1
|
Mazumder S, Bhattacharya D, Lahiri D, Moovendhan M, Sarkar T, Nag M. Harnessing the nutritional profile and health benefits of millets: a solution to global food security problems. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39434598 DOI: 10.1080/10408398.2024.2417801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
India is dealing with both nutritional and agricultural issues. The maximum area of agricultural land with irrigation capabilities has been largely utilized, while the amount of dry land is expanding. The influence is distinct on farmer's livelihoods and earnings, which ultimately affects nutritional security. In order to attain nutritional security and the goal of SDG (Sustainable Development Goals), millets are sustainable solutions, with respect to high nutritional content, bioactive and medicinal properties, and climate resilience. The nutrient profile of millet includes 60%-70% carbohydrate content, 3.5%-5.2% fat, and 7.52%-12.1% protein sources. A wide spectrum of amino acids, including cysteine, isoleucine, arginine, leucine, tryptophan, lysine, histidine, methionine, tyrosine, phenylalanine, threonine, and valine are generally present in millets. Mineral content in millets includes calcium, phosphorus, potassium, sodium, and magnesium. Additionally, millets are an excellent source of bioactive molecules such as polyphenol, phenolic acid, flavonoids, active peptides, and soluble fiber, which have a wide range of therapeutic applications, including the prevention of free radical damage, diabetes, anti-microbial, anti- biofilm, and anti-cancer effects. This review will focus on the nutritional profile and health benefits of millet considering the present-day food security problems.
Collapse
Affiliation(s)
- Saikat Mazumder
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata
- Department of Food Technology, Guru Nanak Institute of Technology, Kolkata
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata
| | - Dibyajit Lahiri
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata
| | - Meivelu Moovendhan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Moupriya Nag
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata
| |
Collapse
|
2
|
Latha Ravi J, Rana SS. Maximizing the Nutritional Benefits and Prolonging the Shelf Life of Millets through Effective Processing Techniques: A Review. ACS OMEGA 2024; 9:38327-38347. [PMID: 39310183 PMCID: PMC11411683 DOI: 10.1021/acsomega.4c03466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 09/25/2024]
Abstract
Maximizing the nutritional benefits and extending the shelf life of millets is essential due to their ancient significance, rich nutrient content, and potential health benefits, but challenges such as rapid rancidity in millet-based products underscore the need for effective processing techniques to enhance their preservation and global accessibility. In this comprehensive review, the impact of diverse processes and treatments such as mechanical processing, fermentation, germination, soaking, thermal treatments like microwave processing, infrared heating, radio frequency, nonthermal treatments like ultrasound processing, cold plasma, gamma irradiation, pulsed light processing, and high-pressure processing, on the nutritional value and the stability during storage of various millets has been examined. The review encompasses an exploration of their underlying principles, advantages, and disadvantages. The technologies highlighted in this review have demonstrated their effectiveness in maximizing and extending the shelf life of millet-based products. While traditional processes bring about alterations in nutritional and functional properties, prompting the search for alternatives, novel thermal and nonthermal techniques were identified for microbial decontamination and enzyme inactivation. Advancements in millet processing face challenges including nutrient loss, quality changes, resource intensiveness, consumer perception, environmental impact, standardization issues, regulatory compliance, and limited research on combined methods.
