1
|
Huot F, Claveau S, Bunel A, Warner D, Santschi DE, Gervais R, Paquet ER. Predicting subacute ruminal acidosis from milk mid-infrared estimated fatty acids and machine learning on Canadian commercial dairy herds. J Dairy Sci 2024; 107:9504-9515. [PMID: 38971559 DOI: 10.3168/jds.2024-25034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/08/2024] [Indexed: 07/08/2024]
Abstract
Our objective was to validate the possibility of detecting SARA from milk Fourier transform mid-infrared spectroscopy estimated fatty acids (FA) and machine learning. Subacute ruminal acidosis is a common condition in modern commercial dairy herds for which diagnosis remains challenging due to its symptoms often being subtle, nonexclusive, and not immediately apparent. This observational study aimed at evaluating the possibility of predicting SARA by developing machine learning models to be applied to farm data and to provide an estimated portrait of SARA prevalence in commercial dairy herds. A first dataset, composed of 488 milk samples from 67 cows (initial DIM = 8.5 ± 6.18; mean ± SD) from 7 commercial dairy farms and their corresponding SARA classification (SARA+ if rumen pH <6.0 for 300 min, otherwise SARA-) was used for the development of machine learning models. Three sets of predictive variables (milk major components [MMC], milk FA [MFA], and MMC combined with MFA [MMCFA]) were submitted to 3 different algorithms, namely elastic net (EN), extreme gradient boosting, and partial least squares, and evaluated using 3 different scenarios of cross-validation. The accuracy, sensitivity, and specificity of the resulting 27 models were analyzed using a linear mixed model. Model performance was not significantly affected by the choice of algorithm. Model performance was improved by including FA estimations (MFA and MMCFA as opposed to MMC alone). Based on these results, 1 model was selected (algorithm: EN; predictive variables: MMCFA; 60.4%, 65.4%, and 55.3% of accuracy, sensitivity, and specificity, respectively) and applied to a large dataset comprising the first test-day record (milk major components and FA within the first 70 DIM of 211,972 Holstein cows [219,503 samples]) collected from 3,001 commercial dairy herds. Based on this analysis, the within-herd SARA prevalence of commercial farms was estimated at 6.6 ± 5.29% ranging from 0% to 38.3%. A subsequent linear mixed model was built to investigate the herd-level factors associated with higher within-herd SARA prevalence. Milking system, proportion of primiparous cows, herd size, and seasons were all herd-level factors affecting SARA prevalence. Furthermore, milk production was positively associated with SARA prevalence, and milk fat yield was negatively associated. Due to their moderate levels of accuracy, the SARA prediction models developed in our study, using data from continuous pH measurements on commercial farms, are not suitable for diagnostic purposes. However, these models can provide valuable information at the herd level.
Collapse
Affiliation(s)
- F Huot
- Département des Sciences Animales, Université Laval, Québec, QC G1V 0A6, Canada; Institut Intelligence et Données, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Recherche en Données Massives, Université Laval, Québec, QC G1V 0A6, Canada
| | | | - A Bunel
- Agrinova, Alma, QC G8B 7S8, Canada
| | - D Warner
- Lactanet, Ste-Anne-de-Bellevue, QC H9X 3R4, Canada
| | - D E Santschi
- Lactanet, Ste-Anne-de-Bellevue, QC H9X 3R4, Canada
| | - R Gervais
- Département des Sciences Animales, Université Laval, Québec, QC G1V 0A6, Canada.
| | - E R Paquet
- Département des Sciences Animales, Université Laval, Québec, QC G1V 0A6, Canada; Institut Intelligence et Données, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Recherche en Données Massives, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
2
|
Chen Q, Zhou W, Cheng Y, Wang G, San Z, Guo L, Liu L, Zhao C, Sun N. Four novel Acinetobacter lwoffii strains isolated from the milk of cows in China with subclinical mastitis. BMC Vet Res 2024; 20:274. [PMID: 38918815 PMCID: PMC11201367 DOI: 10.1186/s12917-024-04119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Acinetobacter lwoffii (A. lwoffii) is a Gram-negative bacteria common in the environment, and it is the normal flora in human respiratory and digestive tracts. The bacteria is a zoonotic and opportunistic pathogen that causes various infections, including nosocomial infections. The aim of this study was to identify A. lwoffii strains isolated from bovine milk with subclinical mastitis in China and get a better understanding of its antimicrobial susceptibility and resistance profile. This is the first study to analyze the drug resistance spectrum and corresponding mechanisms of A. lwoffii isolated in raw milk. RESULTS Four A. lwoffii strains were isolated by PCR method. Genetic evolution analysis using the neighbor-joining method showed that the four strains had a high homology with Acinetobacter lwoffii. The strains were resistant to several antibiotics and carried 17 drug-resistance genes across them. Specifically, among 23 antibiotics, the strains were completely susceptible to 6 antibiotics, including doxycycline, erythromycin, polymyxin, clindamycin, imipenem, and meropenem. In addition, the strains showed variable resistance patterns. A total of 17 resistance genes, including plasmid-mediated resistance genes, were detected across the four strains. These genes mediated resistance to 5 classes of antimicrobials, including beta-lactam, aminoglycosides, fluoroquinolones, tetracycline, sulfonamides, and chloramphenicol. CONCLUSION These findings indicated that multi-drug resistant Acinetobacter lwoffii strains exist in raw milk of bovine with subclinical mastitis. Acinetobacter lwoffii are widespread in natural environmental samples, including water, soil, bathtub, soap box, skin, pharynx, conjunctiva, saliva, gastrointestinal tract, and vaginal secretions. The strains carry resistance genes in mobile genetic elements to enhance the spread of these genes. Therefore, more attention should be paid to epidemiological surveillance and drug resistant A. lwoffii.
Collapse
Affiliation(s)
- Qiang Chen
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Wensi Zhou
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Yuening Cheng
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Guisheng Wang
- Shandong Provincial Center for Animal Disease Control and Prevention, Jinan, China
| | - Zhihao San
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Li Guo
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Liming Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Cuiqing Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Na Sun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China.
| |
Collapse
|
3
|
Zanon T, Franciosi E, Cologna N, Goss A, Mancini A, Gauly M. Alpine grazing management, breed and diet effects on coagulation properties, composition, and microbiota of dairy cow milk by commercial mountain based herds. J Dairy Sci 2024:S0022-0302(24)00913-5. [PMID: 38876212 DOI: 10.3168/jds.2023-24347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/15/2024] [Indexed: 06/16/2024]
Abstract
Cow milk microbiota has received increased attention in recent years, not only because of its importance for human health but also because of its effect on the quality and technological properties of milk. Several studies, therefore, have investigated the effect of various production factors on the microbial composition of milk. However, most of the previous studies considered a limited number of animals from experimental or single farm, which could have biased the results. Therefore, this study aimed to understand the effect of different alpine production systems on the compositional and microbiological quality of milk, considering commercial herds with different feeding intensities and cattle breeds. The results obtained in this work indicated that the month/season of sampling (July for summer or February for winter) more than farm, breed and cow diet exerted significant effects on cow milk parameters and microbiota. In particular, significant differences were observed for urea content in milk between sampling seasons. Differences in milk fat were mainly related to breed specific effects. From a microbiological point of view, statistically significant differences were found in presumptive lactic acid bacteria counts. Based on a culture-independent method, milk obtained in February harbored the highest number of Firmicutes (e.g., Lactobacillus) and the lowest number of Actinobacteria (e.g., Corynebacterium). Moreover, bacterial richness and diversity were higher in July/summer during alpine pasture season indicating a significant effect of pasture feed on the growth of bacterial communities. The results of this study highlighted the effect of month/season mainly related to differences in feeding management (e.g., access to pasture during vegetation period, concentrates supplementation) on composition and microbiota in milk.
Collapse
Affiliation(s)
- Thomas Zanon
- Free University of Bolzano (Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy).
| | - Elena Franciosi
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all'Adige, 38010 San Michele all'Adige (TN), Italy
| | - Nicola Cologna
- Trentingrana Consorzio dei Caseifici Sociali Trentini s.c.a., Via Bregenz 18, Trento, Italy
| | - Andrea Goss
- Trentingrana Consorzio dei Caseifici Sociali Trentini s.c.a., Via Bregenz 18, Trento, Italy
| | - Andrea Mancini
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all'Adige, 38010 San Michele all'Adige (TN), Italy
| | - Matthias Gauly
- Free University of Bolzano (Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy)
| |
Collapse
|
4
|
Wang Y, Zhao Y, Tang X, Nan X, Jiang L, Wang H, Liu J, Yang L, Yao J, Xiong B. Nutrition, gastrointestinal microorganisms and metabolites in mastitis occurrence and control. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:220-231. [PMID: 38800734 PMCID: PMC11126769 DOI: 10.1016/j.aninu.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 05/29/2024]
Abstract
Mastitis affects almost all mammals including humans and dairy cows. In the dairy industry, bovine mastitis is a disease with a persistently high incidence, causing serious losses to the health of cows, the quality of dairy products, and the economy of dairy farms. Although local udder infection caused by the invasion of exogenous pathogens into the mammary gland was considered the main cause of mastitis, evidence has been established and continues to grow, showing that nutrition factors and gastrointestinal microbiome (GM) as well as their metabolites are also involved in the development of mammary inflammatory response. Suboptimal nutrition is recognized as a risk factor for increased susceptibility to mastitis in cattle, in particular the negative energy balance. The majority of data regarding nutrition and bovine mastitis involves micronutrients. In addition, the dysbiotic GM can directly trigger or aggravate mastitis through entero-mammary gland pathway. The decreased beneficial commensal bacteria, lowered bacterial diversity, and increased pathogens as well as proinflammatory metabolites are found in both the milk and gastrointestinal tract of mastitic dairy cows. This review discussed the relationship between the nutrition (energy and micronutrient levels) and mastitis, summarized the role of GM and metabolites in regulating mastitis. Meanwhile, several non-antibiotics strategies were provided for the prevention and alleviation of mastitis, including micronutrients, probiotics, short-chain fatty acids, high-fiber diet, inulin, and aryl hydrocarbon receptor.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Liu
- Langfang Academy of Agriculture and Forestry, Langfang 065000, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Linehan K, Patangia DV, Ross RP, Stanton C. Production, Composition and Nutritional Properties of Organic Milk: A Critical Review. Foods 2024; 13:550. [PMID: 38397527 PMCID: PMC10887702 DOI: 10.3390/foods13040550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Milk is one of the most valuable products in the food industry with most milk production throughout the world being carried out using conventional management, which includes intensive and traditional systems. The intensive use of fertilizers, antibiotics, pesticides and concerns regarding animal health and the environment have given increasing importance to organic dairy and dairy products in the last two decades. This review aims to compare the production, nutritional, and compositional properties of milk produced by conventional and organic dairy management systems. We also shed light on the health benefits of milk and the worldwide scenario of the organic dairy production system. Most reports suggest milk has beneficial health effects with very few, if any, adverse effects reported. Organic milk is reported to confer additional benefits due to its lower omega-6-omega-3 ratio, which is due to the difference in feeding practices, with organic cows predominantly pasture fed. Despite the testified animal, host, and environmental benefits, organic milk production is difficult in several regions due to the cost-intensive process and geographical conditions. Finally, we offer perspectives for a better future and highlight knowledge gaps in the organic dairy management system.
Collapse
Affiliation(s)
- Kevin Linehan
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland; (K.L.); (D.V.P.)
- APC Microbiome Ireland, University College Cork, T12 Y120 Cork, Ireland;
- School of Microbiology, University College Cork, T12 XF62 Cork, Ireland
| | - Dhrati V. Patangia
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland; (K.L.); (D.V.P.)
