1
|
Loi M, De Leonardis S, Mulè G, Serio F, Bottiglione B, Paciolla C, Villani A. Light emitting diodes for the improvement of postharvest quality of wild rocket in soilless and soil-bound cultivation systems. Heliyon 2024; 10:e39052. [PMID: 39498002 PMCID: PMC11532293 DOI: 10.1016/j.heliyon.2024.e39052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Wild rocket (Diplotaxis tenuifolia (L.) DC cv. Dallas) is a leafy green vegetable appreciated for its pungent taste and healthy properties, often consumed as a ready-to-eat product. The cultivation system is crucial in determining the overall quality, while postharvest storage is fundamental for preserving nutritional quality, phytochemicals, and vitamins. This study aimed to investigate the phytochemical content and microbiological quality of soilless (SS) and soil-bound (SB) wild rocket during cold postharvest storage under blue, red, and green Light Emitting Diode (LED). Blue LED increased chlorophylls and carotenoids in SB after two days of storage, and chlorophyll a in SS after seven days. Furthermore, it reduced H2O2 levels after two days (SS and SB) and lipid peroxidation in SB. Red LED increased phenols in both SS and SB but was detrimental to chlorophyll, carotenoids, and oxidative markers. Green LED had less significant effects. Microbiological growth varied with LED treatment: green light increased mesophilic bacteria in SB, and red light did so in SS by day four, while blue light reduced bacterial growth at the end of storage. Overall, Blue LED was the most effective LED in preserving postharvest quality. Soilless cultivation was particularly beneficial in reducing lipid peroxidation and maintaining cell membrane integrity during long-term storage, and it might also be more effective in preserving ascorbic acid. Conversely, soil-bound cultivation methods could enhance initial polyphenol content or better preserve it during early storage. This study highlights the complex interplay of pre-harvest conditions, postharvest quality, and shelf-life performance.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola, 122/O, 70126, Bari, Italy
| | - Silvana De Leonardis
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola, 122/O, 70126, Bari, Italy
| | - Francesco Serio
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola, 122/O, 70126, Bari, Italy
| | - Benedetta Bottiglione
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Costantino Paciolla
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Alessandra Villani
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola, 122/O, 70126, Bari, Italy
| |
Collapse
|
2
|
Sivakumar D, Bozzo G. Exogenous Ergothioneine and Glutathione Limit Postharvest Senescence of Arugula. Antioxidants (Basel) 2024; 13:1140. [PMID: 39334799 PMCID: PMC11429341 DOI: 10.3390/antiox13091140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/25/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Arugula is susceptible to postharvest deterioration. We tested the impact of exogenous antioxidant (i.e., ergothioneine and glutathione) dip solutions on arugula quality during storage at 4 °C or 10 °C for up to 17 days relative to a non-antioxidant treatment. Leaves from each dip treatment and storage temperature were assessed for visual quality and endogenous antioxidant metabolite profiles. Overall, leaf discolouration, wilting, and decay were more rapid at 10 °C than at 4 °C. Both antioxidant treatments limited leaf discolouration at 4 °C. Exogenous ergothioneine reduced wilting at 4 °C, whereas exogenous glutathione limited the incidence of leaf decay. At 10 °C, glutathione reduced the incidence of discolouration and decay, whereas both antioxidant dip treatments limited the decline in leaf yellowing. Ergothioneine was solely detected in ergothioneine-treated leaves; a decrease occurred within the first two days of storage but was unchanged thereafter. Although both antioxidant treatments did not affect endogenous glutathione concentrations at either storage temperature, glutathione disulfide was stable within the glutathione-treated leaves, whereas it increased in the other treatments. Ascorbate degradation was delayed in ergothioneine-treated leaves at 4 °C relative to all other treatments, whereas both antioxidant treatments little affected ascorbate metabolism in leaves stored at 10 °C.