Collapse
Affiliation(s)
- Janani Latha Ravi
- School
of Biosciences and Technology, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| | - Sandeep Singh Rana
- School
of Biosciences and Technology, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
3
|
Zhang H, Qiao Q, Zhao Y, Zhang L, Shi J, Wang N, Li Z, Shan S. Expression and Purification of Recombinant Bowman-Birk Trypsin Inhibitor from Foxtail Millet Bran and Its Anticolorectal Cancer Effect In Vitro and In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10439-10450. [PMID: 38676695 DOI: 10.1021/acs.jafc.3c08711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Trypsin inhibitors derived from plants have various pharmacological activities and promising clinical applications. In our previous study, a Bowman-Birk-type major trypsin inhibitor from foxtail millet bran (FMB-BBTI) was extracted with antiatherosclerotic activity. Currently, we found that FMB-BBTI possesses a prominent anticolorectal cancer (anti-CRC) activity. Further, a recombinant FMB-BBTI (rFMB-BBTI) was successfully expressed in a soluble manner in host strain Escherichia coli. BL21 (DE3) was induced by isopropyl-β-d-thiogalactoside (0.1 mM) at 37 °C for 3.5 h by the pET28a vector system. Fortunately, a purity greater than 93% of rFMB-BBTI with anti-CRC activity was purified by nickel-nitrilotriacetic acid affinity chromatography. Subsequently, we found that rFMB-BBTI displays a strikingly anti-CRC effect, characterized by the inhibition of cell proliferation and clone formation ability, cell cycle arrest at the G2/M phase, and induction of cell apoptosis. It is interesting that the rFMB-BBTI treatment had no obvious effect on normal colorectal cells in the same concentration range. Importantly, the anti-CRC activity of rFMB-BBTI was further confirmed in the xenografted nude mice model. Taken together, our study highlights the anti-CRC activity of rFMB-BBTI in vitro and in vivo, uncovering the clinical potential of rFMB-BBTI as a targeted agent for CRC in the future.
Collapse
Affiliation(s)
- Huimin Zhang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Qinqin Qiao
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yaru Zhao
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Lizhen Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jiangying Shi
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Nifei Wang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Shuhua Shan
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
4
|
Chen Y, Zhang R, Xu J, Ren Q. Alteration of intestinal microflora by the intake of millet porridge improves gastrointestinal motility. Front Nutr 2022; 9:965687. [PMID: 36071942 PMCID: PMC9442030 DOI: 10.3389/fnut.2022.965687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Foxtail millet (Setaria italica) has a long history of treating gastrointestinal ailments in China; however, little is known about the functional mechanism driving its therapeutic effects. The primary edible form of millet is porridge. This study investigates the effects of millet porridge on diphenoxylate-induced constipation and intestinal microflora in mice. Fifty mice were randomly divided into five groups: normal control group, constipation model group, and low-dose, medium-dose, and high-dose millet porridge groups. After 14 days of millet porridge gavage, constipation was induced and measured. The results showed that millet porridge prevented constipation by increasing the water content of feces, shortened the time of the first melena defecation, promoted gastric emptying, and improved the rate of gastrointestinal propulsion. Millet porridge also dose-dependently increased levels of Bifidobacterium and Lactobacillus and decreased levels of Escherichia coli, Enterococcus, and Bacteroides in the intestine. These results show that millet porridge could accelerate intestinal motility and change the proportions of intestinal flora and that it has a potent prebiotic effect.
Collapse
Affiliation(s)
- Ying Chen
- School of Light Industry, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Rong Zhang
- Xinjiang Second Medical College, Karamay, China
| | - Jialiang Xu
- School of Light Industry, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Qing Ren
- School of Light Industry, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
- *Correspondence: Qing Ren,
| |
Collapse
|
5
|
Punia Bangar S, Suri S, Malakar S, Sharma N, Whiteside WS. Influence of processing techniques on the protein quality of major and minor millet crops: A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences Clemson University 29634 Clemson USA
| | - Shweta Suri
- Amity Institute of Food Technology (AIFT) Amity University Uttar Pradesh 201301 Noida India
| | - Santanu Malakar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management 131028 Sonipat Haryana India
| | - Nitya Sharma
- Centre for Rural Development and Technology Indian Institute of Technology Delhi 110016 New Delhi India
| | | |
Collapse
|
6
|
Shan S, Yin R, Shi J, Zhang L, Liu F, Qiao Q, Li Z. Bowman-Birk Major Type Trypsin Inhibitor Derived from Foxtail Millet Bran Attenuate Atherosclerosis via Remodeling Gut Microbiota in ApoE-/- Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:507-519. [PMID: 34989223 DOI: 10.1021/acs.jafc.1c05747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Foxtail millet proteins and their hydrolysates have the potential to prevent atherosclerosis (AS). In our present study, a novel Bowman-Birk type major trypsin inhibitor from foxtail millet bran (FMB-BBTI) with an anti-AS effect was obtained by in vitro gastrointestinal bionic digestion. Further, the anti-AS activity of FMB-BBTI was verified by the classic apoE-/- mice model, characterized by the decreases of the inflammatory cytokines (TNF-α and IL-1β) and atherosclerotic plaque. Importantly, FMB-BBTI remodeled the structure of gut microbiota in apoE-/- mice, including the increase of Firmicutes at the phylum level, and the abundance alteration of five genera at the genus level, especially significant enrichment of Lactobacillus. Collectively, FMB-BBTI markedly restrains the AS progress, suggesting that the remodeling of gut microbiota induced by FMB-BBTI may be the critical factor for its anti-AS activity. This study indicates that FMB-BBTI may serve as a vital functional component contributing to the anti-AS potential of foxtail millet bran.
