1
|
Kiruba N JM, Saeid A. An Insight into Microbial Inoculants for Bioconversion of Waste Biomass into Sustainable "Bio-Organic" Fertilizers: A Bibliometric Analysis and Systematic Literature Review. Int J Mol Sci 2022; 23:13049. [PMID: 36361844 PMCID: PMC9656562 DOI: 10.3390/ijms232113049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 12/31/2023] Open
Abstract
The plant-microbe holobiont has garnered considerable attention in recent years, highlighting its importance as an ecological unit. Similarly, manipulation of the microbial entities involved in the rhizospheric microbiome for sustainable agriculture has also been in the limelight, generating several commercial bioformulations to enhance crop yield and pest resistance. These bioformulations were termed biofertilizers, with the consistent existence and evolution of different types. However, an emerging area of interest has recently focused on the application of these microorganisms for waste valorization and the production of "bio-organic" fertilizers as a result. In this study, we performed a bibliometric analysis and systematic review of the literature retrieved from Scopus and Web of Science to determine the type of microbial inoculants used for the bioconversion of waste into "bio-organic" fertilizers. The Bacillus, Acidothiobacillus species, cyanobacterial biomass species, Aspergillus sp. and Trichoderma sp. were identified to be consistently used for the recovery of nutrients and bioconversion of wastes used for the promotion of plant growth. Cyanobacterial strains were used predominantly for wastewater treatment, while Bacillus, Acidothiobacillus, and Aspergillus were used on a wide variety of wastes such as sawdust, agricultural waste, poultry bone meal, crustacean shell waste, food waste, and wastewater treatment plant (WWTP) sewage sludge ash. Several bioconversion strategies were observed such as submerged fermentation, solid-state fermentation, aerobic composting, granulation with microbiological activation, and biodegradation. Diverse groups of microorganisms (bacteria and fungi) with different enzymatic functionalities such as chitinolysis, lignocellulolytic, and proteolysis, in addition to their plant growth promoting properties being explored as a consortium for application as an inoculum waste bioconversion to fertilizers. Combining the efficiency of such functional and compatible microbial species for efficient bioconversion as well as higher plant growth and crop yield is an enticing opportunity for "bio-organic" fertilizer research.
Collapse
Affiliation(s)
- Jennifer Michellin Kiruba N
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University Science and Technology, 50-373 Wroclaw, Poland
| | - Agnieszka Saeid
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University Science and Technology, 50-373 Wroclaw, Poland
| |
Collapse
|
2
|
Chen W, Zhan Y, Zhang X, Shi X, Wang Z, Xu S, Chang Y, Ding G, Li J, Wei Y. Influence of carbon-to-phosphorus ratios on phosphorus fractions transformation and bacterial community succession in phosphorus-enriched composting. BIORESOURCE TECHNOLOGY 2022; 362:127786. [PMID: 35970498 DOI: 10.1016/j.biortech.2022.127786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
This study aims to assess the effect of different carbon-to-phosphorus (C:P) ratios on phosphorus (P) fractions transformation, bacterial community succession and microbial P-solubilizing function in kitchen waste composting with rock phosphate (RP) amendment and phosphate-solubilizing bacteria (PSB) inoculation. Results indicated that initial C:P ratio at 50 enhanced organic carbon degradation, available P (AP) accumulation, the amount of PSB and pqqC gene abundance in composting but higher C:P ratio increased microbial biomass phosphorus (MBP) content. Redundancy analysis showed C:P ratios, PSB amount and pqqC gene abundance greatly affected bacterial community diversity and composition. Network analysis indicated that lower C:P ratio enhanced the interaction frequency in core bacterial network for AP transformation. Variance partitioning analysis abiotic factors contributed more to MBP and AP conversion. The study revealed that C:P ratio could directly drive PSB to regulate P fractions and the accumulation of MBP or AP in P-enriched composting.
