1
|
Villalba A, Martínez-Ispizua E, Morard M, Crespo-Sempere A, Albiach-Marti MR, Calatayud A, Penella C. Optimizing sweet potato production: insights into the interplay of plant sanitation, virus influence, and cooking techniques for enhanced crop quality and food security. FRONTIERS IN PLANT SCIENCE 2024; 15:1357611. [PMID: 38562562 PMCID: PMC10983796 DOI: 10.3389/fpls.2024.1357611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
This study investigates the impact of sweet potato plant sanitation on the yield and external and internal quality root storage exploring the nutritional content affected by various cooking methods (raw, boiled, and oven-cooked). The presence of viruses, and concretely of the sweet potato leaf curl virus (SPLCV), in sweet potato propagation material is shown to significantly reduce yield and modify storage root quality. Notably, the research reveals a substantial improvement in crop yield and external quality, reinforcing the efficacy of plant sanitation methods, specifically apical meristem culture, in preserving the overall productivity of sweet potato crops. Furthermore, the investigation identifies a noteworthy decrease in starch content, suggesting a dynamic interaction between plant sanitation and starch metabolism in response to viral diseases. The study also delves into the alteration of mineral absorption patterns, shedding light on how plant sanitation influences the uptake of essential minerals in sweet potato storage roots. While the health status of the plants only slightly affected magnesium (Mg) and manganese (Mn) accumulation, indicating a potential resilience of mineral balance under virus-infected conditions. Moreover, the research identifies significant modifications in antioxidant levels, emphasizing the role of plant sanitation in enhancing the nutritional quality of sweet potatoes. Heat-treated storage roots, subjected to various cooking methods such as boiling and oven-cooking, exhibit notable differences in internal quality parameters. These differences include increased concentrations of total soluble solids (SS) and heightened levels of antioxidant compounds, particularly phenolic and flavonoid compounds. The observed increase in antioxidant capacity underscores the potential health-promoting benefits associated with plant sanitation practices. Overall, the study underscores the critical importance of plant sanitation in enhancing sweet potato production sustainability, contributing to food security, and supporting local agricultural economies. The results emphasize the need for further research to optimize plant sanitation methods and promote their widespread adoption globally, providing valuable insights into the complex relationships in food quality.
Collapse
Affiliation(s)
- Anna Villalba
- ValGenetics S.L., Parc Científic Universitat de València, CUE-3, Paterna, Valencia, Spain
| | - Eva Martínez-Ispizua
- Departamento de Horticultura, Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
| | - Miguel Morard
- ValGenetics S.L., Parc Científic Universitat de València, CUE-3, Paterna, Valencia, Spain
| | - Ana Crespo-Sempere
- ValGenetics S.L., Parc Científic Universitat de València, CUE-3, Paterna, Valencia, Spain
| | - María R. Albiach-Marti
- ValGenetics S.L., Parc Científic Universitat de València, CUE-3, Paterna, Valencia, Spain
| | - Angeles Calatayud
- Departamento de Horticultura, Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
| | - Consuelo Penella
- ValGenetics S.L., Parc Científic Universitat de València, CUE-3, Paterna, Valencia, Spain
- Departamento de Horticultura, Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
| |
Collapse
|
2
|
Wu Y, Huang Z, Zhang C, Shi C, Lyu L, Li W, Wu W. Comparative Analysis of the Morphological, Physiological, Proteomic, and Metabolic Mechanisms of the "Biloxi" Blueberry Response to Shade Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:877789. [PMID: 35592566 PMCID: PMC9111170 DOI: 10.3389/fpls.2022.877789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/13/2022] [Indexed: 05/03/2023]
Abstract
Blueberry is an important small berry crop in economic forests. In hot summers, the top tip of blueberry often burns and withers due to water loss. Therefore, this study subjected blueberry to shading treatment in the summer to study the effects of different shading treatments on the growth, morphology, physiology and protein levels of the plant. The results showed that the 50% shading (T1) treatment yielded the highest average increases in plant height, crown width, and ground diameter of blueberry. Under the 80% shading (T2) treatment, the cells of the leaves dissolved, the morphology was incomplete, the vascular bundles disappeared, and no supporting skeleton was detected. As demonstrated by physiological and biochemical data and the proteome expression levels, the T1 shading treatment was beneficial to the growth of blueberry and significantly enriched the photosynthetic pathway and flavonoid biosynthesis. An analysis of the interaction network of differentially expressed proteins indicated that trans-cinnamate 4-monooxygenase (C4H, CYP73A), naringenin 3-dioxygenase (F3H) and bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase (DFR) exhibited high connectivity and mutual regulation. In short, 50% shading can improve the growth index of blueberry and lead to an enrichment of flavonoid biosynthesis. This study provides a scientific basis for the breeding and summer protection of blueberry seedlings.