Collapse
Affiliation(s)
| | - Gale Bozzo
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
3
|
Zhang J, Ru X, You W, Xu F, Wu Z, Jin P, Zheng Y, Cao S. Phosphatidylinositol-specific phospholipase C-associated phospholipid metabolism mediates DcGLRs channel to promote calcium influx under CaCl 2 treatment in shredded carrots during storage. Int J Biol Macromol 2024; 270:132517. [PMID: 38777008 DOI: 10.1016/j.ijbiomac.2024.132517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
The rapid activation of phosphatidylinositol-specific phospholipase C (PI-PLC) occurs early after the stimulation of biotic and abiotic stress in plants, which directly associated with the calcium channel-induced calcium ion (Ca2+) influx. Exogenous calcium chloride (CaCl2) mediates the calcium signaling transduction to promote the γ-aminobutyric acid accumulation and nutritional quality in shredded carrots whereas the generation mechanism remains uncertain. Therefore, the involvement of PI-PLC-associated phospholipid metabolism was investigated in present study. Our result revealed that CaCl2 treatment promoted the expression and activity of PI-PLC and increased the inositol 1,4,5-trisphosphate and hexakisphosphate content in shredded carrots. The transcripts of multi-glutamate receptor-like channels (DcGLRs), the glutamate and γ-aminobutyric acid (GABA) content, and Ca2+ influx were induced by CaCl2 treatment in shredded carrots during storage. However, PI-PLC inhibitor (U73122) treatment inhibited the activation of PI-PLC, the increase of many DcGLRs family genes expression levels, and Ca2+ influx. Moreover, the identification of DcPI-PLC4/6 and DcGLRs proteins, along with the analysis of characteristic domains such as PLCXc, PLCYc, C2 domain, transmembranous regions, and ligand binding domain, suggests their involvement in phospholipid catalysis and calcium transport in carrots. Furthermore, DcPI-PLC4/6 overexpression in tobacco leaves induced the Ca2+ influx by activating the expressions of NtGLRs and the accumulation of glutamate and GABA. These findings collectively indicate that CaCl2 treatment-induced PI-PLC activation influences DcGLRs expression levels to mediate cytosolic Ca2+ influx, thus, highlighting the "PI-PLC-GLRs-Ca2+" pathway in calcium signaling generation and GABA biosynthesis in shredded carrots.
Collapse
Affiliation(s)
- Jinglin Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Xueyin Ru
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Wanli You
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Feng Xu
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Zhengguo Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Shifeng Cao
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, PR China.
| |
Collapse
|
4
|
Dai Y, Zhao X, Zuo J, Zheng Y. Effect of 100% Oxygen-Modified Atmosphere Packaging on Maintaining the Quality of Fresh-Cut Broccoli during Refrigerated Storage. Foods 2023; 12:foods12071524. [PMID: 37048346 PMCID: PMC10094251 DOI: 10.3390/foods12071524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
The effect of 100% oxygen (O2)-modified atmosphere packaging (MAP) on the quality improvement of fresh-cut broccoli stored at 4 °C for 15 days was investigated in this study. The results indicated that, compared to the control group conditions, 100% O2 MAP treatment effectively maintained broccoli sensory evaluation scores, green color, and texture; reduced respiration and chlorophyll degradation; and reduced total bacterial count (TBC), malondialdehyde (MDA) levels, electrolyte leakage (EL), hydrogen peroxide (H2O2), and superoxide (O2-) contents. Furthermore, 100% O2 MAP led to a smaller loss of nutrients and increased antioxidant capacity. In conclusion, the use of 100% O2 MAP is an effective approach for maintaining high-quality fresh-cut broccoli during refrigerated storage at 4 °C.