- APC Microbiome Ireland, University College Cork, T12 Y120 Cork, Ireland;
- School of Microbiology, University College Cork, T12 XF62 Cork, Ireland
| | - Reynolds Paul Ross
- APC Microbiome Ireland, University College Cork, T12 Y120 Cork, Ireland;
- School of Microbiology, University College Cork, T12 XF62 Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland; (K.L.); (D.V.P.)
- APC Microbiome Ireland, University College Cork, T12 Y120 Cork, Ireland;
- VistaMilk Research Centre, Teagasc Moorepark, Fermoy, P61 C996 Cork, Ireland
| |
Collapse
|
6
|
Bao L, Sun H, Zhao Y, Feng L, Wu K, Shang S, Xu J, Shan R, Duan S, Qiu M, Zhang N, Hu X, Zhao C, Fu Y. Hexadecanamide alleviates Staphylococcus aureus-induced mastitis in mice by inhibiting inflammatory responses and restoring blood-milk barrier integrity. PLoS Pathog 2023; 19:e1011764. [PMID: 37948460 PMCID: PMC10664928 DOI: 10.1371/journal.ppat.1011764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/22/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023] Open
Abstract
Subacute ruminal acidosis (SARA) has been demonstrated to promote the development of mastitis, one of the most serious diseases in dairy farming worldwide, but the underlying mechanism is unclear. Using untargeted metabolomics, we found hexadecanamide (HEX) was significantly reduced in rumen fluid and milk from cows with SARA-associated mastitis. Herein, we aimed to assess the protective role of HEX in Staphylococcus aureus (S. aureus)- and SARA-induced mastitis and the underlying mechanism. We showed that HEX ameliorated S. aureus-induced mastitis in mice, which was related to the suppression of mammary inflammatory responses and repair of the blood-milk barrier. In vitro, HEX depressed S. aureus-induced activation of the NF-κB pathway and improved barrier integrity in mouse mammary epithelial cells (MMECs). In detail, HEX activated PPARα, which upregulated SIRT1 and subsequently inhibited NF-κB activation and inflammatory responses. In addition, ruminal microbiota transplantation from SARA cows (S-RMT) caused mastitis and aggravated S. aureus-induced mastitis, while these changes were reversed by HEX. Our findings indicate that HEX effectively attenuates S. aureus- and SARA-induced mastitis by limiting inflammation and repairing barrier integrity, ultimately highlighting the important role of host or microbiota metabolism in the pathogenesis of mastitis and providing a potential strategy for mastitis prevention.
Collapse
Affiliation(s)
- Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Hao Sun
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Yihong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Keyi Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Shan Shang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Jiawen Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Ruping Shan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Shiyu Duan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Min Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
7
|
Patangia DV, Grimaud G, Linehan K, Ross RP, Stanton C. Microbiota and Resistome Analysis of Colostrum and Milk from Dairy Cows Treated with and without Dry Cow Therapies. Antibiotics (Basel) 2023; 12:1315. [PMID: 37627735 PMCID: PMC10451192 DOI: 10.3390/antibiotics12081315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
This study investigated the longitudinal impact of methods for the drying off of cows with and without dry cow therapy (DCT) on the microbiota and resistome profile in colostrum and milk samples from cows. Three groups of healthy dairy cows (n = 24) with different antibiotic treatments during DCT were studied. Colostrum and milk samples from Month 0 (M0), 2 (M2), 4 (M4) and 6 (M6) were analysed using whole-genome shotgun-sequencing. The microbial diversity from antibiotic-treated groups was different and higher than that of the non-antibiotic group. This difference was more evident in milk compared to colostrum, with increasing diversity seen only in antibiotic-treated groups. The microbiome of antibiotic-treated groups clustered separately from the non-antibiotic group at M2-, M4- and M6 milk samples, showing the effect of antibiotic treatment on between-group (beta) diversity. The non-antibiotic group did not show a high relative abundance of mastitis-causing pathogens during early lactation and was more associated with genera such as Psychrobacter, Serratia, Gordonibacter and Brevibacterium. A high relative abundance of antibiotic resistance genes (ARGs) was observed in the milk of antibiotic-treated groups with the Cephaguard group showing a significantly high abundance of genes conferring resistance to cephalosporin, aminoglycoside and penam classes. The data support the use of non-antibiotic alternatives for drying off in cows.
Collapse
Affiliation(s)
- Dhrati V. Patangia
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (D.V.P.); (R.P.R.)
- Biosciences Building, Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Ghjuvan Grimaud
- Biosciences Building, Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Kevin Linehan
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (D.V.P.); (R.P.R.)
- Biosciences Building, Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - R. Paul Ross
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (D.V.P.); (R.P.R.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Catherine Stanton
- Biosciences Building, Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
8
|
Coates LC, Durham SD, Storms DH, Magnuson AD, Van Hekken DL, Plumier BM, Finley JW, Fukagawa NK, Tomasula PM, Lemay DG, Picklo MJ, Barile D, Kalscheur KF, Kable ME. Associations among Milk Microbiota, Milk Fatty Acids, Milk Glycans, and Inflammation from Lactating Holstein Cows. Microbiol Spectr 2023; 11:e0402022. [PMID: 37074179 PMCID: PMC10269560 DOI: 10.1128/spectrum.04020-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/23/2023] [Indexed: 04/20/2023] Open
Abstract
Milk oligosaccharides (MOs) can be prebiotic and antiadhesive, while fatty acids (MFAs) can be antimicrobial. Both have been associated with milk microbes or mammary gland inflammation in humans. Relationships between these milk components and milk microbes or inflammation have not been determined for cows and could help elucidate a novel approach for the dairy industry to promote desired milk microbial composition for improvement of milk quality and reduction of milk waste. We aimed to determine relationships among milk microbiota, MFAs, MOs, lactose, and somatic cell counts (SCC) from Holstein cows, using our previously published data. Raw milk samples were collected at three time points, ranging from early to late lactation. Data were analyzed using linear mixed-effects modeling and repeated-measures correlation. Unsaturated MFA and short-chain MFA had mostly negative relationships with potentially pathogenic genera, including Corynebacterium, Pseudomonas, and an unknown Enterobacteriaceae genus but numerous positive relationships with symbionts Bifidobacterium and Bacteroides. Conversely, many MOs were positively correlated with potentially pathogenic genera (e.g., Corynebacterium, Enterococcus, and Pseudomonas), and numerous MOs were negatively correlated with the symbiont Bifidobacterium. The neutral, nonfucosylated MO composed of eight hexoses had a positive relationship with SCC, while lactose had a negative relationship with SCC. One interpretation of these trends might be that in milk, MFAs disrupt primarily pathogenic bacterial cells, causing a relative increase in abundance of beneficial microbial taxa, while MOs respond to and act on pathogenic taxa primarily through antiadhesive methods. Further research is needed to confirm the potential mechanisms driving these correlations. IMPORTANCE Bovine milk can harbor microbes that cause mastitis, milk spoilage, and foodborne illness. Fatty acids found in milk can be antimicrobial and milk oligosaccharides can have antiadhesive, prebiotic, and immune-modulatory effects. Relationships among milk microbes, fatty acids, oligosaccharides, and inflammation have been reported for humans. To our knowledge, associations among the milk microbial composition, fatty acids, oligosaccharides, and lactose have not been reported for healthy lactating cows. Identifying these potential relationships in bovine milk will inform future efforts to characterize direct and indirect interactions of the milk components with the milk microbiota. Since many milk components are associated with herd management practices, determining if these milk components impact milk microbes may provide valuable information for dairy cow management and breeding practices aimed at minimizing harmful and spoilage-causing microbes in raw milk.
Collapse
Affiliation(s)
- Laurynne C. Coates
- U.S. Department of Agriculture—Agricultural Research Service, Western Human Nutrition Research Center, Davis, California, USA
| | - Sierra D. Durham
- University of California, Davis, Food Science and Technology, Davis, California, USA
| | - David H. Storms
- U.S. Department of Agriculture—Agricultural Research Service, Western Human Nutrition Research Center, Davis, California, USA
| | - Andrew D. Magnuson
- U.S. Department of Agriculture—Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA
| | - Diane L. Van Hekken
- U.S. Department of Agriculture—Agricultural Research Service, Dairy and Functional Foods Research, Wyndmoor, Pennsylvania, USA
| | - Benjamin M. Plumier
- U.S. Department of Agriculture—Agricultural Research Service, Dairy and Functional Foods Research, Wyndmoor, Pennsylvania, USA
| | - John W. Finley
- U.S. Department of Agriculture—Agricultural Research Service, George Washington Carver Center, Beltsville, Maryland, USA
| | - Naomi K. Fukagawa
- U.S. Department of Agriculture—Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, Maryland, USA
| | - Peggy M. Tomasula
- U.S. Department of Agriculture—Agricultural Research Service, Dairy and Functional Foods Research, Wyndmoor, Pennsylvania, USA
| | - Danielle G. Lemay
- U.S. Department of Agriculture—Agricultural Research Service, Western Human Nutrition Research Center, Davis, California, USA
| | - Matthew J. Picklo
- U.S. Department of Agriculture—Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA
| | - Daniela Barile
- University of California, Davis, Food Science and Technology, Davis, California, USA
| | - Kenneth F. Kalscheur
- U.S. Department of Agriculture—Agricultural Research Service, U.S. Dairy Forage Research Center, Madison, Wisconsin, USA
| | - Mary E. Kable
- U.S. Department of Agriculture—Agricultural Research Service, Western Human Nutrition Research Center, Davis, California, USA
| |
Collapse
|
9
|
Mariadassou M, Nouvel LX, Constant F, Morgavi DP, Rault L, Barbey S, Helloin E, Rué O, Schbath S, Launay F, Sandra O, Lefebvre R, Le Loir Y, Germon P, Citti C, Even S. Microbiota members from body sites of dairy cows are largely shared within individual hosts throughout lactation but sharing is limited in the herd. Anim Microbiome 2023; 5:32. [PMID: 37308970 DOI: 10.1186/s42523-023-00252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Host-associated microbes are major determinants of the host phenotypes. In the present study, we used dairy cows with different scores of susceptibility to mastitis with the aim to explore the relationships between microbiota composition and different factors in various body sites throughout lactation as well as the intra- and inter-animal microbial sharing. RESULTS Microbiotas from the mouth, nose, vagina and milk of 45 lactating dairy cows were characterized by metataxonomics at four time points during the first lactation, from 1-week pre-partum to 7 months post-partum. Each site harbored a specific community that changed with time, likely reflecting physiological changes in the transition period and changes in diet and housing. Importantly, we found a significant number of microbes shared among different anatomical sites within each animal. This was between nearby anatomic sites, with up to 32% of the total number of Amplicon Sequence Variants (ASVs) of the oral microbiota shared with the nasal microbiota but also between distant ones (e.g. milk with nasal and vaginal microbiotas). In contrast, the share of microbes between animals was limited (< 7% of ASVs shared by more than 50% of the herd for a given site and time point). The latter widely shared ASVs were mainly found in the oral and nasal microbiotas. These results thus indicate that despite a common environment and diet, each animal hosted a specific set of bacteria, supporting a tight interplay between each animal and its microbiota. The score of susceptibility to mastitis was slightly but significantly related to the microbiota associated to milk suggesting a link between host genetics and microbiota. CONCLUSIONS This work highlights an important sharing of microbes between relevant microbiotas involved in health and production at the animal level, whereas the presence of common microbes was limited between animals of the herd. This suggests a host regulation of body-associated microbiotas that seems to be differently expressed depending on the body site, as suggested by changes in the milk microbiota that were associated to genotypes of susceptibility to mastitis.
