant, antihypertensive or antidiabetic capacity. For this reason, they have been proposed as an interesting and promising alternative to improve human health. In recent years, the numerous advances in the bioinformatics field for in silico prediction have speeded up the discovery of bioactive peptides, also reducing the associated costs when using an integrated approach between the classical and bioinformatics discovery. This review aims to provide an overview of the evolution, limitations and latest advances in the field of bioinformatics and computational tools, and specifically make a critical and comprehensive insight into computational techniques used to study the mechanism of interaction that allows the explanation of plant bioactive peptide functionality. In particular, molecular docking is considered key to explain the different functionalities that have been previously identified. The assumptions to simplify such a high complex environment implies a degree of uncertainty that can only be guaranteed and validated by in vitro or in vivo studies, however, the combination of databases, software and bioinformatics applications with the classical approach has become a promising procedure for the study of bioactive peptides.
Collapse
|
9
|
Tian W, Zhang C, Zheng Q, Hu S, Yan W, Yue L, Chen Z, Zhang C, Kong Q, Sun L. In Silico Screening of Bioactive Peptides in Stout Beer and Analysis of ACE Inhibitory Activity. Foods 2024; 13:1973. [PMID: 38998479 PMCID: PMC11241375 DOI: 10.3390/foods13131973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Stout beer was selected as the research object to screen angiotensin-converting enzyme (ACE) inhibitory peptides. The peptide sequences of stout beer were identified using ultra-performance liquid chromatography-quadrupole-Orbitrap mass spectrometry with de novo, and 41 peptides were identified with high confidence. Peptide Ranker was used to score the biological activity and six peptides with a score ≥ 0.5 were screened to predict their potential ACE inhibitory (ACEI) activity. The toxicity, hydrophilicity, absorption, and excretion of these peptides were predicted. In addition, molecular docking between the peptides and ACE revealed a significant property of the peptide DLGGFFGFQR. Furthermore, molecular docking conformation and molecular dynamics simulation revealed that DLGGFFGFQR could be tightly bound to ACE through hydrogen bonding and hydrophobic interaction. Lastly, the ACEI activity of DLGGFFGFQR was confirmed using in vitro evaluation and the IC50 value was determined to be 24.45 μM.
Collapse
Affiliation(s)
- Wenhui Tian
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.T.); (Q.Z.); (W.Y.); (L.Y.); (C.Z.)
| | - Cui Zhang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao 266021, China; (C.Z.); (S.H.)
| | - Qi Zheng
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.T.); (Q.Z.); (W.Y.); (L.Y.); (C.Z.)
| | - Shumin Hu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao 266021, China; (C.Z.); (S.H.)
| | - Weiqiang Yan
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.T.); (Q.Z.); (W.Y.); (L.Y.); (C.Z.)
| | - Ling Yue
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.T.); (Q.Z.); (W.Y.); (L.Y.); (C.Z.)
| | - Zhijun Chen
- Shanghai Shuneng Irradiation Technology Co., Ltd., Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Ci Zhang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.T.); (Q.Z.); (W.Y.); (L.Y.); (C.Z.)
| | - Qiulian Kong
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.T.); (Q.Z.); (W.Y.); (L.Y.); (C.Z.)
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
10
|
Zhang Y, Zhu Y, Bao X, Dai Z, Shen Q, Wang L, Xue Y. Mining Bovine Milk Proteins for DPP-4 Inhibitory Peptides Using Machine Learning and Virtual Proteolysis. RESEARCH (WASHINGTON, D.C.) 2024; 7:0391. [PMID: 38887277 PMCID: PMC11182572 DOI: 10.34133/research.0391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/26/2024] [Indexed: 06/20/2024]
Abstract
Dipeptidyl peptidase-IV (DPP-4) enzyme inhibitors are a promising category of diabetes medications. Bioactive peptides, particularly those derived from bovine milk proteins, play crucial roles in inhibiting the DPP-4 enzyme. This study describes a comprehensive strategy for DPP-4 inhibitory peptide discovery and validation that combines machine learning and virtual proteolysis techniques. Five machine learning models, including GBDT, XGBoost, LightGBM, CatBoost, and RF, were trained. Notably, LightGBM demonstrated superior performance with an AUC value of 0.92 ± 0.01. Subsequently, LightGBM was employed to forecast the DPP-4 inhibitory potential of peptides generated through virtual proteolysis of milk proteins. Through a series of in silico screening process and in vitro experiments, GPVRGPF and HPHPHL were found to exhibit good DPP-4 inhibitory activity. Molecular docking and molecular dynamics simulations further confirmed the inhibitory mechanisms of these peptides. Through retracing the virtual proteolysis steps, it was found that GPVRGPF can be obtained from β-casein through enzymatic hydrolysis by chymotrypsin, while HPHPHL can be obtained from κ-casein through enzymatic hydrolysis by stem bromelain or papain. In summary, the integration of machine learning and virtual proteolysis techniques can aid in the preliminary determination of key hydrolysis parameters and facilitate the efficient screening of bioactive peptides.