Collapse
Affiliation(s)
- Shuhua Shan
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Ruopeng Yin
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jiangying Shi
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Lizhen Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Fengming Liu
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Qinqin Qiao
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
7
|
Dhaka A, Singh RK, Muthamilarasan M, Prasad M. Genetics and Genomics Interventions for Promoting Millets as Functional Foods. Curr Genomics 2021; 22:154-163. [PMID: 34975288 PMCID: PMC8640850 DOI: 10.2174/1389202922666210225084212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/05/2021] [Accepted: 01/21/2021] [Indexed: 11/22/2022] Open
Abstract
Several crops, including millets with immense nutritional and therapeutic values, were once a part of our regular diet. However, due to domestication and selection pressures, many of them have become marginally cultivated crops confined to a particular region, race, or locality. Millets are a perfect example of neglected species that have the potential to address both food and nutritional insecurities prevalent among the ever-growing global population. Starvation and malnutrition contribute to a large number of health-related issues, being the main reason behind the occurrence of most of the severe diseases worldwide. These constraints are repeatedly disturbing both the social and economic health of global society. Naturally, millets are rich in minerals, nutrients, and bioactive compounds, and these crops are less dependent on synthetic fertilizers, systemic irrigation, and pest/weed control. Given this, the review emphasizes the nutritional values, health benefits, processing techniques, and genomic advancements of millets. In addition, it proposes a roadmap for enhancing the utility and commercialization of millets.
Collapse
Affiliation(s)
- Annvi Dhaka
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Roshan Kumar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
8
|
Beliaev DV, Yuorieva NO, Tereshonok DV, Tashlieva II, Derevyagina MK, Meleshin AA, Rogozhin EA, Kozlov SA. High Resistance of Potato to Early Blight Is Achieved by Expression of the Pro-SmAMP1 Gene for Hevein-Like Antimicrobial Peptides from Common Chickweed ( Stellaria media). PLANTS 2021; 10:plants10071395. [PMID: 34371598 PMCID: PMC8309211 DOI: 10.3390/plants10071395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/04/2021] [Accepted: 07/04/2021] [Indexed: 01/23/2023]
Abstract
In the common chickweed Stellaria media, two antimicrobial peptides (AMPs), SmAMP1.1a and SmAMP1.2a, have been shown to be proteolytically released as products of the expression of a single gene, proSmAMP1. In this study, the gene proSmAMP1 was introduced into two potato varieties, Zhukovsky ranny and Udacha. These early-maturing varieties were shown to be susceptible to early blight caused by Alternaria spp. Most transgenic lines of either variety having strong expression of the target gene demonstrated high levels of resistance to Alternaria spp. during three years of cultivation, but did not otherwise differ from the initial varieties. Disease severity index (DSI) was introduced as a complex measure of plant susceptibility to early blight, taking into account the diameter of lesions caused by the Alternaria spp., the fungus sporulation intensity and its incubation period duration. Across all transgenic lines, the DSI inversely correlated both with the target gene expression and the copy number in the plant genome. Our results are promising for improving the resistance of potato and other crops to early blight by expression of AMPs from wild plants.