Collapse
Affiliation(s)
| | | | - Fabienne Constant
- Ecole Nationale Vétérinaire d'Alfort, Université Paris-Saclay, UVSQ, INRAE, BREED, Maisons-Alfort, France
| | - Diego P Morgavi
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genes-Champanelle, France
| | - Lucie Rault
- INRAE, Institut Agro, UMR1253 STLO, Rennes, France
| | - Sarah Barbey
- INRAE, UE326 Unité Expérimentale du Pin, Gouffern en Auge, France
| | | | - Olivier Rué
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Jouy-en-Josas, France
| | - Sophie Schbath
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
| | - Frederic Launay
- INRAE, UE326 Unité Expérimentale du Pin, Gouffern en Auge, France
| | - Olivier Sandra
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | - Rachel Lefebvre
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Yves Le Loir
- INRAE, Institut Agro, UMR1253 STLO, Rennes, France
| | - Pierre Germon
- INRAE, Université de Tours, UMR ISP, 37380, Nouzilly, France
| | | | - Sergine Even
- INRAE, Institut Agro, UMR1253 STLO, Rennes, France.
| |
Collapse
|
10
|
Zhu H, Miao R, Tao X, Wu J, Liu L, Qu J, Liu H, Sun Y, Li L, Qu Y. Longitudinal Changes in Milk Microorganisms in the First Two Months of Lactation of Primiparous and Multiparous Cows. Animals (Basel) 2023; 13:1923. [PMID: 37370433 DOI: 10.3390/ani13121923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/27/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The present experiment was carried out to analyze the longitudinal changes in milk microorganisms. For this purpose, milk samples were collected from 12 healthy cows (n = 96; six primiparous cows and six multiparous cows) at eight different time points. The characteristics and variations in microbial composition were analyzed by 16S rRNA gene high-throughput sequencing. In the primiparous group, higher and more stable alpha diversity was observed in transitional and mature milk compared with the colostrum, with no significant difference in alpha diversity at each time point in the multiparous group. Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteriota were the most dominant phyla, and Pseudomonas, UCG-005, Acinetobacter, Vibrio, Lactobacillus, Bacteroides, Serratia, Staphylococcus, and Glutamicibacter were the most dominant genera in both primiparous and multiparous cow milk. Some typically gut-associated microbes, such as Bacteroides, UCG-005, and Rikenellaceae_RC9_gut_group, etc., were enriched in the two groups. Biomarker taxa with the day in time (DIM) were identified by a random forest algorithm, with Staphylococcus showing the highest degree of interpretation, and the difference in milk microbiota between the two groups was mainly reflected in 0 d-15 d. Additionally, network analysis suggested that there were bacteria associated with the total protein content in milk. Collectively, our results disclosed the longitudinal changes in the milk microbiota of primiparous and multiparous cows, providing further evidence in dairy microbiology.
Collapse
Affiliation(s)
- Huan Zhu
- Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
- College of Science, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
| | - Renfang Miao
- Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
| | - Xinxu Tao
- Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
| | - Jianhao Wu
- Bright Farming Co., Ltd., No. 1518, West Jiangchang Road, Shanghai 200436, China
| | - Licheng Liu
- Institute of Animal Husbandry and Veterinary Medicine, Heilongjiang Academy of Agricultural Reclamation, No. 101 Xiangfu Road, Herbin 150038, China
| | - Jiachen Qu
- Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
| | - Hongzhi Liu
- Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
| | - Yanting Sun
- School of Civil Engineering, Xi'an University of Architecture & Technology, No. 99 Yanta Road, Xi'an 710064, China
| | - Lingyan Li
- Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
| | - Yongli Qu
- Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
| |
Collapse
|
11
|
Mu Y, Qi W, Zhang T, Zhang J, Mao S. Coordinated response of milk bacterial and metabolic profiles to subacute ruminal acidosis in lactating dairy cows. J Anim Sci Biotechnol 2023; 14:60. [PMID: 37138330 PMCID: PMC10158360 DOI: 10.1186/s40104-023-00859-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/01/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Bovine milk is an important source of nutrition for human consumption, and its quality is closely associated with the microbiota and metabolites in it. But there is limited knowledge about the milk microbiome and metabolome in cows with subacute ruminal acidosis. METHODS Eight ruminally cannulated Holstein cows in mid lactation were selected for a 3-week experiment. The cows were randomly allocated into 2 groups, fed either a conventional diet (CON; 40% concentrate; dry matter basis) or a high-concentrate diet (HC; 60% concentrate; dry matter basis). RESULTS The results showed that there was a decreased milk fat percentage in the HC group compared to the CON group. The amplicon sequencing results indicated that the alpha diversity indices were not affected by the HC feeding. At the phylum level, the milk bacteria were dominated by Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes both in the CON and HC groups. At the genus level, the HC cows displayed an improved proportion of Labrys (P = 0.015) compared with the CON cows. Results of both the principal components analysis and partial least squares of discriminant analysis of milk metabolome revealed that samples of the CON and HC groups clustered separately. A total of 31 differential metabolites were identified between the two groups. Of these, the levels of 11 metabolites decreased (α-linolenic acid, prostaglandin E2, L-lactic acid, L-malic acid, 3-hydroxysebacic acid, succinyladenosine, guanosine, pyridoxal, L-glutamic acid, hippuric acid, and trigonelline), whereas the levels of the other 20 metabolites increased in the HC group with respect to the CON group (P < 0.05). CONCLUSION These results suggested that subacute ruminal acidosis less impacted the diversity and composition of milk microbiota, but altered the milk metabolic profiles, which led to the decline of the milk quality.
Collapse
Affiliation(s)
- Yingyu Mu
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangpan Qi
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tao Zhang
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiyou Zhang
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengyong Mao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Guo W, Bi SS, Wang WW, Zhou M, Neves ALA, Degen AA, Guan LL, Long RJ. Maternal rumen and milk microbiota shape the establishment of early-life rumen microbiota in grazing yak calves. J Dairy Sci 2023; 106:2054-2070. [PMID: 36710176 DOI: 10.3168/jds.2022-22655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/05/2022] [Indexed: 01/30/2023]
Abstract
Early-life gut microbial colonization and development exert a profound impact on the health and metabolism of the host throughout the life span. The transmission of microbes from the mother to the offspring affects the succession and establishment of the early-life rumen microbiome in newborns, but the contributions of different maternal sites to the rumen microbial establishment remain unclear. In the present study, samples from different dam sites (namely, oral, rumen fluid, milk, and teat skin) and rumen fluid of yak calves were collected at 6 time points between d 7 and 180 postpartum to determine the contributions of the different maternal sites to the establishment of the bacterial and archaeal communities in the rumen during early life. Our analysis demonstrated that the dam's microbial communities clustered according to the sites, and the calves' rumen microbiota resembled that of the dam consistently regardless of fluctuations at d 7 and 14. The dam's rumen microbiota was the major source of the calves' rumen bacteria (7.9%) and archaea (49.7%) compared with the other sites, whereas the potential sources of the calf rumen microbiota from other sites varied according to the age. The contribution of dam's rumen bacteria increased with age from 0.36% at d 7 to 14.8% at d 180, whereas the contribution of the milk microbiota showed the opposite trend, with its contribution reduced from 2.7% at d 7 to 0.2% at d 180. Maternal oral archaea were the main sources of the calves' rumen archaea at d 14 (50.4%), but maternal rumen archaea became the main source gradually and reached 66.2% at d 180. These findings demonstrated the potential microbial transfer from the dam to the offspring that could influence the rumen microbiota colonization and establishment in yak calves raised under grazing regimens, providing the basis for future microbiota manipulation strategies during their early life.
Collapse
Affiliation(s)
- W Guo
- State Key Laboratory of Grassland Agro-ecosystems, International Centre of Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - S S Bi
- State Key Laboratory of Grassland Agro-ecosystems, International Centre of Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - W W Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - M Zhou
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - A L A Neves
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870, Frederiksberg C, Denmark
| | - A A Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 8410500, Israel
| | - L L Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - R J Long
- State Key Laboratory of Grassland Agro-ecosystems, International Centre of Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
13
|
Microbiome-Metabolomics Insights into the Milk of Lactating Dairy Cows to Reveal the Health-Promoting Effects of Dietary Citrus Peel Extracts on the Mammary Metabolism. Foods 2022; 11:foods11244119. [PMID: 36553861 PMCID: PMC9778193 DOI: 10.3390/foods11244119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The effects of dietary supplementation with citrus peel extract (CPE) on milk biochemical parameters, milk bacterial community, and milk metabolites were evaluated. Eight lactating cows were allocated to a replicated 4 × 4 Latin square. Experimental treatments included the control diet (CON), and CON supplemented with CPE at 50 g/d (CPE50), 100 g/d (CPE100), and 150 g/d (CPE150). Supplementing with CPE linearly decreased milk interleukin-6 and malondialdehyde concentrations and linearly increased lysozyme activity and 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Compared with CON, the milk of CPE150 cows had fewer abundances of several opportunistic pathogens and psychrotrophic bacteria, such as Escherichia-Shigella, Sphingobacterium, Alcaligenes, Stenotrophomonas, and Ochrobactrum. Supplementing with CPE significantly altered the metabolic profiling in the milk. The metabolites of flavonoids were enriched in the milk of cows fed CPE150, while some proinflammation compounds were decreased compared with CON. Correlation analysis showed that the change in the bacterial community might partly contribute to the alteration in the expression of milk cytokines. In conclusion, CPE exerts health-promoting effects (e.g., antioxidant, anti-microbial, and anti-inflammatory) in the mammary metabolism of cows due to its flavonoid compounds, which also provide additional value in terms of milk quality improvement.
Collapse
|
14
|
Mtshali K, Khumalo ZTH, Kwenda S, Arshad I, Thekisoe OMM. Exploration and comparison of bacterial communities present in bovine faeces, milk and blood using 16S rRNA metagenomic sequencing. PLoS One 2022; 17:e0273799. [PMID: 36044481 PMCID: PMC9432762 DOI: 10.1371/journal.pone.0273799] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Cattle by-products like faeces, milk and blood have many uses among rural communities; aiding to facilitate everyday household activities and occasional rituals. Ecologically, the body sites from which they are derived consist of distinct microbial communities forming a complex ecosystem of niches. We aimed to explore and compare the faecal, milk and blood microbiota of cows through 16S rRNA sequencing. All downstream analyses were performed using applications in R Studio (v3.6.1). Alpha-diversity metrics showed significant differences between faeces and blood; faeces and milk; but non-significant between blood and milk using Kruskal-Wallis test, P < 0,05. The beta-diversity metrics on Principal Coordinate Analysis and Non-Metric Dimensional Scaling significantly clustered samples by type (PERMANOVA test, P < 0,05). The overall analysis revealed a total of 30 phyla, 74 classes, 156 orders, 243 families and 408 genera. Firmicutes, Bacteroidota and Proteobacteria were the most abundant phyla overall. A total of 58 genus-level taxa occurred concurrently between the body sites. The important taxa could be categorized into four potentially pathogenic clusters i.e. arthropod-borne; food-borne and zoonotic; mastitogenic; and metritic and abortigenic. A number of taxa were significantly differentially abundant (DA) between sites based on the Wald test implemented in DESeq2 package. Majority of the DA taxa (i.e. Romboutsia, Paeniclostridium, Monoglobus, Akkermansia, Turicibacter, Bacteroides, Candidatus_Saccharimonas, UCG-005 and Prevotellaceae_UCG-004) were significantly enriched in faeces in comparison to milk and blood, except for Anaplasma which was greatly enriched in blood and was in turn the largest microbial genus in the entire analysis. This study provides insights into the microbial community composition of the sampled body sites and its extent of overlapping. It further highlights the potential risk of disease occurrence and transmission between the animals and the community of Waaihoek in KwaZulu-Natal, Republic of South Africa pertaining to their unsanitary practices associated with the use of cattle by-products.