Collapse
Affiliation(s)
- Yiyun Zhang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Yiqing Zhu
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Xin Bao
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Zijian Dai
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Qun Shen
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry,
China Agricultural University, Haidian District, Beijing 100083, P.R. China
| | - Liyang Wang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
- School of Clinical Medicine,
Tsinghua University, Beijing 100084, P.R. China
| | - Yong Xue
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry,
China Agricultural University, Haidian District, Beijing 100083, P.R. China
| |
Collapse
|
11
|
Liao P, Liu H, Sun X, Zhang X, Zhang M, Wang X, Chen J. A novel ACE inhibitory peptide from Pelodiscus sinensis Wiegmann meat water-soluble protein hydrolysate. Amino Acids 2024; 56:40. [PMID: 38847939 PMCID: PMC11585513 DOI: 10.1007/s00726-024-03399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/28/2024] [Indexed: 11/01/2024]
Abstract
Pelodiscus sinensis meat is a nutritional food and tonic with angiotensin-converting enzyme (ACE) inhibitory activities. To identify the bioactive substances responsible, several bioinformatics methods were integrated to enable a virtual screening for bioactive peptides in proteins identified within a water-soluble protein fraction of Pelodiscus sinensis meat by Shotgun proteomics. The peptides were generated from the identified proteins by in silico proteolysis using six proteases. A comparison of the numbers of proteins suitable for digestion with each enzyme and the iBAQ (intensity-based absolute quantification) values for these proteins revealed that bromelain and papain were the most suitable proteases for this sample. Next, the water solubility, toxicity, and ADMET (absorption/distribution/metabolism/excretion/toxicity) properties of these peptides were evaluated in silico. Finally, a novel ACE inhibitory peptide IEWEF with an IC50 value of 41.33 µM was identified. The activity of the synthesized peptide was verified in vitro, and it was shown to be a non-competitive ACE inhibitor. Molecular docking revealed that IEWEF could tightly bind to C-ACE, and N-ACE with energies less than 0 kJ mol-1, and the peptide IEWEF can form hydrogen bonds with C-ACE and N-ACE respectively. These results provide evidence that bioactive peptides in the water-soluble protein fraction account for (at least) some of the ACE inhibitory activities observed in Pelodiscus sinensis meat. Furthermore, our research provides a workflow for the efficient identification of novel ACE inhibitory peptides from complex protein mixtures.
Collapse
Affiliation(s)
- Pengying Liao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Huayu Liu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Xueqin Sun
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Xinrui Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Miao Zhang
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Xianyou Wang
- School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China.
| | - Jun Chen
- Teaching Experiment and Training Centre, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| |
Collapse
|
12
|
Xie J, Chen S, Huan P, Wang S, Zhuang Y. A novel angiotensin I-converting enzyme inhibitory peptide from walnut (Juglans sigillata) protein hydrolysates and its evaluation in Ang II-induced HUVECs and hypertensive rats. Int J Biol Macromol 2024; 266:131152. [PMID: 38556230 DOI: 10.1016/j.ijbiomac.2024.131152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
This study aims to seek angiotensin-I-converting enzyme inhibitory (ACEi) peptides from walnut using different enzymatic hydrolysis, and further to validate the potent ACEi peptides identified and screened via peptidomics and in silico analysis against hypertension in spontaneously hypertensive rats (SHRs). Results showed that walnut protein hydrolysate (WPH) prepared by combination of alcalase and simulated gastrointestinal digestion exhibited high ACEi activity. WPH was separated via Sephadex-G25, and four peptides were identified, screened and verified based on their PeptideRanker score, structural characteristic and ACE inhibition. Interestingly, FDWLR showed the highest ACEi activity with IC50 value of 8.02 μg/mL, which might be related to its close affinity with ACE observed in molecular docking. Subsequently, high absorption and non-toxicity of FDWLR was predicted via in silico absorption, distribution, metabolism, excretion and toxicity. Furthermore, FDWLR exhibited positively vasoregulation in Ang II-induced human umbilical vein endothelial cells, and great blood pressure lowering effect in SHRs.