Collapse
Affiliation(s)
- Yaqiong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Zhengjin Huang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Chunhong Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Chong Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lianfei Lyu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Wenlong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
3
|
Souza ASND, Schmidt HDO, Pagno C, Rodrigues E, Silva MASD, Flôres SH, Rios ADO. Influence of cultivar and season on carotenoids and phenolic compounds from red lettuce influence of cultivar and season on lettuce. Food Res Int 2022; 155:111110. [PMID: 35400402 DOI: 10.1016/j.foodres.2022.111110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/11/2022]
Abstract
This paper presents complete HPLC profiles and MS spectrometric data of bioactive compounds from four cultivars of red lettuce produced in winter and summer and their antioxidant capacity. The experiment was carried out in a greenhouse, where red curly lettuce was cultivated: Mila, Maira, Carmin and Scarlet. The cultivar and season have not influenced the qualitative profile of carotenoids (CAR) and phenolic compounds (PC) of red lettuce. Instead, the season influenced the concentration of these components in all cultivars. The levels of phenolic compounds were significantly higher in winter, while the levels of carotenoids were higher in summer. Ten anthocyanins were identified (cyanidins and delphinidins). The main carotenoid found was the all-trans-β-carotene (45-48%), followed by lutein (13-20%) and zeaxanthin (11-15%). Major phenolic compounds include 5-caffeoylquinic acid, rutin and amentoflavone. Red lettuce cultivars have their main bioactive compounds described and compared within the variety and within the growing season. Different season and different lettuce cultivars may differ in the content of their bioactive compounds and in their antioxidant capacity.
Collapse
Affiliation(s)
- Alex Sandra Nascimento de Souza
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Avenue Bento Gonçalves, 9500, Prédio 43.212, Campus do Vale, Porto Alegre, RS CEP 91501-970, Brazil
| | - Helena de Oliveira Schmidt
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Avenue Bento Gonçalves, 9500, Prédio 43.212, Campus do Vale, Porto Alegre, RS CEP 91501-970, Brazil
| | - Carlos Pagno
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Avenue Bento Gonçalves, 9500, Prédio 43.212, Campus do Vale, Porto Alegre, RS CEP 91501-970, Brazil
| | - Eliseu Rodrigues
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Avenue Bento Gonçalves, 9500, Prédio 43.212, Campus do Vale, Porto Alegre, RS CEP 91501-970, Brazil
| | - Magnolia Aparecida Silva da Silva
- Department of Horticulture and Forestry, Agronomy University of the Federal University of Rio Grande do Sul (UFRGS), Avenue Bento Gonçalves, 7712, Porto Alegre, RS CEP 9154-000, Brazil
| | - Simone Hickmann Flôres
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Avenue Bento Gonçalves, 9500, Prédio 43.212, Campus do Vale, Porto Alegre, RS CEP 91501-970, Brazil
| | - Alessandro de Oliveira Rios
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Avenue Bento Gonçalves, 9500, Prédio 43.212, Campus do Vale, Porto Alegre, RS CEP 91501-970, Brazil.
| |
Collapse
|
4
|
Characterization of the Phenolic Compounds in Different Plant Parts of Amaranthus cruentus Grown under Cultivated Conditions. Molecules 2020; 25:molecules25184273. [PMID: 32961894 PMCID: PMC7570874 DOI: 10.3390/molecules25184273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 01/21/2023] Open
Abstract
Phenolic compounds that are present in amaranth crops have gained a lot of interest from researchers due to their health benefits potential. Therefore, the aim of this study was to investigate phenolic compounds present in different plant parts of Amaranthuscruentus using liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry. Moreover, data were analyzed by one-way analysis of variance of the statistical analysis software, whereas commercial statistical package version 4.02 was used for principal component analysis. A total of 21 phenolic compounds were detected and eight were not identified. Caffeoylsaccharic acid isomer, coumaoryl saccharic acid, tryptophan, feruloyl-d-saccharic acid isomer a, b, and c, caffeoyl isocitrate, quercetin 3-O-rhamnosyl-rhamnosyl-glucoside, feruloyl isocitrate, hyperoside, kaempferol rutinoside, and alkaloid compounds were mostly detected in tender and mature leaves. Generally, rutin content was higher (p < 0.05) in most vegetative parts of the amaranth plant, thus, late maturity leaves, tender leaves, and mature leaves, respectively. Lower quantities of rutin were observed in tender grains, flowers, and mature grains. It can be concluded that amaranth contains phenolic compounds, predominantly in the vegetative parts, which makes it to be a promising source of phenolic compounds beneficial to human health.