Collapse
Affiliation(s)
- Khethiwe Mtshali
- Biomedical Sciences Department, Tshwane University of Technology, Pretoria, South Africa
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- * E-mail: ,
| | - Zamantungwa Thobeka Happiness Khumalo
- Faculty of Veterinary Science, Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
- Study Management, ClinVet International, Bainsvlei, Bloemfontein, South Africa
| | - Stanford Kwenda
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Ismail Arshad
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Science, Department of Biochemistry and Microbiology, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | | |
Collapse
|
15
|
Van Hese I, Goossens K, Ampe B, Haegeman A, Opsomer G. Exploring the microbial composition of Holstein Friesian and Belgian Blue colostrum in relation to the transfer of passive immunity. J Dairy Sci 2022; 105:7623-7641. [PMID: 35879156 DOI: 10.3168/jds.2022-21799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022]
Abstract
For centuries, multicellular organisms have lived in symbiosis with microorganisms. The interaction with microorganisms has been shown to be very beneficial for humans and animals. During a natural birth, the initial inoculation with bacteria occurs when the neonate passes through the birth canal. Colostrum and milk intake are associated with the acquisition of a healthy gut flora. However, little is known about the microbial composition of bovine colostrum and the possible beneficial effects for the neonatal calf. In this prospective cohort study, the microbial composition of first-milking colostrum was analyzed in 62 Holstein Friesian (HF) and 46 Belgian Blue (BB) cows by performing amplicon sequencing of the bacterial V3-V4 region of the 16S rRNA gene. Calves received, 3 times, 2 L of their dam's colostrum within 24 h after birth. Associations between colostral microbial composition and its IgG concentration, as well as each calf's serum IgG levels, were analyzed. Colostrum samples were dominated by the phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. The 10 most abundant genera in the complete data set were Acinetobacter (16.2%), Pseudomonas (15.1%), a genus belonging to the Enterobacteriaceae family (4.9%), Lactococcus (4.0%), Chryseobacterium (3.9%), Staphylococcus (3.6%), Proteus (1.9%), Streptococcus (1.8%), Enterococcus (1.7%), and Enhydrobacter (1.5%). The remaining genera (other than these top 10) accounted for 36.5% of the counts, and another 8.7% were unidentified. Bacterial diversity differed significantly between HF and BB samples. Within each breed, several genera were found to be differentially abundant between colostrum of different quality. Moreover, in HF, the bacterial composition of colostrum leading to low serum IgG levels in the calf differed from that of colostrum leading to high serum IgG levels. Results of the present study indicate that the microbes present in colostrum are associated with transfer of passive immunity in neonatal calves.
Collapse
Affiliation(s)
- I Van Hese
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Scheldeweg, Melle, Belgium 9090; Department of Reproduction, Obstetrics and Herd Health Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, Belgium 9820.
| | - K Goossens
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Scheldeweg, Melle, Belgium 9090
| | - B Ampe
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Scheldeweg, Melle, Belgium 9090
| | - A Haegeman
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Scheldeweg, Melle, Belgium 9090
| | - G Opsomer
- Department of Reproduction, Obstetrics and Herd Health Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, Belgium 9820
| |
Collapse
|
16
|
Basbas C, Aly S, Okello E, Karle BM, Lehenbauer T, Williams D, Ganda E, Wiedmann M, Pereira RV. Effect of Intramammary Dry Cow Antimicrobial Treatment on Fresh Cow's Milk Microbiota in California Commercial Dairies. Antibiotics (Basel) 2022; 11:963. [PMID: 35884217 PMCID: PMC9312063 DOI: 10.3390/antibiotics11070963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
This study used 16S rRNA sequencing to evaluate the effects of dry cow antimicrobial therapy on the udder milk microbiota by comparing the microbial populations in milk at dry-off (DRY) (~60 days before calving) and post-partum (FRESH) (4-11 days after calving) from cows receiving an intramammary antibiotic infusion prior to dry-off (IMT) and cows that did not receive treatment (CTL). Milk was collected from 23 cows from the IMT group and 27 cows from the CTL group. IMT and DRY samples had a greater correlation with the genera Brevibacterium and Amaricoccus, and the family Micrococcaceae, when compared to IMT and FRESH samples. CTL group samples collected at DRY had a greater correlation with the genera Akkermansia and Syntrophus, when compared to FRESH samples; no bacterial taxa were observed to have a significant correlation with FRESH samples in the CTL group. DRY samples collected from the CTL group had a greater correlation with the genus Mogibacterium when compared to IMT and CTL samples. For DRY samples collected from the IMT group, a greater correlation with the genus Alkalibacterium when compared to DRY and CTL samples, was observed. The lack of a correlation for FRESH samples between the CTL and IMT treatment groups indicated that intramammary antimicrobial dry cow therapy had no significant effect on the udder milk microbiota post-partum.
Collapse
Affiliation(s)
- Carl Basbas
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA; (C.B.); (S.A.); (E.O.); (T.L.)
| | - Sharif Aly
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA; (C.B.); (S.A.); (E.O.); (T.L.)
- Veterinary Medicine Teaching and Research Center, University of California, Davis, Tulare, CA 93274, USA;
| | - Emmanuel Okello
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA; (C.B.); (S.A.); (E.O.); (T.L.)
- Veterinary Medicine Teaching and Research Center, University of California, Davis, Tulare, CA 93274, USA;
| | - Betsy M. Karle
- Cooperative Extension, Division of Agriculture and Natural Resources, University of California, Orland, CA 95963, USA;
| | - Terry Lehenbauer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA; (C.B.); (S.A.); (E.O.); (T.L.)
- Veterinary Medicine Teaching and Research Center, University of California, Davis, Tulare, CA 93274, USA;
| | - Deniece Williams
- Veterinary Medicine Teaching and Research Center, University of California, Davis, Tulare, CA 93274, USA;
| | - Erika Ganda
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (E.G.); (M.W.)
- Penn State College of Agricultural Sciences, University Park, PA 16802, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (E.G.); (M.W.)
| | - Richard V. Pereira
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA; (C.B.); (S.A.); (E.O.); (T.L.)
| |
Collapse
|
17
|
Coates LC, Storms D, Finley JW, Fukagawa NK, Lemay DG, Kalscheur KF, Kable ME. A Low-Starch and High-Fiber Diet Intervention Impacts the Microbial Community of Raw Bovine Milk. Curr Dev Nutr 2022; 6:nzac086. [PMID: 35720468 PMCID: PMC9197574 DOI: 10.1093/cdn/nzac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 11/12/2022] Open
Abstract
Background A more sustainable dairy cow diet was designed that minimizes use of feed components digestible by monogastric animals by increasing the quantity of forages. Objectives This study determined if feeding lactating cows the more sustainable, low-starch and high-fiber (LSHF) diet was associated with changes in raw milk microbiota composition and somatic cell count (SCC). Methods In a crossover design, 76 lactating Holstein cows were assigned to an LSHF diet or a high-starch and low-fiber (HSLF) diet, similar to common dairy cow diets in the United States, for 10 wk then placed on the opposite diet for 10 wk. The LSHF diet contained greater quantities of forages, beet pulp, and corn distillers' grain, but contained less canola meal and no high-moisture corn compared with the HSLF diet. Raw milk samples were collected from each cow 4-5 d before intervention and 5 wk into each diet treatment. Within 4 d, additional milk samples were collected for measurement of SCC using Fossmatic 7. The microbial community was determined by sequencing the 16S rRNA gene V4-V5 region and analyzing sequences with QIIME2. After quality filtering, 53 cows remained. Results Raw milk microbial communities differed by diet and time. Taxa associated with fiber consumption, such as Lachnospiraceae, Lactobacillus, Bacteroides, and Methanobrevibacter, were enriched with the LSHF diet. Meanwhile, taxa associated with mastitis, such as Pseudomonas, Stenotrophomonas, and Enterobacteriaceae, were enriched with the HSLF diet. Relatedly, an interaction of diet and time was found to impact SCC. Conclusions In raw milk, consumption of an LSHF diet compared with an HSLF diet was associated with changes in abundance of microbes previously associated with fiber consumption, udder health, and milk spoilage. Further research is needed to determine if an LSHF diet indeed leads to lower rates of mastitis and milk spoilage, which could benefit the dairy industry.
Collapse
Affiliation(s)
- Laurynne C Coates
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| | - David Storms
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| | - John W Finley
- United States Department of Agriculture, Agricultural Research Service, George Washington Carver Center, Beltsville, MD, USA
| | - Naomi K Fukagawa
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Danielle G Lemay
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| | - Kenneth F Kalscheur
- United States Department of Agriculture, Agricultural Research Service, US Dairy Forage Research Center, Madison, WI, USA
| | - Mary E Kable
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| |
Collapse
|
18
|
Comparison of the Microbiome of Artisanal Homemade and Industrial Feta Cheese through Amplicon Sequencing and Shotgun Metagenomics. Microorganisms 2022; 10:microorganisms10051073. [PMID: 35630516 PMCID: PMC9146562 DOI: 10.3390/microorganisms10051073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 01/21/2023] Open
Abstract
Feta is the most renowned protected designation of origin (PDO) white brined cheese produced in Greece. The fine organoleptic characteristics and the quality of Feta rely on, among other factors, its overall microbial ecosystem. In this study, we employed 16S rDNA and internal transcribed spacer (ITS) amplicon sequencing, as well as shotgun metagenomics, to investigate the microbiome of artisanal homemade and industrial Feta cheese samples from different regions of Greece, which has very rarely been investigated. 16S rDNA data suggested the prevalence of the Lactococcus genus in the homemade samples, while Streptococcus and Lactobacillus genera prevailed in the industrial control samples. Species identification deriving from shotgun metagenomics corroborated these findings, as Lactococcus lactis dominated two homemade samples while Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus were found to be dominating one industrial sample. ITS data revealed a complex diversity of the yeast population among the samples analyzed. Debaryomyces, Kluyveromyces, Cutaneotrichosporon, Pichia, Candida, and Rhodotorula were the major genera identified, which were distributed in a rather arbitrary manner among the different samples. Furthermore, a number of potential metagenome-assembled genomes (MAGs) could be detected among assembled shotgun bins. The overall analysis of the shotgun metagenomics supported the presence of different foodborne pathogens in homemade samples (e.g., Staphylococcus aureus, Listeria monocytogenes, Enterobacter cloacae, and Streptococcus suis), but with low to very low abundances. Concluding, the combination of both amplicon sequencing and shotgun metagenomics allowed us to obtain an in-depth profile of the artisanal homemade Feta cheese microbiome.