Collapse
Affiliation(s)
- Jinxiang Xie
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Shupeng Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Pengtao Huan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Shuguang Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China.
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China.
| |
Collapse
|
13
|
Ding L, Zheng X, Zhao L, Cai S. Identification of Novel Peptides in Distillers' Grains as Antioxidants, α-Glucosidase Inhibitors, and Insulin Sensitizers: In Silico and In Vitro Evaluation. Nutrients 2024; 16:1279. [PMID: 38732526 PMCID: PMC11085682 DOI: 10.3390/nu16091279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Distillers' grains are rich in protein and constitute a high-quality source of various bioactive peptides. The purpose of this study is to identify novel bioactive peptides with α-glucosidase inhibitory, antioxidant, and insulin resistance-ameliorating effects from distiller's grains protein hydrolysate. Three novel peptides (YPLPR, AFEPLR, and NDPF) showed good potential bioactivities, and the YPLPR peptide had the strongest bioactivities, whose IC50 values towards α-glucosidase inhibition, radical scavenging rates of 2,2'-azino-bis (3-ethylbenzothiazoline-6- sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) were about 5.31 mmol/L, 6.05 mmol/L, and 7.94 mmol/L, respectively. The glucose consumption of HepG2 cells treated with YPLPR increased significantly under insulin resistance condition. Moreover, the YPLPR peptide also had a good scavenging effect on intracellular reactive oxygen species (ROS) induced by H2O2 (the relative contents: 102.35% vs. 100%). Molecular docking results showed that these peptides could stably combine with α-glucosidase, ABTS, and DPPH free radicals, as well as related targets of the insulin signaling pathway through hydrogen bonding and van der Waals forces. This research presents a potentially valuable natural resource for reducing oxidative stress damage and regulating blood glucose in diabetes, thereby increasing the usage of distillers' grains peptides and boosting their economic worth.
Collapse
Affiliation(s)
- Lixin Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (L.D.); (X.Z.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Xiuqing Zheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (L.D.); (X.Z.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (L.D.); (X.Z.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| |
Collapse
|
14
|
Tian Y, Zhou Y, Li L, Huang C, Lin L, Li C, Ye Y. Effect of substrate composition on physicochemical properties of the medium-long-medium structured triacylglycerol. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:942-955. [PMID: 37708388 DOI: 10.1002/jsfa.12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Nutritional and functional qualities and applications of structured lipids (SL) depend on the composition and molecular structure of fatty acids in the glycerol backbone of triacylglycerol (TAG). However, the relationship between the substrate composition and physicochemical qualities of SL has not been revealed. The investigation aims to disclose the effect of substrate composition on the physicochemical properties of medium-long-medium structured lipids (MLM-SLs) by enzymatic interesterification of Lipozyme TLIM/RMIM. RESULTS The medium-long-chain triacylglycerol (MLCT) yield could reach 70.32%, including 28.98% CaLCa (1,3-dioctonyl-2-linoleoyl glyceride) and 24.34% CaOCa (1,3-didecanoyl-2-oleoyl glyceride). The sn-2 unsaturated fatty acid composition mainly depended on long-chain triacylglycerol (LCT) in the substrate. The increased carbon chain length and double bond in triacylglycerol decreased its melting and crystallization temperature. The balanced substrate composition of MCT/LCT increased the size and finer crystals. Molecular docking simulation revealed that the MLCT molecule mainly interacted with the catalytic triplets of Lipozyme TLIM (Arg81-Ser83-Arg84) and the Lipozyme RMIM (Tyr183-Thr226-Arg262) by OH bond. The oxygen atom of the ester on the MLCT molecule was primarily bound to the hydrogen of hydroxyl and amino groups on the binding sites of Lipozyme TLIM/RMIM. The intermolecular interplay between MLCT and Lipozyme RMIM is more stable than Lipozyme TLIM due to the formation of lower binding affinity energy. CONCLUSION This research clarifies the interaction mechanism between MLCT molecules and lipases, and provides an in-depth understanding of the relationship between substrate composition, molecular structure and physicochemical property of MLM-SLs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yunong Tian