Collapse
Affiliation(s)
- Wenjie Chen
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yabin Zhan
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Xinjun Zhang
- Institute of Tibet Plateau Ecology, Tibet Agricultural & Animal Husbandry University, and Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agricultural & Animal Husbandry University), Ministry of Education, Nyingchi, Tibet 860000, China
| | - Xiong Shi
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Zhigang Wang
- DBN Agriculture Science and Technology Group CO., Ltd., DBN Pig Academy, Beijing 102629, China
| | - Shaoqi Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Yuan Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Guochun Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
3
|
Udume OA, Abu GO, Stanley HO, Vincent-Akpu IF, Momoh Y. Impact of composting factors on the biodegradation of lignin in Eichhornia crassipes (water hyacinth): A response surface methodological (RSM) investigation. Heliyon 2022; 8:e10340. [PMID: 36097472 PMCID: PMC9463370 DOI: 10.1016/j.heliyon.2022.e10340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/05/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Water hyacinth (Eichhornia crassipes) is a hydrophyte weed that causes havoc in the aquatic ecosystem as an invasive plant that can obstruct waterways and bring about nutrient imbalance. This study aims to address how this invasive hydrophyte can be physically harvested and biochemically transformed into a bioproduct that can enhance the restoration of damaged soil. Biocomposting, a low-cost biotechnological technique, was designed to degrade the lignocellulosic Eichhornia crassipes biomass and transform it into a valuable bioproduct. The process used response surface methodology (RSM) to investigate the aggregate effect of moisture content, turning frequency, and microbial isolate (Chitinophaga terrae) inoculum size on the breakdown of lignin over 21 days. The moisture content (A), (45, 55, 65) % v/w, inoculum size (B), (5, 7.5, 10)% v/v, and turning frequency (C), (1, 3, 5) days were considered independent variables, while percentage lignin degradation was considered a response variable. The optimal conditions for lignin breakdown were 65.7 percent (v/w) moisture, 7.5 percent (v/v) inoculum concentration, and 5-day interval turning. The R2 score of 0.9733 demonstrates the model's integrity and reliability. Thus, the RSM approach resulted in a fine grain dark brown Nutri-compost that proved effective in enhancing soil fertility. This procedure is recommended for a scale-up process where large quantities of the hydrophyte could be treated for conversion into Nutri compost.
Collapse
Affiliation(s)
- Ogochukwu Ann Udume
- Department of Microbiology, Faculty of Science, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Gideon O. Abu
- Department of Microbiology, Faculty of Science, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Herbert O. Stanley
- Department of Microbiology, Faculty of Science, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Ijeoma F. Vincent-Akpu
- Department of Animal and Environmental Biology, Faculty of Science, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Yusuf Momoh
- Department of Environmental Engineering, Faculty of Engineering, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| |
Collapse
|
4
|
Yang T, Li L, Wang B, Tian J, Shi F, Zhang S, Wu Z. Isolation, Mutagenesis, and Organic Acid Secretion of a Highly Efficient Phosphate-Solubilizing Fungus. Front Microbiol 2022; 13:793122. [PMID: 35547144 PMCID: PMC9082945 DOI: 10.3389/fmicb.2022.793122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The highly effective phosphate-solubilizing microorganisms are significant for making full use of the potential phosphorus resources in the soil and alleviating the shortage of phosphorus resources. In this study, a phosphate-solubilizing fungus was isolated from wheat and cotton rhizosphere soils in the lower reaches of the Yellow River in China and was identified as Penicillium oxalicum by morphological and ITS sequencing analysis. In order to obtain a fungus with more efficient phosphorus solubilization ability, we tested three positive mutant strains (P1, P2, and P3) and three negative mutant strains (N1, N2, and N3) through low-energy nitrogen ion implantation mutagenesis. Compared with the parental strain, the phosphate-solubilizing capacity of P1, P2, and P3 was enhanced by 56.88%, 42.26%, and 32.15%, respectively, and that of N1, N2, and N3 was weakened by 47.53%, 35.27%, and 30.86%, respectively. Compared with the parental strain, the total amount of organic acids secreted significantly increased in the three positive mutant strains and decreased in the negative mutant strains; the pH of culture medium was significantly lower in the positive mutant strains and higher in the negative mutant strains. The capacity of phosphate-solubilizing fungus to secrete organic acids and reduce the growth-medium pH was closely related to its phosphate-solubilizing ability. The changes in the amount of organic acids secreted by mutants can alter their acidification and phosphate-solubilizing capacity. In conclusion, this study offers a theoretical basis and strain materials for the exploration and application of phosphate-solubilizing fungi.