Collapse
|
19
|
Rajawardana DU, Fernando PC, Biggs PJ, Namali Hewajulige IG, Nanayakkara CM, Wickramasinghe S, Lin XX, Berry L. An insight into tropical milk microbiome: Bacterial community composition of cattle milk produced in Sri Lanka. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Hu X, Li S, Mu R, Guo J, Zhao C, Cao Y, Zhang N, Fu Y. The Rumen Microbiota Contributes to the Development of Mastitis in Dairy Cows. Microbiol Spectr 2022; 10:e0251221. [PMID: 35196821 PMCID: PMC8865570 DOI: 10.1128/spectrum.02512-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 12/25/2022] Open
Abstract
Mastitis, a highly prevalent disease in dairy cows, is commonly caused by local infection of the mammary gland. Our previous studies have suggested that the gut microbiota plays an important role in the development of mastitis in mice. However, the effects of rumen microbiota on bovine mastitis and the related mechanisms remain unclear. In this study, we assessed the effects and mechanisms of rumen microbiota on bovine mastitis based on the subacute rumen acidosis (SARA) model induced by feeding Holstein Frisian cows a high-concentrate diet for 8 weeks. Then, the inflammatory responses in the mammary gland and the bacterial communities of rumen fluid, feces, and milk were analyzed. The results showed that SARA induced mastitis symptoms in the mammary gland; activated a systemic inflammatory response; and increased the permeability of the blood-milk barrier, gut barrier, and rumen barrier. Further research showed that lipopolysaccharides (LPS), derived from the gut of SARA cows, translocated into the blood and accumulated in the mammary glands. Furthermore, the abundance of Stenotrophomonas was increased in the rumen of SARA cows, and mastitis was induced by oral administration of Stenotrophomonas in lactating mice. In conclusion, our findings suggested that mastitis is induced by exogenous pathogenic microorganisms as well as by endogenous pathogenic factors. Specifically, the elevated abundance of Stenotrophomonas in the rumen and LPS translocation from the rumen to the mammary gland were important endogenous factors that induced mastitis. Our study provides a foundation for novel therapeutic strategies that target the rumen microbiota in cow mastitis. IMPORTANCE Mastitis is a common and frequently occurring disease of humans and animals, especially in dairy farming, which has caused huge economic losses and brought harmful substance residues, drug-resistant bacteria, and other public health risks. The traditional viewpoint indicates that mastitis is mainly caused by exogenous pathogenic bacteria infecting the mammary gland. Our study found that the occurrence of mastitis was induced by the endogenous pathway. Evidence has shown that rumen-derived LPS enters the mammary gland through blood circulation, damaging the blood-milk barrier and then inducing inflammation of the mammary gland in cows. In addition, a higher abundance of Stenotrophomonas in the rumen was closely associated with the development of mastitis. This study provides a basis for novel therapeutic strategies that exploit the rumen microbiota against mastitis in cows.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Shuang Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Ruiying Mu
- Linqu County Animal Husbandry Development Center, Linqu, People's Republic of China
| | - Jian Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| |
Collapse
|
21
|
Sen M. Food Chemistry: Role of Additives, Preservatives, and Adulteration. Food Chem 2021. [DOI: 10.1002/9781119792130.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Negi A, Lakshmi P, Praba K, Meenatchi R, Pare A. Detection of Food Adulterants in Different Foodstuff. Food Chem 2021. [DOI: 10.1002/9781119792130.ch5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Jing-Wei Z, Yi-Yuan S, Xin L, Hua Z, Hui N, Luo-Yun F, Ben-Hai X, Jin-Jin T, Lin-Shu J. Microbiome and Metabolic Changes of Milk in Response to Dietary Supplementation With Bamboo Leaf Extract in Dairy Cows. Front Nutr 2021; 8:723446. [PMID: 34595199 PMCID: PMC8476867 DOI: 10.3389/fnut.2021.723446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/29/2021] [Indexed: 01/11/2023] Open
Abstract
Bamboo leaf extracts, with high content of flavonoids and diverse biological activities, are used in animal husbandry. Increasing evidence has suggested an association between the bovine physiology and the udder microbiome, yet whether the microbiota and the metabolites of milk affect the mammary gland health or the milk quality remains unknown. In this study, we provide a potential mechanism for the effects of bamboo leaf extracts on milk microbiota and metabolites of dairy cows. Twelve multiparous lactating Chinese Holstein dairy cows were randomly separated into two groups: basal diet as the control group (CON, n = 6) and a diet supplemented with 30 g/d bamboo leaf extract per head as antioxidants of bamboo leaf (AOB) group (AOB, n = 6) for 7 weeks (2-week adaptation, 5-week treatment). Milk samples were collected at the end of the trial (week 7) for microbiome and associated metabolic analysis by 16S ribosomal RNA (rRNA) gene sequencing and liquid chromatography-mass spectrometry (LC-MS). The results showed that the milk protein was increased (p < 0.0001) and somatic cell count (SCC) showed a tendency to decrease (p = 0.09) with AOB supplementation. The relative abundance of Firmicutes was significantly decreased (p = 0.04) while a higher relative abundance of Probacteria (p = 0.01) was seen in the group receiving AOB compared to the CON group. The AOB group had a significantly lower relative abundance of Corynebacterium_1 (p = 0.01), Aerococcus (p = 0.01), and Staphylococcus (p = 0.02). There were 64 different types of metabolites significantly upregulated, namely, glycerophospholipids and fatty acyls, and 15 significantly downregulated metabolites, such as moracetin, sphinganine, and lactulose in the AOB group. Metabolic pathway analysis of the different metabolites revealed that the sphingolipid signaling pathway was significantly enriched, together with glycerophospholipid metabolism, sphingolipid metabolism, and necroptosis in response to AOB supplementation. Several typical metabolites were highly correlated with specific ruminal bacteria, demonstrating a functional correlation between the milk microbiome and the associated metabolites. These insights into the complex mechanism and corresponding biological responses highlight the potential function of AOB, warranting further investigation into the regulatory role of specific pathways in the metabolism.
Collapse
Affiliation(s)
- Zhan Jing-Wei
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Shen Yi-Yuan
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Li Xin
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Zhang Hua
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Niu Hui
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Fang Luo-Yun
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Xiong Ben-Hai
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tong Jin-Jin
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Jiang Lin-Shu
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
24
|
Orhan F, Demirci A, Gormez A. Carbonate and silicate dissolving bacteria isolated from home-made yogurt samples. AN ACAD BRAS CIENC 2021; 93:e20200002. [PMID: 34378758 DOI: 10.1590/0001-3765202120200002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/16/2020] [Indexed: 11/22/2022] Open
Abstract
In the current study, twenty-eight bacterial strains were isolated from home-made yogurt samples from Ağrı Province, Turkey. The bacterial strains were identified by conventional and molecular techniques. Among the twenty- eight isolates, seventeen isolates were identified according to the 16 S rDNA region and determined to belong to five different genus including Sphingomonas (8 isolates), Burkholderia (5 isolates), Lactobacillus (2 isolates), Lactococcus (1 isolate), Staphylococcus (1 isolate). In this study, the presence of Burkholderia in home-made yogurt samples were reported for the first time, whereas Sphingomonas was detected for the second time. We also investigated the carbonate (CaCO3 and MgCO3) and silicate (CaSiO3 and MgSiO3) dissolving potential of seventeen bacterial isolates. Among these seventeen bacterial isolates, fifteen bacterial isolates have CaCO3-dissolving and 10 bacterial isolates have MgCO3-dissolving potential. The silicates dissolution ability was relatively less than that of carbonates dissolving. We observed that six bacterial isolates have CaSiO3 and only two bacterial isolates have MgSiO3 dissolution abilities. In conclusion, this work clearly shows the diversity of bacteria existing in fermented cow milk samples in Ağrı Province, Turkey, which could be considered as valuable sources for lactic acid bacteria (LAB) isolation and further probiotic potential.
Collapse
Affiliation(s)
- Furkan Orhan
- Agri Ibrahim Cecen University, Science and Art Faculty, Molecular Biology and Genetics Department, 04100 Agri, Turkey.,Agri Ibrahim Cecen University, Central Research and Application Laboratory, 04100 Agri, Turkey
| | - Abdullah Demirci
- Agri Ibrahim Cecen University, Central Research and Application Laboratory, 04100 Agri, Turkey
| | - Arzu Gormez
- Erzurum Technical University, Science Faculty, Molecular Biology and Genetics Department, 25050 Erzurum, Turkey
| |
Collapse
|
25
|
Guo X, Yu Z, Zhao F, Sun Z, Kwok LY, Li S. Both sampling seasonality and geographic origin contribute significantly to variations in raw milk microbiota, but sampling seasonality is the more determining factor. J Dairy Sci 2021; 104:10609-10627. [PMID: 34253372 DOI: 10.3168/jds.2021-20480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/28/2021] [Indexed: 11/19/2022]
Abstract
Accurately profiling and characterizing factors shaping raw milk microbiota would provide practical information for detecting microbial contamination and unusual changes in milk. The current work was an observational study aiming to profile the microbiota of raw milk collected across wide geographic regions in China in different seasons and to investigate the contribution of geographical, seasonal, and environmental factors in shaping the raw milk microbiota. A total of 355 raw cow milk samples from healthy Holsteins and 41 environmental samples (farm soil and surface of milking room floor) were collected from 5 dairy farms in 5 Chinese provinces (namely, Daqing in Heilongjiang province, Jiaozuo in Henan province, Qingyuan in Guangdong province, Suqian in Jiangsu province, and Yinchuan in Ningxia Hui Autonomous Region) in January, May, and September 2018. The microbial communities in raw milk and farm environmental samples were determined using the PacBio small-molecule real-time circular consensus sequencing, which generated high-fidelity microbiota profiles based on full-length 16S rRNA genes; such technology was advantageous in producing accurate species-level information. Our results showed that both seasonality and sampling region were significant factors influencing the milk microbiota; however, the raw milk microbiota was highly diverse according to seasonality, and sampling region was the less determining factor. The wide variation in raw milk microbial communities between samples made it difficult to define a representative species-level core milk microbiota. Nevertheless, 3 most universal milk-associated species were identified: Lactococcus lactis, Enhydrobacter aerosaccus, and Acinetobacter lwoffii, which were consistently detected in 99%, 95%, and 94% of all analyzed milk samples, respectively (n = 355). The top taxa accounting for the overall seasonal microbiota variation were Bacillus (Bacillus cereus, Bacillus flexus, Bacillus safensis), Lactococcus (Lactococcus lactis, Lactococcus piscium, Lactococcus raffinolactis), Lactobacillus (Lactobacillus helveticus, Lactobacillus delbrueckii), Lactiplantibacillus plantarum, Streptococcus agalactiae, Enhydrobacter aerosaccus, Pseudomonas fragi, and Psychrobacter cibarius. Unlike the milk microbiota, the environmental microbiota did not exhibit obvious pattern of seasonal or geographic variation. However, this study was limited by the relatively low number and types of environmental samples, making it statistically not meaningful to perform further correlation analysis between the milk and environmental microbiota. Nevertheless, this study generated novel information on raw milk microbiota across wide geographic regions of China and found that seasonality was more significant in shaping the raw milk microbiota compared with geographic origin.
Collapse
Affiliation(s)
- Xiaocen Guo
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhongjie Yu
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Feiyan Zhao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Lai-Yu Kwok
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
26
|
Liang T, Xie X, Zhang J, Ding Y, Wu Q. Bacterial community and composition of different traditional fermented dairy products in China, South Africa, and Sri Lanka by high-throughput sequencing of 16S rRNA genes. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111209] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Xue Z, Brooks JT, Quart Z, Stevens ET, Kable ME, Heidenreich J, McLeod J, Marco ML. Microbiota Assessments for the Identification and Confirmation of Slit Defect-Causing Bacteria in Milk and Cheddar Cheese. mSystems 2021; 6:e01114-20. [PMID: 33563789 PMCID: PMC7883541 DOI: 10.1128/msystems.01114-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/16/2021] [Indexed: 01/04/2023] Open
Abstract
Validated methods are needed to detect spoilage microbes present in low numbers in foods and ingredients prior to defect onset. We applied propidium monoazide combined with 16S rRNA gene sequencing, qPCR, isolate identification, and pilot-scale cheese making to identify the microorganisms that cause slit defects in industrially produced Cheddar cheese. To investigate milk as the source of spoilage microbes, bacterial composition in milk was measured immediately before and after high-temperature, short-time (HTST) pasteurization over 10-h periods on 10 days and in the resulting cheese blocks. Besides HTST pasteurization-induced changes to milk microbiota composition, a significant increase in numbers of viable bacteria was observed over the 10-h run times of the pasteurizer, including 68-fold-higher numbers of the genus Thermus However, Thermus was not associated with slit development. Milk used to make cheese which developed slits instead contained a lower number of total bacteria, higher alpha diversity, and higher proportions of Lactobacillus, Bacillus, Brevibacillus, and Clostridium Only Lactobacillus proportions were significantly increased during cheese aging, and Limosilactobacillus (Lactobacillus) fermentum, in particular, was enriched in slit-containing cheeses and the pre- and post-HTST-pasteurization milk used to make them. Pilot-scale cheeses developed slits when inoculated with strains of L. fermentum, other heterofermentative lactic acid bacteria, or uncultured bacterial consortia from slit-associated pasteurized milk, thereby confirming that low-abundance taxa in milk can negatively affect cheese quality. The likelihood that certain microorganisms in milk cause slit defects can be predicted based on comparisons of the bacteria present in the milk used for cheese manufacture.IMPORTANCE Food production involves numerous control points for microorganisms to ensure quality and safety. These control points (e.g., pasteurization) are difficult to develop for fermented foods wherein some microbial contaminants are also expected to provide positive contributions to the final product and spoilage microbes may constitute only a small proportion of all microorganisms present. We showed that microbial composition assessments with 16S rRNA marker gene DNA sequencing are sufficiently robust to detect very-low-abundance bacterial taxa responsible for a major but sporadic Cheddar cheese spoilage defect. Bacterial composition in the (pasteurized) milk and cheese was associated with slit defect development. The application of Koch's postulates showed that individual bacterial isolates as well as uncultured bacterial consortia were sufficient to cause slits, even when present in very low numbers. This approach may be useful for detection and control of low-abundance spoilage microorganisms present in other foods.