Collapse
|
5
|
Wu C, Liu H, Rong X, Liu J, Ding W, Cheng X, Xing J, Wang C. Phytochemical composition profile and space-time accumulation of secondary metabolites for Dracocephalum moldavica Linn. via UPLC-Q/TOF-MS and HPLC-DAD method. Biomed Chromatogr 2020; 34:e4865. [PMID: 32330321 DOI: 10.1002/bmc.4865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/22/2020] [Accepted: 04/22/2020] [Indexed: 11/06/2022]
Abstract
The aerial parts of Dracocephalum moldavica L. are extensively used in traditional ethnic medicines in China as a remedy for cardiovascular and cerebrovascular damage. However, the chemical composition and the accumulation of main secondary metabolites of D. moldavica in different natural environments remain unclear. This study aimed to conduct a qualitative and quantitative analysis of the main secondary metabolites to explore the quality variation of D. moldavica in markets. The evaluation of space-time accumulation of main secondary metabolites in D. moldavica was carried out during different growth periods and in different geographical locations. A total of 35 ingredients were detected and 24 identified, including 21 flavonoids, two phenolic acids and one coumarin by UPLC-QTOF-MS method. Furthermore, a simple and convenient HPLC method was successfully developed for the simultaneous determination of lutelin-7-O-glucuronide and tilianin and rosmarinic acid in D. moldavica. The results of space-time accumulation analysis showed the distinct variation of secondary metabolites of D. moldavica with the growth period and geographical location. Finally, the current study provided a meaningful and useful approach for comprehensively evaluating the quality of D. moldavica.
Collapse
Affiliation(s)
- Chao Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China.,Institute of Xinjiang Pharmaceutical Research, Urumqi, China
| | - Hanze Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China
| | - Xiaojuan Rong
- Institute of Xinjiang Pharmaceutical Research, Urumqi, China
| | - Jiahao Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China
| | - Wenzheng Ding
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China
| | - Jianguo Xing
- Institute of Xinjiang Pharmaceutical Research, Urumqi, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China.,Institute of Xinjiang Pharmaceutical Research, Urumqi, China
| |
Collapse
|
6
|
Zhang X, Wang X, Wang M, Cao J, Xiao J, Wang Q. Effects of different pretreatments on flavonoids and antioxidant activity of Dryopteris erythrosora leave. PLoS One 2019; 14:e0200174. [PMID: 30601805 PMCID: PMC6314590 DOI: 10.1371/journal.pone.0200174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/22/2018] [Indexed: 02/05/2023] Open
Abstract
Flavonoids are secondary metabolites of plants that often have medical applications. The influences of different sample drying pretreatments on flavonoids and antioxidant activity of ferns have not studies. Dryopteris erythrosora leaves used to analyze flavonoid alterations resulting from drying pretreatments. The total flavonoid content of D. erythrosora leaves exposed to different pretreatments was significantly different. The total flavonoid content of samples initially air-dried in shade and then oven-dried at 75°C were the highest (7.6%), while samples initially dried at 75°C had the lowest content (2.17%). Antioxidant activities of D. erythrosora leaves with different pretreatments varied. Group B first air-dried in the shade and then oven-dried at 75°C and group C first air-dried in the sun and then oven-dried at 75°C, both showed relatively stronger antioxidant activity. The best pretreatment for preserving the flavonoids was to first dry the plant material in the shade and then complete the drying process in an oven at 75°C. It was tentatively identified 22 flavonoids among the four different pretreatments by HPLC-ESI-TOF-MS.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Xin Wang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Minglong Wang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Jianguo Cao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Jianbo Xiao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Quanxi Wang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, China
| |
Collapse
|
7
|
Peterson JJ, Dwyer JT, Jacques PF, McCullough ML. Improving the estimation of flavonoid intake for study of health outcomes. Nutr Rev 2015; 73:553-76. [PMID: 26084477 DOI: 10.1093/nutrit/nuv008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Imprecision in estimating intakes of non-nutrient bioactive compounds such as flavonoids is a challenge in epidemiologic studies of health outcomes. The sources of this imprecision, using flavonoids as an example, include the variability of bioactive compounds in foods due to differences in growing conditions and processing, the challenges in laboratory quantification of flavonoids in foods, the incompleteness of flavonoid food composition tables, and the lack of adequate dietary assessment instruments. Steps to improve databases of bioactive compounds and to increase the accuracy and precision of the estimation of bioactive compound intakes in studies of health benefits and outcomes are suggested.