Collapse
Affiliation(s)
- Yukexin Dai
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoyan Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Jinhua Zuo
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yanyan Zheng
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| |
Collapse
|
5
|
Valerga L, González RE, Pérez MB, Concellón A, Cavagnaro PF. Differential and Cultivar-Dependent Antioxidant Response of Whole and Fresh-Cut Carrots of Different Root Colors to Postharvest UV-C Radiation. PLANTS (BASEL, SWITZERLAND) 2023; 12:1297. [PMID: 36986985 PMCID: PMC10053824 DOI: 10.3390/plants12061297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Fresh-cut produce have become widely popular, increasing vegetable consumption in many parts of the word. However, they are more perishable than unprocessed fresh vegetables, requiring cold storage to preserve their quality and palatability. In addition to cold storage, UV radiation has been used experimentally to try to increase nutritional quality and postharvest shelf life, revealing increased antioxidant levels in some fruits and vegetables, including orange carrots. Carrot is one of the main whole and fresh-cut vegetables worldwide. In addition to orange carrots, other root color phenotypes (e.g., purple, yellow, red) are becoming increasingly popular in some markets. The effect of the UV radiation and cold storage has not been explored in these root phenotypes. This study investigated the effect of postharvest UV-C radiation in whole and fresh-cut (sliced and shredded) roots of two purple, one yellow, and one orange-rooted cultivar, with regard to changes in concentration of total phenolics (TP) and hydroxycinnamic acids (HA), chlorogenic acid (CGA), total and individual anthocyanins, antioxidant capacity (by DPPH and ABTS), and superficial color appearance, monitoring such changes during cold storage. Results revealed that the UV-C radiation, the fresh-cut processing, and the cold storage influenced the content of antioxidant compounds and activities to varying extents, depending on the carrot cultivar, the degree of processing, and the phytochemical compound analyzed. UV-C radiation increased antioxidant capacity up to 2.1, 3.8, 2.5-folds; TP up to 2.0, 2.2, and 2.1-folds; and CGA up to 3.2, 6.6, and 2.5-folds, relative to UV-C untreated controls, for orange, yellow, and purple carrots, respectively. Anthocyanin levels were not significantly modified by the UV-C in both purple carrots evaluated. A moderate increase in tissue browning was found in some fresh-cut processed UV-C treated samples of yellow and purple but not orange roots. These data suggest variable potential for increasing functional value by UV-C radiation in different carrot root colors.
Collapse
Affiliation(s)
- Lucia Valerga
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires CP1425, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) Estación Experimental Agropecuaria La Consulta, La Consulta, San Carlos, Mendoza M5567, Argentina
| | - Roxana E. González
- Instituto Nacional de Tecnología Agropecuaria (INTA) Estación Experimental Agropecuaria La Consulta, La Consulta, San Carlos, Mendoza M5567, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza M5502, Argentina
| | - María B. Pérez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires CP1425, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) Estación Experimental Agropecuaria La Consulta, La Consulta, San Carlos, Mendoza M5567, Argentina
| | - Analía Concellón
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires CP1425, Argentina
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), La Plata B1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1900, Argentina
| | - Pablo F. Cavagnaro
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires CP1425, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) Estación Experimental Agropecuaria La Consulta, La Consulta, San Carlos, Mendoza M5567, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Chacras de Coria M5528, Argentina
| |
Collapse
|
6
|
Wang M, Chen T, Wang Q, Shi Y. Antioxidant, Bacteriostatic and Preservative Effects of Extractable Condensed Tannins Isolated from Longan Pericarps and Seeds. PLANTS (BASEL, SWITZERLAND) 2023; 12:512. [PMID: 36771597 PMCID: PMC9921410 DOI: 10.3390/plants12030512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