Collapse
Affiliation(s)
- Zhengyao Xue
- Department of Food Science and Technology, University of California Davis, Davis, California, USA
- USDA, Agricultural Research Service, Western Human Nutrition Research Center, Immunity and Disease Prevention, Davis, California, USA
| | - Jason T Brooks
- Department of Food Science and Technology, University of California Davis, Davis, California, USA
| | - Zachary Quart
- Department of Food Science and Technology, University of California Davis, Davis, California, USA
| | - Eric T Stevens
- Department of Food Science and Technology, University of California Davis, Davis, California, USA
| | - Mary E Kable
- USDA, Agricultural Research Service, Western Human Nutrition Research Center, Immunity and Disease Prevention, Davis, California, USA
| | | | | | - Maria L Marco
- Department of Food Science and Technology, University of California Davis, Davis, California, USA
| |
Collapse
|
28
|
Peng C, Sun Z, Sun Y, Ma T, Li W, Zhang H. Characterization and association of bacterial communities and nonvolatile components in spontaneously fermented cow milk at different geographical distances. J Dairy Sci 2021; 104:2594-2605. [PMID: 33455775 DOI: 10.3168/jds.2020-19303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/10/2020] [Indexed: 12/18/2022]
Abstract
In the ecosystem of spontaneously fermented cow milk, the characteristics and relationship of bacterial communities and nonvolatile components at different scales of geographical distances (provincial, county, and village levels) are unclear. Here, 25 sampling sites from Xin Jiang and Tibet, 2 provinces of China, were selected based on the distribution of spontaneously fermented cow milk and used for metagenomic and metabolomic analysis. At the provincial geographical distance, the same predominant species, Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus, were detected in Xin Jiang and Tibet. Further, the richness of the bacterial composition of samples from Tibet was higher than those from Xin Jiang; specifically, at the species level, 28 species were identified in Tibet samples but only 7 species in Xin Jiang samples. At the provincial geographical level, we detected significant differences in bacterial structure, shown in principal coordinate analysis plots, and significant differences (Simpson index) in bacterial diversity were also detected. However, at the county and village levels, no significant differences were detected in bacterial communities and diversity, but a difference in bacterial compositions was detectable. This indicates that bacterial communities and diversity of spontaneously fermented milk dissimilarity significantly increased with geographic distance. For the nonvolatile component profiles, the partial least squares discriminant analysis plot (R2Y > 0.5 and Q2 > 0.5 for the goodness-of-fit and predictive ability parameter, respectively) showed that samples from different geographical distances (provincial, county, and village) were all separated, which indicated that all the discriminations in nonvolatile components profiles were from different geographical distances. Investigating relationships between lactic acid bacteria and discriminatory nonvolatile components at the county level showed that 9 species were positively correlated with 16 discriminatory nonvolatile components, all species with low abundance rather than the predominant species L. delbrueckii ssp. bulgaricus and Strep. thermophilus, which indicates the importance of the selection of autochthonous nonpredominant bacteria.
Collapse
Affiliation(s)
- Chuantao Peng
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Yaru Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Teng Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Weicheng Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.
| |
Collapse
|
29
|
Yang X, Guo X, Liu W, Tian Y, Gao P, Ren Y, Zhang W, Jiang Y, Man C. The complex community structures and seasonal variations of psychrotrophic bacteria in raw milk in Heilongjiang Province, China. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
Ding R, Liu Y, Yang S, Liu Y, Shi H, Yue X, Wu R, Wu J. High-throughput sequencing provides new insights into the roles and implications of core microbiota present in pasteurized milk. Food Res Int 2020; 137:109586. [PMID: 33233194 DOI: 10.1016/j.foodres.2020.109586] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 11/26/2022]
Abstract
Residual microorganisms in dairy products are closely related to their quality deterioration and safety. Based on the minimum sterilization conditions required by Grade A Pasteurized Milk Ordinance, this study explored the microbiota present in milk products that were high temperature short time pasteurized at 72, 75, 80, 83, or 85 °C for 15 s, 20 s, and 30 s separately. Based on high-throughput sequencing results, 6 phyla and 18 genera were identified as dominant microbiota. Proteobacteria and Firmicutes were the maior bacteria in phyla, and each comprising more than 50%. Pseudomonas was account for more than 42% of all the genera detected in all samples. Moreover, the changes in flavor substances in pasteurized milk, including 16 free amino acids, 9 fatty acids, and 17 volatile compounds, were detected using principal component and multi factor analyses. The Pearson correlation coefficient analysis identified six bacteria genera as the core functional microbiota that significantly affected the flavor compounds and the safety and quality of pasteurized milk. Interestingly, Pseudomonas, Omithimimicrobium, Cyanobacteria and Corynebacterium had positive correlations with the flavor substances, whereas Streptococcus and Paeniclostridium had significant negative correlations with these substances. The results may help enhance the quality control of dairy products and can be used as indicators of microbial contamination of pasteurized dairy products.
Collapse
Affiliation(s)
- Ruixue Ding
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yiming Liu
- Department of Foreign Languages, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Shanshan Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yumeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Haisu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
31
|
Acinetobacter baumannii as a community foodborne pathogen: Peptide mass fingerprinting analysis, genotypic of biofilm formation and phenotypic pattern of antimicrobial resistance. Saudi J Biol Sci 2020; 28:1158-1166. [PMID: 33424412 PMCID: PMC7783781 DOI: 10.1016/j.sjbs.2020.11.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 01/02/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is one of the most common Gram-negative pathogens that represent a major threat to human life. Because the prevalence of Multidrug-resistant biofilm-forming A. baumannii is increasing all over the world, this may lead to outbreaks of hospital infections. Nonetheless, the role of raw meat as a reservoir for A. baumannii remains unclear. Here our research was aimed to exhibit the frequency, precise identification, and genotyping of biofilm-related genes as well as antimicrobial resistance of A. baumannii isolates of raw meat specimens. Fifty-five A. baumannii strains were recovered from 220 specimens of different animal meat and then identified by Peptide Mass Fingerprinting Technique (PMFT). All identified isolates were genotyped by the qPCR method for the existence of biofilm-related genes (ompA, bap, blaPER-1, csuE, csgA, and fimH). In addition, the antimicrobial resistance against A. baumannii was detected by the Kirby-Bauer method. Based on our findings, the frequency rate of 55 A. baumannii isolates was 46.55%, 32.50%, 15.00%, and 9.68% of sheep, chicken, cow, and camel raw meat samples, respectively. The PMFT was able to identify all strains by 100%. the percentages of csuE, ompA, blaPER-1, bap, and csgA genes in biofilm and non-biofilm producer A. baumannii were 72.73%, 60%, 58.2%, 52.74%, and 25.45%, respectively. In contrast, the fimH was not detected in all non-biofilm and biofilm producer strains. The ompA, bap, blaPER-1, csgA were detected only in biofilm-producing A. baumannii isolates. The maximum degree of resistance was observed against amoxicillin/clavulanic acid (89.10%), gentamicin (74.55%), tetracycline (72.73%), ampicillin (65.45%), and tobramycin (52.73%). In conclusion, our investigation demonstrated the high incidence of multi-drug resistant A. baumannii in raw meat samples, with a high existence of biofilm-related virulence genes of ompA, bap, blaPER-1, csgA. Therefore, it has become necessary to take the control measures to limit the development of A. baumannii.
Collapse
|
32
|
Albonico F, Barelli C, Albanese D, Manica M, Partel E, Rosso F, Ripellino S, Pindo M, Donati C, Zecconi A, Mortarino M, Hauffe HC. Raw milk and fecal microbiota of commercial Alpine dairy cows varies with herd, fat content and diet. PLoS One 2020; 15:e0237262. [PMID: 32760129 PMCID: PMC7410245 DOI: 10.1371/journal.pone.0237262] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Abstract
The factors that influence the diversity and composition of raw milk and fecal microbiota in healthy commercial dairy herds are not fully understood, partially because the majority of metataxonomic studies involve experimental farms and/or single factors. We analyzed the raw milk and fecal microbiota of 100 healthy cows from 10 commercial alpine farms from the Province of Trento, Italy, using metataxonomics and applied statistical modelling to investigate which extrinsic and intrinsic parameters (e.g. herd, diet and milk characteristics) correlated with microbiota richness and composition in these relatively small traditional farms. We confirmed that Firmicutes, Ruminococcaceae and Lachnospiraceae families dominated the fecal and milk samples of these dairy cows, but in addition, we found an association between the number of observed OTUs and Shannon entropy on each farm that indicates higher microbiota richness is associated with increased microbiota stability. Modelling showed that herd was the most significant factor affecting the variation in both milk and fecal microbiota composition. Furthermore, the most important predictors explaining the variation of microbiota richness were milk characteristics (i.e. percentage fat) and diet for milk and fecal samples, respectively. We discuss how high intra-herd variation could affect the development of treatments based on microbiota manipulation.
Collapse
Affiliation(s)
- Francesca Albonico
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Department of Veterinary Medicine, Universiy of Milan, Milan, Italy
| | - Claudia Barelli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Department of Biology, University of Florence, Sesto Fiorentino, Firenze, Italy
| | - Davide Albanese
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Mattia Manica
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Erika Partel
- Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Fausta Rosso
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Silvia Ripellino
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Massimo Pindo
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all’ Adige (TN), Trento, Italy
| | - Claudio Donati
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Alfonso Zecconi
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Heidi C. Hauffe
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| |
Collapse
|
33
|
|
34
|
Gomes SIF, van Bodegom PM, van Agtmaal M, Soudzilovskaia NA, Bestman M, Duijm E, Speksnijder A, van Eekeren N. Microbiota in Dung and Milk Differ Between Organic and Conventional Dairy Farms. Front Microbiol 2020; 11:1746. [PMID: 32849375 PMCID: PMC7399162 DOI: 10.3389/fmicb.2020.01746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 07/03/2020] [Indexed: 12/29/2022] Open
Abstract
Organic farming is increasingly promoted as a means to reduce the environmental impact of artificial fertilizers, pesticides, herbicides, and antibiotics in conventional dairy systems. These factors potentially affect the microbial communities of the production stages (soil, silage, dung, and milk) of the entire farm cycle. However, understanding whether the microbiota representative of different production stages reflects different agricultural practices - such as conventional versus organic farming - is unknown. Furthermore, the translocation of the microbial community across production stages is scarcely studied. We sequenced the microbial communities of soil, silage, dung, and milk samples from organic and conventional dairy farms in the Netherlands. We found that community structure of soil fungi and bacteria significantly differed among soil types, but not between organic versus conventional farming systems. The microbial communities of silage also did not differ among conventional and organic systems. Nevertheless, the dung microbiota of cows and the fungal communities in the milk were significantly structured by agricultural practice. We conclude that, while the production stages of dairy farms seem to be disconnected in terms of microbial transfer, certain practices specific for each agricultural system, such as the content of diet and the use of antibiotics, are potential drivers of shifts in the cow's microbiota, including the milk produced. This may reflect differences in farm animal health and quality of dairy products depending on farming practices.