Collapse
Affiliation(s)
- Julia J Peterson
- J.J. Peterson, J.T. Dwyer, and P.F. Jacques are with the Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA. J.T. Dwyer and P.F. Jacques are with the Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA. J.T. Dwyer is with the Tufts University School of Medicine and Frances Stern Nutrition Center, Tufts Medical Center, Boston, Massachusetts, USA. M.L. McCullough is with the Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, USA.
| | - Johanna T Dwyer
- J.J. Peterson, J.T. Dwyer, and P.F. Jacques are with the Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA. J.T. Dwyer and P.F. Jacques are with the Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA. J.T. Dwyer is with the Tufts University School of Medicine and Frances Stern Nutrition Center, Tufts Medical Center, Boston, Massachusetts, USA. M.L. McCullough is with the Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, USA
| | - Paul F Jacques
- J.J. Peterson, J.T. Dwyer, and P.F. Jacques are with the Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA. J.T. Dwyer and P.F. Jacques are with the Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA. J.T. Dwyer is with the Tufts University School of Medicine and Frances Stern Nutrition Center, Tufts Medical Center, Boston, Massachusetts, USA. M.L. McCullough is with the Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, USA
| | - Marjorie L McCullough
- J.J. Peterson, J.T. Dwyer, and P.F. Jacques are with the Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA. J.T. Dwyer and P.F. Jacques are with the Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA. J.T. Dwyer is with the Tufts University School of Medicine and Frances Stern Nutrition Center, Tufts Medical Center, Boston, Massachusetts, USA. M.L. McCullough is with the Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Ibrahim MH, Jaafar HZ. Reduced photoinhibition under low irradiance enhanced Kacip Fatimah (Labisia pumila Benth) secondary metabolites, phenyl alanine lyase and antioxidant activity. Int J Mol Sci 2012; 13:5290-5306. [PMID: 22754297 PMCID: PMC3382798 DOI: 10.3390/ijms13055290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/22/2012] [Accepted: 04/05/2012] [Indexed: 11/29/2022] Open
Abstract
A randomized complete block design experiment was designed to characterize the relationship between production of total flavonoids and phenolics, anthocyanin, photosynthesis, maximum efficiency of photosystem II (Fv/Fm), electron transfer rate (Fm/Fo), phenyl alanine lyase activity (PAL) and antioxidant (DPPH) in Labisia pumila var. alata, under four levels of irradiance (225, 500, 625 and 900 μmol/m(2)/s) for 16 weeks. As irradiance levels increased from 225 to 900 μmol/m(2)/s, the production of plant secondary metabolites (total flavonoids, phenolics and antocyanin) was found to decrease steadily. Production of total flavonoids and phenolics reached their peaks under 225 followed by 500, 625 and 900 μmol/m(2)/s irradiances. Significant positive correlation of production of total phenolics, flavonoids and antocyanin content with Fv/Fm, Fm/Fo and photosynthesis indicated up-regulation of carbon-based secondary metabolites (CBSM) under reduced photoinhibition on the under low light levels condition. At the lowest irradiance levels, Labisia pumila extracts also exhibited a significantly higher antioxidant activity (DPPH) than under high irradiance. The improved antioxidative activity under low light levels might be due to high availability of total flavonoids, phenolics and anthocyanin content in the plant extract. It was also found that an increase in the production of CBSM was due to high PAL activity under low light, probably signifying more availability of phenylalanine (Phe) under this condition.