Collapse
Affiliation(s)
- Denis V. Beliaev
- K. A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia; (D.V.B.); (N.O.Y.); (D.V.T.); (I.I.T.)
| | - Natalia O. Yuorieva
- K. A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia; (D.V.B.); (N.O.Y.); (D.V.T.); (I.I.T.)
| | - Dmitry V. Tereshonok
- K. A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia; (D.V.B.); (N.O.Y.); (D.V.T.); (I.I.T.)
| | - Ilina I. Tashlieva
- K. A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia; (D.V.B.); (N.O.Y.); (D.V.T.); (I.I.T.)
| | | | - Alexei A. Meleshin
- Russian Potato Research Center, 140052 Kraskovo, Russia; (M.K.D.); (A.A.M.)
| | - Eugene A. Rogozhin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia;
- All-Russian Institute of Plant Protection, 196608 St.-Petersburg-Pushkin, Russia
- Correspondence:
| | - Sergey A. Kozlov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia;
| |
Collapse
|
9
|
Sachdev N, Goomer S, Singh LR. Foxtail millet: a potential crop to meet future demand scenario for alternative sustainable protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:831-842. [PMID: 32767555 DOI: 10.1002/jsfa.10716] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Foxtail millet (Setaria italica), an annual grass plant, produces seeds that possess health-promoting properties owing to its unique protein composition containing a high content of essential amino acids. The mature foxtail seeds mainly consist of proline-rich, alcohol-soluble proteins (prolamin) called setarins, comprising about 60% of the total protein, with less content of disulfide cross-linked proteins than with other cereal and millets. Protein fractionation schemes are an important tool and provide preliminary information on the nature of foxtail proteins for their applications in the field of agriculture, food pharma, and bio-based materials. Variation in the methods of preparation can influence the composition, structure, and nutritional quality of the protein concentrate. Moreover, foxtail protein or its hydrolysate has shown several bioactive effects that can be explored further for the management of chronic diseases in humans. Additionally, owing to its low cost and excellent functional properties of flour and protein concentrate, foxtail millet can be considered as good candidate for replacing animal protein foods. Furthermore, there is huge potential for successfully developing low-cost, protein-rich functional food products helpful in the prevention and management of lifestyle-related chronic diseases. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Niharika Sachdev
- Department of Food & Nutrition, Lady Irwin College, University of Delhi, New Delhi, India
| | - Sangeeta Goomer
- Department of Food & Nutrition, Lady Irwin College, University of Delhi, New Delhi, India
| | - Laishram R Singh
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India
| |
Collapse
|
10
|
Hu S, Yuan J, Gao J, Wu Y, Meng X, Tong P, Chen H. Antioxidant and Anti-Inflammatory Potential of Peptides Derived from In Vitro Gastrointestinal Digestion of Germinated and Heat-Treated Foxtail Millet ( Setaria italica) Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9415-9426. [PMID: 32786864 DOI: 10.1021/acs.jafc.0c03732] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study aimed at identifying antioxidant and anti-inflammatory peptides derived from the in vitro gastrointestinal digestion of germinated and heated (microwave and boiling) foxtail millet. The protein digest fraction containing low-molecular-weight peptides (<3 kDa) and the most hydrophobic subfraction (F4) abundant in random coil structure were responsible for the bioactivity. Then, seven novel peptides were identified using liquid chromatography with tandem mass spectrometry (LC-MS/MS) from the most potent F4 subfraction derived from boiled germinated millet. All seven synthesized peptides significantly (p < 0.05) reduced reactive oxygen species production and increased glutathione content and superoxide dismutase activity in Caco-2 cells, whereas two peptides (EDDQMDPMAK and QNWDFCEAWEPCF) were superior in inhibiting nitric oxide, tumor necrosis factor-α (reduced to 42.29 and 44.07%, respectively), and interleukin-6 (reduced to 56.59 and 43.45%, respectively) production in a RAW 264.7 cell model. This study is the first to report about the potential role of germinated and heated foxtail millet as a source of dual antioxidant and anti-inflammatory peptides.