Collapse
Affiliation(s)
- Sofia I F Gomes
- Institute of Environmental Sciences, Leiden University, Leiden, Netherlands
| | | | | | | | | | - Elza Duijm
- Naturalis Biodiversity Center, Leiden, Netherlands
| | | | | |
Collapse
|
35
|
Xiong ZQ, Li YY, Xiang YW, Xia YJ, Zhang H, Wang SJ, Ai LZ. Short communication: Dynamic changes in bacterial diversity during the production of powdered infant formula by PCR-DGGE and high-throughput sequencing. J Dairy Sci 2020; 103:5972-5977. [PMID: 32331873 DOI: 10.3168/jds.2019-18064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/11/2020] [Indexed: 11/19/2022]
Abstract
Microorganisms such as thermophilic and psychrotrophic bacteria cause spoilage of milk and milk products [e.g., powdered infant formula (PIF)], mainly because they produce heat-stable extracellular enzymes. However, the dynamic changes in microbial diversity during PIF production are still not well understood. We used denaturing gradient gel electrophoresis (DGGE) and high-throughput sequencing (HTS) to investigate bacterial community structure and distribution during the major stages of PIF production: raw milk, pasteurization, mixing, evaporation, and spray-drying. Our PCR-DGGE analysis indicated that Lactobacillus and Pseudomonas spp. were the dominant bacteria at the raw milk and pasteurization stages; Lactococcus, Streptococcus, Enterococcus, and Lactobacillus spp. were abundant during mixing, evaporation, and spray-drying. Our HTS analysis showed that Pseudomonas had an abundance of 96.79% at the raw milk stage. Lactobacillus, Streptococcus, Thermus, Acinetobacter, and Bacteroides spp. were most common after pasteurization. The index of bacterial diversity was highest at the evaporation stage, suggesting a high potential risk of microbial contamination. The results from DGGE and HTS were consistent in reflecting changes in dominant flora, but different in reflecting the richness of bacterial communities present during PIF production: HTS revealed a much higher richness of bacterial species than DGGE. Our findings from DGGE and HTS showed that psychrophilic and thermophilic bacteria were the main flora present during PIF production: psychrophilic bacteria were mainly Pseudomonas spp. and thermophilic bacteria were mainly Lactobacillus, Streptococcus, and Bacillus spp. To our knowledge, this is the first study to report dynamic changes in microbial communities during PIF production. Our results provide insight into bacterial communities and identify potential contamination sources that could serve as a guide for reducing microbial risk.
Collapse
Affiliation(s)
- Zhi-Qiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ying-Ying Li
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yu-Wei Xiang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yong-Jun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shi-Jie Wang
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Shijiazhuang Junlebao Dairy Co. Ltd., Shijiazhuang 050211, China
| | - Lian-Zhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
36
|
Microbial Populations of Fresh and Cold Stored Donkey Milk by High-Throughput Sequencing Provide Indication for A Correct Management of This High-Value Product. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Donkey milk is receiving increasing interest due to its attractive nutrient and functional properties (but also cosmetic), which make it a suitable food for sensitive consumers, such as infants with allergies, the immunocompromised, and elderly people. Our study aims to provide further information on the microbial variability of donkey milk under cold storage conditions. Therefore, we analysed by high-throughput sequencing the bacterial communities in unpasteurized donkey milk just milked, and after three days of conservation at 4 °C, respectively. Results showed that fresh donkey milk was characterized by a high incidence of spoilage Gram-negative bacteria mainly belonging to Pseudomonas spp. A composition lower than 5% of lactic acid bacteria was found in fresh milk samples, with Lactococcus spp. being the most abundant. The occurrence of microbial species belonging to risk group 2 was found in fresh milk. After three days of cold storage, the bacterial biodiversity of donkey milk was strongly reduced, since about 93% of the bacterial communities were identified as different species of psychrotrophic Pseudomonas. In conclusion, we report a preliminary description of the microbial diversity of donkey milk by using a metagenomic approach and encouraging a correct exploitation of this high-value niche product.
Collapse
|
37
|
Oikonomou G, Addis MF, Chassard C, Nader-Macias MEF, Grant I, Delbès C, Bogni CI, Le Loir Y, Even S. Milk Microbiota: What Are We Exactly Talking About? Front Microbiol 2020; 11:60. [PMID: 32117107 PMCID: PMC7034295 DOI: 10.3389/fmicb.2020.00060] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/13/2020] [Indexed: 12/17/2022] Open
Abstract
The development of powerful sequencing techniques has allowed, albeit with some biases, the identification and inventory of complex microbial communities that inhabit different body sites or body fluids, some of which were previously considered sterile. Notably, milk is now considered to host a complex microbial community with great diversity. Milk microbiota is now well documented in various hosts. Based on the growing literature on this microbial community, we address here the question of what milk microbiota is. We summarize and compare the microbial composition of milk in humans and in ruminants and address the existence of a putative core milk microbiota. We discuss the factors that contribute to shape the milk microbiota or affect its composition, including host and environmental factors as well as methodological factors, such as the sampling and sequencing techniques, which likely introduce distortion in milk microbiota analysis. The roles that milk microbiota are likely to play in the mother and offspring physiology and health are presented together with recent data on the hypothesis of an enteromammary pathway. At last, this fascinating field raises a series of questions, which are listed and commented here and which open new research avenues.
Collapse
Affiliation(s)
- Georgios Oikonomou
- Institute of Veterinary Science, University of Liverpool, Neston, United Kingdom
| | - Maria Filippa Addis
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | | | | | - I Grant
- Institute of Veterinary Science, University of Liverpool, Neston, United Kingdom
| | - Celine Delbès
- Université Clermont Auvergne, INRAE, UMRF, Aurillac, France
| | - Cristina Inés Bogni
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Yves Le Loir
- STLO, UMR 1253, INRAE, Agrocampus Ouest, Rennes, France
| | - Sergine Even
- STLO, UMR 1253, INRAE, Agrocampus Ouest, Rennes, France
| |
Collapse
|
38
|
Yuan L, Sadiq FA, Burmølle M, Wang NI, He G. Insights into Psychrotrophic Bacteria in Raw Milk: A Review. J Food Prot 2019; 82:1148-1159. [PMID: 31225978 DOI: 10.4315/0362-028x.jfp-19-032] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HIGHLIGHTS Levels of psychrotrophic bacteria in raw milk are affected by to habitats and farm hygiene. Biofilms formed by psychrotrophic bacteria are persistent sources of contamination. Heat-stable enzymes produced by psychrotrophic bacteria compromise product quality. Various strategies are available for controlling dairy spoilage caused by psychrotrophic bacteria.
Collapse
Affiliation(s)
- Lei Yuan
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.,2 Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Faizan A Sadiq
- 3 School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Mette Burmølle
- 2 Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - N I Wang
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Guoqing He
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
39
|
Milk and Dairy Products. Food Microbiol 2019. [DOI: 10.1128/9781555819972.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Wu H, Nguyen QD, Tran TTM, Tang MT, Tsuruta T, Nishino N. Rumen fluid, feces, milk, water, feed, airborne dust, and bedding microbiota in dairy farms managed by automatic milking systems. Anim Sci J 2019; 90:445-452. [DOI: 10.1111/asj.13175] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Haoming Wu
- Graduate School of Life and Environmental Science; Okayama University; Okayama Japan
| | - Qui D. Nguyen
- Graduate School of Life and Environmental Science; Okayama University; Okayama Japan
| | - Tu T. M. Tran
- Graduate School of Life and Environmental Science; Okayama University; Okayama Japan
- Faculty of Agriculture, Engineering and Food Technology; Tien Giang University; My Tho Vietnam
| | - Minh T. Tang
- Graduate School of Life and Environmental Science; Okayama University; Okayama Japan
| | - Takeshi Tsuruta
- Graduate School of Life and Environmental Science; Okayama University; Okayama Japan
| | - Naoki Nishino
- Graduate School of Life and Environmental Science; Okayama University; Okayama Japan
| |
Collapse
|
41
|
Cremonesi P, Ceccarani C, Curone G, Severgnini M, Pollera C, Bronzo V, Riva F, Addis MF, Filipe J, Amadori M, Trevisi E, Vigo D, Moroni P, Castiglioni B. Milk microbiome diversity and bacterial group prevalence in a comparison between healthy Holstein Friesian and Rendena cows. PLoS One 2018; 13:e0205054. [PMID: 30356246 PMCID: PMC6200206 DOI: 10.1371/journal.pone.0205054] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Dry and early lactation periods represent the most critical phases for udder health in cattle, especially in highly productive breeds, such as the Holstein Friesian (HF). On the other hand, some autochthonous cattle breeds, such as the Rendena (REN), have a lower prevalence of mastitis and other transition-related diseases. In this study, milk microbiota of 6 HF and 3 REN cows, all raised on the same farm under the same conditions, was compared. A special focus was placed on the transition period to define bacterial groups’ prevalence with a plausible effect on mammary gland health. Four time points (dry-off, 1 d, 7–10 d and 30 d after calving) were considered. Through 16S rRNA sequencing, we characterized the microbiota composition for 117 out of the 144 milk samples initially collected, keeping only the healthy quarters, in order to focus on physiological microbiome changes and avoid shifts due to suspected diseases. Microbial populations were very different in the two breeds along all the time points, with REN milk showing a significantly lower microbial biodiversity. The taxonomic profiles of both cosmopolitan and local breeds were dominated by Firmicutes, mostly represented by the Streptococcus genus, although in very different proportions (HF 27.5%, REN 68.6%). Large differences in HF and REN cows were, also, evident from the metabolic predictive analysis from microbiome data. Finally, only HF milk displayed significant changes in the microbial composition along the transition period, while REN maintained a more stable microbiota. In conclusion, in addition to the influence on the final characteristics of dairy products obtained from milk of the two breeds, differences in the milk microbiome might, also, have an impact on their mammary gland health.