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Yanhui Zhou
- Hunan Singular Biological Technology Co. Ltd, Changsha, China
| | - Lu Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Chuanqing Huang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Yong Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
- SCUT - Zhuhai Institute of Modern Industrial Innovation, Zhuhai, China
- Jiangxi Environmental Engineering Vocational College, Ganzhou, China
| |
Collapse
|
15
|
Yu H, Zhao S, Yi J, Du M, Liu J, Liu Y, Cai S. Identification of Novel Umami Peptides in Termitornyces albuminosus (Berk) Heim Soup by In Silico Analyses Combined with Sensory Evaluation: Discovering Potential Mechanism of Umami Taste Formation with Molecular Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37917560 DOI: 10.1021/acs.jafc.3c04281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
In this study, 24 peptides were identified in Termitornyces albuminosus (Berk) Heim soup, 12 of which were predicted to possess an umami taste based on the BIOPEP-UWM or Umami-MRNN databases. Among these 12 peptides, four peptides (i.e., QNDF, QGGDF, EPVTLT, and EVNYDFGGK) exhibited the lowest affinity energy with the umami receptor type 1 member 1 (T1R1) subunit. Molecular docking and molecular dynamics simulation further confirmed the strong binding of these four umami peptides to the umami receptor T1R1/T1R3, with the EVNYDFGGK forming the most stable complex. After synthesizing the four peptides, their umami taste was validated through sensory and electronic tongue analyses with recognition thresholds ranging from 0.0938 to 0.3750 mmol/L. Notably, the EVNYDFGGK peptide displayed the strongest umami taste (recognition threshold, 0.0938 mmol/L). This study may contribute to the industrial development of T. albuminosus by providing a new understanding of the mechanism of its umami formation.
Collapse
Affiliation(s)
- Haixia Yu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, People's Republic of China
| | - Shuai Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, People's Republic of China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, People's Republic of China
| | - Ming Du
- Faculty of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning Province, People's Republic of China
| | - Jia Liu
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., LTD, Beijing 100015, People's Republic of China
| | - Yifeng Liu
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., LTD, Beijing 100015, People's Republic of China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, People's Republic of China
| |
Collapse
|
16
|
Yang D, Li C, Li L, Yang X, Chen S, Wu Y, Feng Y. Novel insight into the formation and inhibition mechanism of dipeptidyl peptidase-Ⅳ inhibitory peptides from fermented mandarin fish (Chouguiyu). FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
17
|
Zeng J, Lin C, Zhang S, Yin H, Deng K, Yang Z, Zhang Y, Liu Y, Hu C, Zhao YT. Isolation and Identification of a Novel Anti-Dry Eye Peptide from Tilapia Skin Peptides Based on In Silico, In Vitro, and In Vivo Approaches. Int J Mol Sci 2023; 24:12772. [PMID: 37628955 PMCID: PMC10454390 DOI: 10.3390/ijms241612772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Tilapia skin is a great source of collagen. Here, we aimed to isolate and identify the peptides responsible for combating dry eye disease (DED) in tilapia skin peptides (TSP). In vitro cell DED model was used to screen anti-DED peptides from TSP via Sephadex G-25 chromatography, LC/MS/MS, and in silico methods. The anti-DED activity of the screened peptide was further verified in the mice DED model. TSP was divided into five fractions (TSP-I, TSP-II, TSP-III, TSP-IV, and TSP-V), and TSP-II exerted an effective effect for anti-DED. A total of 131 peptides were identified using LC/MS/MS in TSP-II, and NGGPSGPR (NGG) was screened as a potential anti-DED fragment in TSP-II via in silico methods. In vitro, NGG restored cell viability and inhibited the expression level of Cyclooxygenase-2 (COX-2) protein in Human corneal epithelial cells (HCECs) induced by NaCl. In vivo, NGG increased tear production, decreased tear ferning score, prevented corneal epithelial thinning, alleviated conjunctival goblet cell loss, and inhibited the apoptosis of corneal epithelial cells in DED mice. Overall, NGG, as an anti-DED peptide, was successfully identified from TSP, and it may be devoted to functional food ingredients or medicine for DED.