In the process of longan production and processing, a large amount of remnants is produced, such as dried longan pericarps and seeds, which have been reported to be rich in polyphenols but not effectively utilized. In this paper, the total phenolic contents in the remnants of longan pericarps and seeds were found to be 39.58 ± 3.54 and 69.53 ± 1.99 mg/g (DW), respectively, accounting for 60-80% of those in fresh samples. The contents of extractable condensed tannins (ECTs) in the remnants of longan pericarps and seeds were 19.25 ± 6.71 mg/g (DW) and 44.59 ± 2.05 mg/g (DW), respectively, accounting for 60-70% of the fresh samples. These data indicate that the polyphenols in the remnants of the sampled longan pericarps and seeds were effectively retained. The antioxidant capacity of ECTs from the longan pericarps and seeds was more than 60% of the fresh samples measured with the 1, 1-diphenyl-2-trinitrophenylhydrazine and ferric reducing ability of plasma methods. Further exploration showed that ECTs from the longan pericarps and seeds had significant inhibitory effects on Pseudomonas aeruginosa, Escherichia coli, Salmonella and Staphylococcus aureus. The minimum inhibitory concentration (MIC) of the longan pericarp ECTs on all four studied bacteria was 3 mg/mL. The MIC of longan seed ECTs on Salmonella was 3 mg/mL, and that of the other three bacteria was 1.5 mg/mL. In view of the good antioxidant and antibacterial activities of longan pericarps and seeds, we applied them to the preservation of fresh-cut lotus roots. When the concentration of ECTs in the longan pericarps and seeds was 2 mg/mL and 1 mg/mL, respectively, the two kinds of ECTs showed an obvious preservative effect. After the ECT treatment of the lotus roots, their browning degree was reduced, their color was better maintained, their respiration was inhibited and their nutrient loss was reduced. Bacterial reproduction was inhibited, and cell senescence was slowed. Accordingly, the shelf life of ECT-treated fruits and vegetables can be effectively extended. Overall, we can suggest that ECTs from the remnants of dried longan pericarps and seeds could be used as natural preservatives for fresh-cut fruits and vegetables.
Collapse
Affiliation(s)
- Mengli Wang
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Ting Chen
- School of Life Sciences, Xiamen University, Xiamen 361102, China
- Université de Paris, CiTCoM-UMR 8038 CNRS, U 1268 INSERM, F-75006 Paris, France
| | - Qin Wang
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yan Shi
- School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Demonstration Center for Experimental Life Sciences Education, Xiamen University, Xiamen 361102, China
| |
Collapse
|
7
|
Dai Y, Xie H, Zhao X, Zheng Y. The Effect of Sodium Nitroprusside Treatment on Storage Ability of Fresh-Cut Potato. Foods 2023; 12:221. [PMID: 36613434 PMCID: PMC9818613 DOI: 10.3390/foods12010221] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Quality deterioration is a major problem restricting the fresh-cut potato industry. The present study investigated the effect of sodium nitroprusside (SNP) treatment on the quality of fresh-cut potatoes during short-term storage. The treatment was carried out immediately either before or after cutting, using an SNP concentration of 200 μmol/L. The results showed that SNP treatment inhibited the accumulation of malondialdehyde (MDA) and total soluble solids (TSSs). SNP treatment also decreased the firmness, chewing properties, and ascorbic acid (AsA) content in potatoes, maintaining high levels of total phenols (TPs), total flavonoids (TFs), nitric oxide (NO), and superoxide dismutase (SOD). Furthermore, SNP treatment restrained the rise of phenylalanine ammonia-lyase (PAL), peroxidase (POD), and polyphenol oxidase (PPO), as well as the electrolyte leakage (EL) rate. After SNP treatment, the nitrite content in the potatoes was within security scope. Comparing potatoes treated before and after cutting, the best result was noted in the potatoes soaked in SNP before cutting, which displayed the smallest losses in firmness (11.24%), chewing properties (34.30%), and AsA (40.35%), and maximum increases in TPs (32.84%), TFs (2.83-time), NO (76.11%), and SOD activity (93.15%). Moreover, this group presented the minimum MDA content, EL rate, and TSS values and the lowest PAL, POD, and PPO activities. These results indicated that 200 μmol/L SNP applied for 20 min, particularly before cutting, is an efficient alternative technology that can be used in the fresh-cut potato industry.