Collapse
Affiliation(s)
- Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Lodi, Italy
- * E-mail:
| | - Camilla Ceccarani
- Institute of Biomedical Technologies, National Research Council, (CNR), Segrate, Milan, Italy
- Dipartimento di Scienze della Salute, San Paolo Hospital Medical School, Università degli Studi di Milano, Milan, Italy
| | - Giulio Curone
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Marco Severgnini
- Institute of Biomedical Technologies, National Research Council, (CNR), Segrate, Milan, Italy
| | - Claudia Pollera
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Valerio Bronzo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Federica Riva
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Maria Filippa Addis
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Joel Filipe
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Massimo Amadori
- Laboratory of Cellular Immunology, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Brescia, Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Daniele Vigo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Paolo Moroni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, United States of America
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Lodi, Italy
| |
Collapse
|
42
|
Derakhshani H, Fehr KB, Sepehri S, Francoz D, De Buck J, Barkema HW, Plaizier JC, Khafipour E. Invited review: Microbiota of the bovine udder: Contributing factors and potential implications for udder health and mastitis susceptibility. J Dairy Sci 2018; 101:10605-10625. [PMID: 30292553 DOI: 10.3168/jds.2018-14860] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/05/2018] [Indexed: 12/13/2022]
Abstract
Various body sites of vertebrates provide stable and nutrient-rich ecosystems for a diverse range of commensal, opportunistic, and pathogenic microorganisms to thrive. The collective genomes of these microbial symbionts (the microbiome) provide host animals with several advantages, including metabolism of indigestible carbohydrates, biosynthesis of vitamins, and modulation of innate and adaptive immune systems. In the context of the bovine udder, however, the relationship between cow and microbes has been traditionally viewed strictly from the perspective of host-pathogen interactions, with intramammary infections by mastitis pathogens triggering inflammatory responses (i.e., mastitis) that are often detrimental to mammary tissues and cow physiology. This traditional view has been challenged by recent metagenomic studies indicating that mammary secretions of clinically healthy quarters can harbor genomic markers of diverse bacterial groups, the vast majority of which have not been associated with mastitis. These observations have given rise to the concept of "commensal mammary microbiota," the ecological properties of which can have important implications for understanding the pathogenesis of mastitis and offer opportunities for development of novel prophylactic or therapeutic products (or both) as alternatives to antimicrobials. Studies conducted to date have suggested that an optimum diversity of mammary microbiota is associated with immune homeostasis, whereas the microbiota of mastitic quarters, or those with a history of mastitis, are considerably less diverse. Whether disruption of the diversity of udder microbiota (dysbiosis) has a role in determining mastitis susceptibility remains unknown. Moreover, little is known about contributions of various biotic and abiotic factors in shaping overall diversity of udder microbiota. This review summarizes current understanding of the microbiota within various niches of the udder and highlights the need to view the microbiota of the teat apex, teat canal, and mammary secretions as interconnected niches of a highly dynamic microbial ecosystem. In addition, host-associated factors, including physiological and anatomical parameters, as well as genetic traits that may affect the udder microbiota are briefly discussed. Finally, current understanding of the effect of antimicrobials on the composition of intramammary microbiota is discussed, highlighting the resilience of udder microbiota to exogenous perturbants.
Collapse
Affiliation(s)
- Hooman Derakhshani
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada
| | - Kelsey B Fehr
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada
| | - Shadi Sepehri
- Children Hospital Research Institute of Manitoba, Winnipeg, MB, R3E 3P4 Canada
| | - David Francoz
- Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, Montréal, QC, J2S 2M2 Canada
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1 Canada
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1 Canada
| | - Jan C Plaizier
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada
| | - Ehsan Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3E 0J9 Canada.
| |
Collapse
|
43
|
Derakhshani H, Plaizier JC, De Buck J, Barkema HW, Khafipour E. Composition of the teat canal and intramammary microbiota of dairy cows subjected to antimicrobial dry cow therapy and internal teat sealant. J Dairy Sci 2018; 101:10191-10205. [PMID: 30172408 DOI: 10.3168/jds.2018-14858] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/08/2018] [Indexed: 12/12/2022]
Abstract
Antimicrobial dry cow therapy (DCT) is an important component of mastitis control programs aimed to eliminate existing intramammary infections and prevent the development of new ones during the dry period. However, to what extent the microbiota profiles of different niches of the udder change during the dry period and following administration of DCT remains poorly understood. Therefore, the main objective of the present study was to qualitatively evaluate dynamics of the microbiota of teat canal (TC) and mammary secretions (i.e., milk and colostrum) of healthy udder quarters subjected to DCT using a long-acting antimicrobial product, containing penicillin G and novobiocin, in combination with internal teat sealant. To this end, TC swabs (n = 58) and their corresponding milk (n = 29) and colostrum samples (n = 29) were collected at the time of drying off and immediately after calving from clinically healthy udder quarters of Holstein dairy cows from a commercial dairy farm. All samples were subjected to DNA extraction and high-throughput sequencing of the V1-V2 hypervariable regions of bacterial 16S rRNA genes. Overall, shifts were more pronounced within the microbiota of mammary secretions than the TC. In particular, microbiota of colostrum samples collected immediately after calving were less species-rich compared with the pre-DCT milk samples. Proportions of several bacterial genera belonging to the phylum Proteobacteria, including Pseudomonas, Stenotrophomonas, and unclassified Alcaligenaceae, were enriched within the microbiota of colostrum samples, whereas Firmicutes genera, including Butyrivibrio, unclassified Clostridiaceae, and unclassified Bacillales, were overrepresented in pre-DCT milk microbiota. Apart from shifts in the proportion of main bacterial genera and phyla, qualitative analysis revealed a high degree of commonality between pre-DCT and postpartum microbiota of both niches of the udder. Most importantly, a considerable number of bacterial genera and species commonly regarded as mastitis pathogens or opportunists (or both), including Staphylococcus spp., unclassified Enterobacteriaceae, and Corynebacterium spp., were shared between pre-DCT and postpartum microbiota of mammary secretions. Percentage of shared bacterial genera and species was even higher between pre-DCT and postpartum microbiota of TC samples, suggesting that the DCT approach of the present study had limited success in eliminating a considerable proportion of bacteria during the dry period.
Collapse
Affiliation(s)
- Hooman Derakhshani
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Jan C Plaizier
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Ehsan Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
44
|
Lo YT, Shaw PC. DNA-based techniques for authentication of processed food and food supplements. Food Chem 2018; 240:767-774. [DOI: 10.1016/j.foodchem.2017.08.022] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/07/2017] [Accepted: 08/03/2017] [Indexed: 12/31/2022]
|
45
|
Oetzel GR. Diagnosis and Management of Subacute Ruminal Acidosis in Dairy Herds. Vet Clin North Am Food Anim Pract 2017; 33:463-480. [DOI: 10.1016/j.cvfa.2017.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
46
|
Zalewska B, Kaevska M, Slana I. Sequence Analysis of Changes in Microbial Composition in Different Milk Products During Fermentation and Storage. Curr Microbiol 2017; 75:202-205. [PMID: 29063967 DOI: 10.1007/s00284-017-1366-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/07/2017] [Indexed: 10/18/2022]
Abstract
The objective of this study was to analyze the changes in the microbiota of milk products during fermentation and storage. Two kinds of Yoghurt, one Kefir, and one Acidophilus milk were observed during the fermentation process and storage using 16S rDNA amplicon sequencing. Cow's, goat's, raw and pasteurized milk were also examined. The most represented organisms in all manufactured products were shown to be those of the phylum Firmicutes. In some products, Proteobacteria, Bacteroidetes and Actinobacteria were also present in high amounts.
Collapse
Affiliation(s)
- Barbora Zalewska
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic.
| | - Marija Kaevska
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Iva Slana
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| |
Collapse
|
47
|
Yu J, Ren Y, Xi X, Huang W, Zhang H. A Novel Lactobacilli-Based Teat Disinfectant for Improving Bacterial Communities in the Milks of Cow Teats with Subclinical Mastitis. Front Microbiol 2017; 8:1782. [PMID: 29018412 PMCID: PMC5622921 DOI: 10.3389/fmicb.2017.01782] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/04/2017] [Indexed: 12/31/2022] Open
Abstract
Teat disinfection pre- and post-milking is important for the overall health and hygiene of dairy cows. The objective of this study was to evaluate the efficacy of a novel probiotic lactobacilli-based teat disinfectant based on changes in somatic cell count (SCC) and profiling of the bacterial community. A total of 69 raw milk samples were obtained from eleven Holstein-Friesian dairy cows over 12 days of teat dipping in China. Single molecule, real-time sequencing technology (SMRT) was employed to profile changes in the bacterial community during the cleaning protocol and to compare the efficacy of probiotic lactic acid bacteria (LAB) and commercial teat disinfectants. The SCC gradually decreased following the cleaning protocol and the SCC of the LAB group was slightly lower than that of the commercial disinfectant (CD) group. Our SMRT sequencing results indicate that raw milk from both the LAB and CD groups contained diverse microbial populations that changed over the course of the cleaning protocol. The relative abundances of some species were significantly changed during the cleaning process, which may explain the observed bacterial community differences. Collectively, these results suggest that the LAB disinfectant could reduce mastitis-associated bacteria and improve the microbial environment of the cow teat. It could be used as an alternative to chemical pre- and post-milking teat disinfectants to maintain healthy teats and udders. In addition, the Pacific Biosciences SMRT sequencing with the full-length 16S ribosomal RNA gene was shown to be a powerful tool for monitoring changes in the bacterial population during the cleaning protocol.
Collapse
Affiliation(s)
| | | | | | | | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
48
|
Kim IS, Hur YK, Kim EJ, Ahn YT, Kim JG, Choi YJ, Huh CS. Comparative analysis of the microbial communities in raw milk produced in different regions of Korea. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1643-1650. [PMID: 28935851 PMCID: PMC5666200 DOI: 10.5713/ajas.17.0689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 01/09/2023]
Abstract
Objective The control of psychrotrophic bacteria causing milk spoilage and illness due to toxic compounds is an important issue in the dairy industry. In South Korea, Gangwon-do province is one of the coldest terrains in which eighty percent of the area is mountainous regions, and mainly plays an important role in the agriculture and dairy industries. The purposes of this study were to analyze the indigenous microbiota of raw milk in Gangwon-do and accurately investigate a putative microbial group causing deterioration in milk quality. Methods We collected raw milk from the bulk tank of 18 dairy farms in the Hoengseong and Pyeongchang regions of Gangwon-do. Milk components were analyzed and the number of viable bacteria was confirmed. The V3 and V4 regions of 16S rRNA gene were amplified and sequenced on an Illumina Miseq platform. Sequences were then assigned to operational taxonomic units, followed by the selection of representative sequences using the QIIME software package. Results The milk samples from Pyeongchang were higher in fat, protein, lactose, total solid, and solid non-fat, and bacterial cell counts were observed only for the Hoengseong samples. The phylum Proteobacteria was detected most frequently in both the Hoengseong and Pyeongchang samples, followed by the phyla Firmicutes and Actinobacteria. Notably, Corynebacterium, Pediococcus, Macrococcus, and Acinetobacter were significantly different from two regions. Conclusion Although the predominant phylum in raw milk is same, the abundances of major genera in milk samples were different between Hoengseong and Pyeongchang. We assumed that these differences are caused by regional dissimilar farming environments such as soil, forage, and dairy farming equipment so that the quality of milk raw milk from Pyeongchang is higher than that of Hoengseong. These results could provide the crucial information for identifying the microbiota in raw milk of South Korea.
Collapse
Affiliation(s)
- In Seon Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Yoo Kyung Hur
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Eun Ji Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Young-Tae Ahn
- R&BD Center, Korea Yakult Co., Ltd., Yongin 17086, Korea
| | - Jong Geun Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea.,Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.,Research Institute for Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Chul Sung Huh
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea.,Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
49
|
Amorim AMB, Nascimento JDS. A Highlight for Non- Escherichia coli and Non- Salmonella sp. Enterobacteriaceae in Dairy Foods Contamination. Front Microbiol 2017; 8:930. [PMID: 28596761 PMCID: PMC5442226 DOI: 10.3389/fmicb.2017.00930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/08/2017] [Indexed: 12/24/2022] Open
Affiliation(s)
- Angelo M. B. Amorim
- Laboratory of Microbiology, Instituto Federal de Educação, Ciência e Tecnologia do Rio de JaneiroRio de Janeiro, Brazil
- Department of Quality Control, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, FiocruzRio de Janeiro, Brazil
| | - Janaína dos Santos Nascimento
- Department of Quality Control, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, FiocruzRio de Janeiro, Brazil
| |
Collapse
|
50
|
Giello M, La Storia A, Masucci F, Di Francia A, Ercolini D, Villani F. Dynamics of bacterial communities during manufacture and ripening of traditional Caciocavallo of Castelfranco cheese in relation to cows' feeding. Food Microbiol 2017; 63:170-177. [DOI: 10.1016/j.fm.2016.11.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 11/16/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022]
|