Collapse
Affiliation(s)
- Tianyou Yang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Linbo Li
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Baoshi Wang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Jing Tian
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Fanghao Shi
- Sino-Danish Center, University of Chinese Academy of Sciences, Beijing, China
| | - Shishuang Zhang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhongqi Wu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
5
|
Li JT, Lu JL, Wang HY, Fang Z, Wang XJ, Feng SW, Wang Z, Yuan T, Zhang SC, Ou SN, Yang XD, Wu ZH, Du XD, Tang LY, Liao B, Shu WS, Jia P, Liang JL. A comprehensive synthesis unveils the mysteries of phosphate-solubilizing microbes. Biol Rev Camb Philos Soc 2021; 96:2771-2793. [PMID: 34288351 PMCID: PMC9291587 DOI: 10.1111/brv.12779] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022]
Abstract
Phosphate-solubilizing microbes (PSMs) drive the biogeochemical cycling of phosphorus (P) and hold promise for sustainable agriculture. However, their global distribution, overall diversity and application potential remain unknown. Here, we present the first synthesis of their biogeography, diversity and utility, employing data from 399 papers published between 1981 and 2017, the results of a nationwide field survey in China consisting of 367 soil samples, and a genetic analysis of 12986 genome-sequenced prokaryotic strains. We show that at continental to global scales, the population density of PSMs in environmental samples is correlated with total P rather than pH. Remarkably, positive relationships exist between the population density of soil PSMs and available P, nitrate-nitrogen and dissolved organic carbon in soil, reflecting functional couplings between PSMs and microbes driving biogeochemical cycles of nitrogen and carbon. More than 2704 strains affiliated with at least nine archaeal, 88 fungal and 336 bacterial species were reported as PSMs. Only 2.59% of these strains have been tested for their efficiencies in improving crop growth or yield under field conditions, providing evidence that PSMs are more likely to exert positive effects on wheat growing in alkaline P-deficient soils. Our systematic genetic analysis reveals five promising PSM genera deserving much more attention.
Collapse
Affiliation(s)
- Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Jing-Li Lu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Hong-Yu Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Zhou Fang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xiao-Juan Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Zhang Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Ting Yuan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Sheng-Chang Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Shu-Ning Ou
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xiao-Dan Yang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Zhuo-Hui Wu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xiang-Deng Du
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Ling-Yun Tang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.,Guangdong Provincial Key Laboratory of Chemical Pollution, South China Normal University, Guangzhou, 510006, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| |
Collapse
|
6
|
Wei Z, Zuo H, Li J, Ding G, Zhan Y, Zhang L, Wu W, Su L, Wei Y. Insight into the mechanisms of insoluble phosphate transformation driven by the interactions of compound microbes during composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-13113-3. [PMID: 33634397 DOI: 10.1007/s11356-021-13113-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Phosphate-solubilizing (PS) microbes are important to improve phosphorus availability and transformation of insoluble phosphate, e.g., rock phosphate (RP). The use of phosphate solubilizing bacteria (PSB) as inoculants have been proposed as an alternative to increase phosphate availability in RP and composting fertilizers. In this study, the effect of compound PSB coinoculation and single-strain inoculation on the transformation of insoluble phosphate were compared in a liquid medium incubation and RP-enriched composting. The goal of this study was to understand the possible mechanisms of insoluble phosphate transformation driven by the interactions of compound PS microbes during composting. The correlations between organic acids production, P-solubilization capacity and bacterial community with PSB inoculation were investigated in the RP-enriched composting by redundancy analysis (RDA) and structural equation models (SEM). Results showed that both single-strain and compound PSB inoculants had a high P-solubilization capacity in medium, but the proportion of Olsen P to total P in composts with inoculating compound PS microbes was 7% higher than that with single strain. PS inoculants could secrete different organic acids and lactic was the most abundant. However, RDA and SEM suggested that oxalic might play an important role on PS activity, inducing RP solubilization by changing pH during composting. Interaction between compound microbes could intensify the acidolysis process for insoluble P transformation compared to the single strain. Our findings help to understand the roles of complex microbial inoculants and regulate P availability of insoluble phosphate for the agricultural purposes.
Collapse
Affiliation(s)
- Zimin Wei
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Huiduan Zuo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Ji Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Guochun Ding
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Yabin Zhan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Lei Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Wenliang Wu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Lianghu Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Yuquan Wei
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China.