Collapse
Affiliation(s)
- Mohd Hafiz Ibrahim
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia; E-Mail:
| | - Hawa Z.E. Jaafar
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia; E-Mail:
| |
Collapse
|
9
|
Ghasemzadeh A, Jaafar HZE, Rahmat A. Synthesis of phenolics and flavonoids in ginger (Zingiber officinale Roscoe) and their effects on photosynthesis rate. Int J Mol Sci 2010; 11:4539-55. [PMID: 21151455 PMCID: PMC3000099 DOI: 10.3390/ijms11114539] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 10/25/2010] [Accepted: 11/01/2010] [Indexed: 11/17/2022] Open
Abstract
The relationship between phenolics and flavonoids synthesis/accumulation and photosynthesis rate was investigated for two Malaysian ginger (Zingiber officinale) varieties grown under four levels of glasshouse light intensity, namely 310, 460, 630 and 790 μmol m(-2)s(-1). High performance liquid chromatography (HPLC) was employed to identify and quantify the polyphenolic components. The results of HPLC analysis indicated that synthesis and partitioning of quercetin, rutin, catechin, epicatechin and naringenin were high in plants grown under 310 μmol m(-2)s(-1). The average value of flavonoids synthesis in leaves for both varieties increased (Halia Bentong 26.1%; Halia Bara 19.5%) when light intensity decreased. Photosynthetic rate and plant biomass increased in both varieties with increasing light intensity. More specifically, a high photosynthesis rate (12.25 μmol CO(2) m(-2)s(-1) in Halia Bara) and plant biomass (79.47 g in Halia Bentong) were observed at 790 μmol m(-2)s(-1). Furthermore, plants with the lowest rate of photosynthesis had highest flavonoids content. Previous studies have shown that quercetin inhibits and salicylic acid induces the electron transport rate in photosynthesis photosystems. In the current study, quercetin was an abundant flavonoid in both ginger varieties. Moreover, higher concentration of quercetin (1.12 mg/g dry weight) was found in Halia Bara leaves grown under 310 μmol m(-2)s(-1) with a low photosynthesis rate. Furthermore, a high content of salicylic acid (0.673 mg/g dry weight) was detected in Halia Bara leaves exposed under 790 μmol m(-2)s(-1) with a high photosynthesis rate. No salicylic acid was detected in gingers grown under 310 μmol m(-2)s(-1). Ginger is a semi-shade loving plant that does not require high light intensity for photosynthesis. Different photosynthesis rates at different light intensities may be related to the absence or presence of some flavonoid and phenolic compounds.
Collapse
Affiliation(s)
- Ali Ghasemzadeh
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mail:
| | - Hawa Z. E. Jaafar
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mail:
| | - Asmah Rahmat
- Department of Nutrition & Dietetics, Faculty of Medicine & Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mail:
| |
Collapse
|
10
|
Ghasemzadeh A, Jaafar HZE, Rahmat A, Wahab PEM, Halim MRA. Effect of different light intensities on total phenolics and flavonoids synthesis and anti-oxidant activities in young ginger varieties (Zingiber officinale Roscoe). Int J Mol Sci 2010; 11:3885-97. [PMID: 21152306 PMCID: PMC2996797 DOI: 10.3390/ijms11103885] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/06/2010] [Accepted: 09/17/2010] [Indexed: 02/07/2023] Open
Abstract
Nowadays, phytochemicals and antioxidants in plants are raising interest in consumers for their roles in the maintenance of human health. Phenolics and flavonoids are known for their health-promoting properties due to protective effects against cardiovascular disease, cancers and other disease. Ginger (Zingiber officinale) is one of the traditional folk medicinal plants and it is widely used in cooking in Malaysia. In this study, four levels of glasshouse light intensities (310, 460, 630 and 790 μmol m(-2)s(-1)) were used in order to consider the effect of light intensity on the production, accumulation and partitioning of total phenolics (TP), total flavonoids (TF) and antioxidant activities in two varieties of Malaysian young ginger (Zingiber officinale). TF biosynthesis was highest in the Halia Bara variety under 310 μmol m(-2)s(-1) and TP was high in this variety under a light intensity of 790 μmol m(-2)s(-1). The highest amount of these components accumulated in the leaves and after that in the rhizomes. Also, antioxidant activities determined by the 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) assay in both of varieties, increased significantly (p ≤ 0.01) with increasing TF concentration, and high antioxidant activity was observed in the leaves of Halia Bara grown under 310 μmol m(-2)s(-1). The ferric reducing (FRAP) activity of the rhizomes was higher than that of the leaves in 310 μmol m(-2)s(-1) of sun light. This study indicates the ability of different light intensities to enhance the medicinal components and antioxidant activities of the leaves and young rhizomes of Zingiber officinale varieties. Additionally, this study also validated their medicinal potential based on TF and TP contents.
Collapse
Affiliation(s)
- Ali Ghasemzadeh
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mails: (A.L.); (P.E.M.W.); (M.R.A.H.)
| | - Hawa Z. E. Jaafar
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mails: (A.L.); (P.E.M.W.); (M.R.A.H.)
| | - Asmah Rahmat
- Department of Nutrition & Dietetics, Faculty of Medicine & Health Sciences, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; E-Mail:
| | - Puteri Edaroyati Megat Wahab
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mails: (A.L.); (P.E.M.W.); (M.R.A.H.)
| | - Mohd Ridzwan Abd Halim
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mails: (A.L.); (P.E.M.W.); (M.R.A.H.)
| |
Collapse
|
11
|
Polyphenol content and antiradical activity of Cichorium intybus L. from biodynamic and conventional farming. Food Chem 2009. [DOI: 10.1016/j.foodchem.2008.10.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|