Collapse
Affiliation(s)
- Jian Zeng
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Cuixian Lin
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Shilin Zhang
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Haowen Yin
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- College of Food Science and Engineering, Ocean University of China, Yu-Shan Road, Qingdao 266003, China
| | - Kaishu Deng
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Zhiyou Yang
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Yongping Zhang
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - You Liu
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Chuanyin Hu
- Department of Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yun-Tao Zhao
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| |
Collapse
|
18
|
Cao H, Di N, Jiang B, Chen J, Zhang T. Purification and characterization of the dipeptidyl peptidase-IV inhibitory peptides from eel (Anguilla rostrata) scraps enzymatic hydrolysate for the treatment of type 2 diabetes mellitus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3714-3724. [PMID: 36661748 DOI: 10.1002/jsfa.12462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/06/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a serious threat to human health. Owing to the action of dipeptidyl peptidase-IV (DPP-IV), the half-life of entero-insulin hormone after secretion is extremely short, causing insufficient insulin secretion in diabetic patients. Dipeptidyl peptidase-IV inhibitors can be used as a new treatment for T2DM. In this study, the proteins of eel (Anguilla rostrata) scraps hydrolyzed using Protamex protease (EPHs) were found to have strong DPP-IV inhibitory activity. The study also provided research ideas for the development and utilization of A. rostrata scraps. RESULTS The median inhibition concentration (IC50 ) value of EPHs was 5.455 ± 0.24 mg mL-1 . The peptide fractions with the highest DPP-IV inhibitory activity were sequentially separated by ultrafiltration, gel filtration chromatography (GFC), and reversed-phase high performance liquid chromatography (RP-HPLC) in a continuous hierarchical manner and analyzed using matrix-assisted laser desorption/ionization time-of-flight/ time-of-flight mass spectrometry/mass spectrometry (MALDI-TOF/TOF MS/MS). Three peptides that revealed significant inhibitory activity were screened among the identified sequences, with sequences of Phe-Pro-Arg (IC50 = 62.14 ± 1.47 μM), Tyr-Pro-Pro-Ser-Phe-Ser (IC50 = 102.65 ± 4.57 μM), and Tyr-Pro-Tyr-Pro-Ala-Ser (IC50 = 68.30 ± 3.85 μM). Molecular docking simulations revealed that their inhibitory effect was mainly due to the formation of hydrogen bonds with amino acid residues in the active sites of DPP-IV. Analysis of the inhibition patterns of the synthetic peptides displayed that Phe-Pro-Arg and Tyr-Pro-Pro-Ser-Phe-Ser displayed competitive inhibition, whereas Tyr-Pro-Tyr-Pro-Ala-Ser showed mixed competitive/non-competitive inhibition. CONCLUSIONS The protein hydrolysates isolated from eel scraps are potential functional food ingredients for the treatment of T2DM. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongzhen Cao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Nana Di
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Identification of novel α-glucosidase inhibitory peptides in rice wine and their antioxidant activities using in silico and in vitro analyses. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
20
|
Deep learning drives efficient discovery of novel antihypertensive peptides from soybean protein isolate. Food Chem 2023; 404:134690. [DOI: 10.1016/j.foodchem.2022.134690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
|
21
|
BIOPEP-UWM Virtual—A Novel Database of Food-Derived Peptides with In Silico-Predicted Biological Activity. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147204] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The novel BIOPEP-UWM Virtual database is designed as a repository of peptide sequences whose bioactivity or taste information was the result of in silico predictions. It is a tool complementary to the existing BIOPEP-UWM database summarizing the results of experimental data on bioactive peptides. The layout and organization of the new database are identical to those of the existing BIOPEP-UWM database of bioactive peptides. The peptide data record includes the following information: name; sequence and function information (understood as information about the predicted target biomacromolecule); bibliographic data with the reference paper describing the peptide; additional information, including the peptide structure, annotated using chemical codes as well as the specification of the method used for bioactivity prediction; information about other activities discovered experimentally or predicted using computational methods; peptide taste (if available); and a database reference tab providing information about compound annotations in other databases (if available).
Collapse
|