Collapse
Affiliation(s)
- Shuai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Juanli Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Pharmaceutical Science, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jinyan Gao
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
11
|
Shan S, Wu C, Shi J, Zhang X, Niu J, Li H, Li Z. Inhibitory Effects of Peroxidase from Foxtail Millet Bran on Colitis-Associated Colorectal Carcinogenesis by the Blockage of Glycerophospholipid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8295-8307. [PMID: 32657580 DOI: 10.1021/acs.jafc.0c03257] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Abnormal glycerophospholipid (GPL) metabolism represented by phosphatidylcholine (PC) and phosphatidylethanolamine (PE) has been as a universal metabolic hallmark of cancer, which is involved in tumor progression. Our previous finding showed that peroxidase from foxtail millet bran (FMBP) exhibited significant anticolorectal cancer (CRC) activity in vitro and in nude mice. Presently, the potential of FMBP in clinical application was further evaluated by an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colitis-associated carcinogenesis (CAC) mice model, revealed the pivotal role of GPL metabolism in anti-CRC effects of FMBP. Excitedly, FMBP significantly reduced the number and volume of CAC polyps of mice and effectively improved physiological indexes of CAC mice. Meanwhile, the elevated expressions of CRC early markers (cyclooxygenase 2, tumor-proliferating nuclear antigen Ki-67, and EGF module-containing mucin-like receptor 1) in CAC mice were efficiently prevented by FMBP treatment. Metabolomics analysis showed that the elevated abundances of PC and PE involved in GPL metabolism in CAC mice were markedly decreased in FMBP-treated groups, which was also verified in human CRC cells. Further, FMBP reduced the expression levels of PE and PC key metabolic enzymes, resulting in the blockage of GPL metabolism and insufficient adenosine triphosphate to maintain CRC growth. Collectively, FMBP has the potential as a preventive and therapeutic candidate for CRC through the blockage of GPL metabolism.
Collapse
Affiliation(s)
- Shuhua Shan
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Caihong Wu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jiangying Shi
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Xiaoli Zhang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jinping Niu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Hanqing Li
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
12
|
Majid A, Priyadarshini C G P. Millet derived bioactive peptides: A review on their functional properties and health benefits. Crit Rev Food Sci Nutr 2019; 60:3342-3351. [DOI: 10.1080/10408398.2019.1686342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Abdul Majid
- Department of Molecular Nutrition, CSIR - Central Food Technological Research Institute, Mysore, Karnataka, India
| | - Poornima Priyadarshini C G
- Department of Molecular Nutrition, CSIR - Central Food Technological Research Institute, Mysore, Karnataka, India
| |
Collapse
|
13
|
Nithiyanantham S, Kalaiselvi P, Mahomoodally MF, Zengin G, Abirami A, Srinivasan G. Nutritional and functional roles of millets-A review. J Food Biochem 2019; 43:e12859. [PMID: 31353706 DOI: 10.1111/jfbc.12859] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/11/2022]
Abstract
The available cultivable plant-based food resources in developing tropical countries are inadequate to supply proteins for both human and animals. Such limition of available plant food sources are due to shrinking of agricultural land, rapid urbanization, climate change, and tough competition between food and feed industries for existing food and feed crops. However, the cheapest food materials are those that are derived from plant sources which although they occur in abundance in nature, are still underutilized. At this juncture, identification, evaluation, and introduction of underexploited millet crops, including crops of tribal utility which are generally rich in protein is one of the long-term viable solutions for a sustainable supply of food and feed materials. In view of the above, the present review endeavors to highlight the nutritional and functional potential of underexploited millet crops. PRACTICAL APPLICATIONS: Millets are an important food crop at a global level with a significant economic impact on developing countries. Millets have advantageous characteristics as they are drought and pest-resistance grains. Millets are considered as high-energy yielding nourishing foods which help in addressing malnutrition. Millet-based foods are considered as potential prebiotic and probiotics with prospective health benefits. Grains of these millet species are widely consumed as a source of traditional medicines and important food to preserve health.