| |
Collapse
|
7
|
Busato JG, Ferrari LH, Chagas Junior AF, da Silva DB, Dos Santos Pereira T, de Paula AM. Trichoderma strains accelerate maturation and increase available phosphorus during vermicomposting enriched with rock phosphate. J Appl Microbiol 2020; 130:1208-1216. [PMID: 32916018 DOI: 10.1111/jam.14847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/11/2020] [Accepted: 09/01/2020] [Indexed: 11/27/2022]
Abstract
AIMS To suggest microbial inoculation as a tool to shorten organic residues stabilization and increase rock phosphate (RP) solubilization through vermicomposting, thus increasing nutrient content in plants and making it more appealing to farmers. Two Trichoderma strains were inoculated alone or combined in a RP apatite-enriched vermicompost. Stability and plant-available phosphorus levels were monitored for 120 days. METHODS AND RESULTS Observable higher total organic carbon reduction in the treatment with the combined Trichoderma strains, followed by the inoculation with T. asperellum and T. virens. Combined Trichoderma and inoculation with T. virens increased humic acids (HA) content in 38·2 and 25·0%, respectively; non-inoculated vermicompost with T. asperellum increased it by 15·0%. The combined Trichoderma strains and T. virens achieved the stability index based on the humic/fulvic acids (HA/FA) ratio after 120 days. T. asperellum, combined Trichoderma and T. virens increased the citric acid soluble-P content in 83·2, 62·2 and 49·5%, respectively, compared to the non-inoculated vermicompost. CONCLUSIONS Inoculation with combined T. asperellum and T. virens efficiently accelerated vermicompost stabilization; T. asperellum increased the citric acid soluble-P in the final product. SIGNIFICANCE AND IMPACT OF THE STUDY Combined Trichoderma inoculation and RP enrichment improves the vermicompost quality, increasing HA and citric acid soluble-P, recycling organic waste nutrients and reducing agricultural dependence on phosphate fertilizers.
Collapse
Affiliation(s)
- J G Busato
- Laboratório de Química e Fertilidade do Solo, Universidade de Brasília, Faculdade de Agronomia e Veterinária, Brasília (DF), Brazil
| | - L H Ferrari
- Laboratório de Química e Fertilidade do Solo, Universidade de Brasília, Faculdade de Agronomia e Veterinária, Brasília (DF), Brazil
| | - A F Chagas Junior
- Laboratório de Agromicrobiologia Aplicada, Universidade Federal do Tocantins, Gurupi (TO), Palmas, Brazil
| | - D B da Silva
- Laboratório de Agromicrobiologia Aplicada, Universidade Federal do Tocantins, Gurupi (TO), Palmas, Brazil
| | - T Dos Santos Pereira
- Laboratório de Química e Fertilidade do Solo, Universidade de Brasília, Faculdade de Agronomia e Veterinária, Brasília (DF), Brazil
| | - A M de Paula
- Laboratório de Química e Fertilidade do Solo, Universidade de Brasília, Faculdade de Agronomia e Veterinária, Brasília (DF), Brazil
| |
Collapse
|
8
|
Matteoli FP, Passarelli-Araujo H, Reis RJA, da Rocha LO, de Souza EM, Aravind L, Olivares FL, Venancio TM. Genome sequencing and assessment of plant growth-promoting properties of a Serratia marcescens strain isolated from vermicompost. BMC Genomics 2018; 19:750. [PMID: 30326830 PMCID: PMC6192313 DOI: 10.1186/s12864-018-5130-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/27/2018] [Indexed: 01/11/2023] Open
Abstract
Background Plant-bacteria associations have been extensively studied for their potential in increasing crop productivity in a sustainable manner. Serratia marcescens is a species of Enterobacteriaceae found in a wide range of environments, including soil. Results Here we describe the genome sequencing and assessment of plant growth-promoting abilities of S. marcescens UENF-22GI, a strain isolated from mature cattle manure vermicompost. In vitro, S. marcescens UENF-22GI is able to solubilize P and Zn, to produce indole compounds (likely IAA), to colonize hyphae and counter the growth of two phytopathogenic fungi. Inoculation of maize with this strain remarkably increased seedling growth and biomass under greenhouse conditions. The S. marcescens UENF-22GI genome has 5 Mb, assembled in 17 scaffolds comprising 4662 genes (4528 are protein-coding). No plasmids were identified. S. marcescens UENF-22GI is phylogenetically placed within a clade comprised almost exclusively of non-clinical strains. We identified genes and operons that are likely responsible for the interesting plant-growth promoting features that were experimentally described. The S. marcescens UENF-22GI genome harbors a horizontally-transferred genomic island involved in antibiotic production, antibiotic resistance, and anti-phage defense via a novel ADP-ribosyltransferase-like protein and possible modification of DNA by a deazapurine base, which likely contributes to its competitiveness against other bacteria. Conclusions Collectively, our results suggest that S. marcescens UENF-22GI is a strong candidate to be used in the enrichment of substrates for plant growth promotion or as part of bioinoculants for agriculture. Electronic supplementary material The online version of this article (10.1186/s12864-018-5130-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Filipe P Matteoli
- Laboratório de Química e Função de Proteínas e Peptídeos, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Hemanoel Passarelli-Araujo
- Laboratório de Química e Função de Proteínas e Peptídeos, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Régis Josué A Reis
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Letícia O da Rocha
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Emanuel M de Souza
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Fabio L Olivares
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil.
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil.
| |
Collapse
|