Collapse
Affiliation(s)
- Srinivasan Nithiyanantham
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Palanisamy Kalaiselvi
- Graduate Institute of Clinical Medical Sciences, China Medical University, Taichung, Taiwan
| | | | - Gokhan Zengin
- Science Faculty, Department of Biology, Selcuk University, Konya, Turkey
| | - Arumugam Abirami
- Department of Environmental Sciences, Bharathiar University, Coimbatore, India
| | | |
Collapse
|
14
|
Sun J, Luu NS, Chen Z, Chen B, Cui X, Wu J, Zhang Z, Lu T. Generation and Characterization of a Foxtail Millet ( Setaria italica) Mutant Library. FRONTIERS IN PLANT SCIENCE 2019; 10:369. [PMID: 31001298 PMCID: PMC6455083 DOI: 10.3389/fpls.2019.00369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/11/2019] [Indexed: 05/20/2023]
Abstract
Foxtail millet (Setaria italica) is attractive to plant scientists as a model plant because of several distinct characteristics, such as its short stature, rapid life cycle, sufficient seed production per plant, self-compatibility, true diploid nature, high photosynthetic efficiency, small genome size, and tolerance to abiotic and biotic stress. However, the study on the genetic resources of foxtail millet largely lag behind those of the other model plants such as Arabidopsis, rice and maize. Mutagenized populations cannot only create new germplasm resources, but also provide materials for gene function research. In this manuscript, an ethyl methanesulfonate (EMS)-induced foxtail millet population comprising ∼15,000 individual M1 lines was established. Total 1353 independent lines with diverse abnormal phenotypes of leaf color, plant morphologies and panicle shapes were identified in M2. Resequencing of sixteen randomly selected M2 plants showed an average estimated mutation density of 1 loci/213 kb. Moreover, we provided an example for rapid cloning of the WP1 gene by a map-based cloning method. A white panicle mutant, named as wp1.a, exhibited significantly reduced chlorophyll (Chl) and carotenoid contents in leaf and panicle. Map-based cloning results showed an eight-base pair deletion located at the sixth exon of wp1.a in LOC101786849, which caused the premature termination. WP1 encoded phytoene synthase. Moreover, the sequencing analysis and cross test verified that a white panicle mutant wp1.b was an allelic mutant of wp1.a. The filed phenotypic observation and gene cloning example showed that our foxtail millet EMS-induced mutant population would be used as an important resource for functional genomics studies of foxtail millet.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tiegang Lu
- *Correspondence: Zhiguo Zhang, Tiegang Lu,
| |
Collapse
|
15
|
Pant SR, Irigoyen S, Doust AN, Scholthof KBG, Mandadi KK. Setaria: A Food Crop and Translational Research Model for C 4 Grasses. FRONTIERS IN PLANT SCIENCE 2016; 7:1885. [PMID: 28018413 PMCID: PMC5156725 DOI: 10.3389/fpls.2016.01885] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/29/2016] [Indexed: 05/23/2023]
Affiliation(s)
- Shankar R. Pant
- Texas A&M AgriLife Research and Extension Center, Texas A&M University SystemWeslaco, TX, USA
| | - Sonia Irigoyen
- Texas A&M AgriLife Research and Extension Center, Texas A&M University SystemWeslaco, TX, USA
| | - Andrew N. Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State UniversityStillwater, OK, USA
| | - Karen-Beth G. Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M UniversityCollege Station, TX, USA
| | - Kranthi K. Mandadi
- Texas A&M AgriLife Research and Extension Center, Texas A&M University SystemWeslaco, TX, USA
- Department of Plant Pathology and Microbiology, Texas A&M UniversityCollege Station, TX, USA
| |
Collapse
|
16
|
Shan S, Li Z, Newton IP, Zhao C, Li Z, Guo M. A novel protein extracted from foxtail millet bran displays anti-carcinogenic effects in human colon cancer cells. Toxicol Lett 2014; 227:129-38. [DOI: 10.1016/j.toxlet.2014.03.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 12/26/2022]
|
17
|
Yasmin N, Saleem M. Biochemical characterization of fruit-specific pathogenesis-related antifungal protein from basrai banana. Microbiol Res 2014; 169:369-77. [DOI: 10.1016/j.micres.2013.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/06/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
|
18
|
Saleh AS, Zhang Q, Chen J, Shen Q. Millet Grains: Nutritional Quality, Processing, and Potential Health Benefits. Compr Rev Food Sci Food Saf 2013. [DOI: 10.1111/1541-4337.12012] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Qing Zhang
- College of Food Science and Nutritional Engineering; China Agricultural Univ.; Beijing 100083; China
| | - Jing Chen
- College of Food Science and Nutritional Engineering; China Agricultural Univ.; Beijing 100083; China
| | - Qun Shen
- College of Food Science and Nutritional Engineering; China Agricultural Univ.; Beijing 100083; China
| |
Collapse
|
19
|
Amadou I, Le GW, Amza T, Sun J, Shi YH. Purification and characterization of foxtail millet-derived peptides with antioxidant and antimicrobial activities. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.12.045] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|