Collapse
Affiliation(s)
- Yukexin Dai
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Institute of Agri-Food Processing and Nutrition, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Hong Xie
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoyan Zhao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Institute of Agri-Food Processing and Nutrition, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yanyan Zheng
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Institute of Agri-Food Processing and Nutrition, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| |
Collapse
|
8
|
The Mixing Ratio and Filling-Amount Affect the Tissue Browning and Antioxidant Properties of Fresh-Cut Baby Leaf Lettuce (Lactuca sativa L.) and Rocket (Eruca sativa Mill.) Grown in Floating Growing Systems. Foods 2022; 11:foods11213515. [DOI: 10.3390/foods11213515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
Abstract
Different types of baby leaf vegetables (BLV) are often mixed and packaged as salad mixes. This work has evaluated the effects of BLV mixing ratios (100% lettuce ‘Lollo Bionda’, 100 LB; 75% lettuce + 25% rocket, 75 LB; 50% lettuce + 50% rocket, 50 LB) and the weight filling amount (125 g filling amount, 125F; 250 g, 250F) on the antioxidant properties and browning potential (BP) of lettuce and rocket baby leaves during storage for 9 days at 4 °C in the dark. The samples were packaged in thermos-sealed bags previously prepared using polypropylene film. The results showed that the 50 LB mix had preserved high amounts of chlorophylls and internal nutrients on d9, regardless of the filling amount. No visible browning symptoms were detected in the 50 LB samples. The 50 LB × 125F mix was found to be the most efficient strategy to maintain the antioxidant property of BLV. Thus, the optimisation of the mixing ratio and its combination with an appropriate filling amount could represent an effective postharvest practice.
Collapse
|
9
|
Effects of O2/CO2 transmission rate of BOPA/LDPE or PE film on shelf life and quality attributes of fresh-cut cherry radish. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Asghar A, Rashid MH, Ahmed W, Roobab U, Inam‐ur‐Raheem M, Shahid A, Kafeel S, Akram MS, Anwar R, Aadil RM. An in‐depth review of novel cold plasma technology for fresh‐cut produce. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ammara Asghar
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Muhammad Hamdan Rashid
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Waqar Ahmed
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Ume Roobab
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
| | - Muhammad Inam‐ur‐Raheem
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Arashi Shahid
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Sadia Kafeel
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Muhammad Saad Akram
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Raheel Anwar
- Institute of Horticulture University of Agriculture Faisalabad, 38000 Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| |
Collapse
|
11
|
Punia Bangar S, Trif M, Ozogul F, Kumar M, Chaudhary V, Vukic M, Tomar M, Changan S. Recent developments in cold plasma-based enzyme activity (browning, cell wall degradation, and antioxidant) in fruits and vegetables. Compr Rev Food Sci Food Saf 2022; 21:1958-1978. [PMID: 35080794 DOI: 10.1111/1541-4337.12895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022]
Abstract
According to the Food and Agriculture Organization of United Nations reports, approximately half of the total harvested fruits and vegetables vanish before they reach the end consumer due to their perishable nature. Enzymatic browning is one of the most common problems faced by fruit and vegetable processing. The perishability of fruits and vegetables is contributed by the various browning enzymes (polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase) and ripening or cell wall degrading enzyme (pectin methyl-esterase). In contrast, antioxidant enzymes (superoxide dismutase and catalase) assist in reversing the damage caused by reactive oxygen species or free radicals. The cold plasma technique has emerged as a novel, economic, and environmentally friendly approach that reduces the expression of ripening and browning enzymes while increasing the activity of antioxidant enzymes; microorganisms are significantly inhibited, therefore improving the shelf life of fruits and vegetables. This review narrates the mechanism and principle involved in the use of cold plasma technique as a nonthermal agent and its application in impeding the activity of browning and ripening enzymes and increasing the expression of antioxidant enzymes for improving the shelf life and quality of fresh fruits and vegetables and preventing spoilage and pathogenic germs from growing. An overview of hurdles and sustainability advantages of cold plasma technology is presented.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (Centiv) GmbH, Stuhr, Germany.,CENCIRA Agrofood Research and Innovation Centre, Cluj-Napoca, Romania
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Vandana Chaudhary
- Department of Dairy Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Milan Vukic
- Faculty of Technology Zvornik, University of East Sarajevo, Zvornik, Bosnia and Herzegovina
| | - Maharishi Tomar
- Seed Technology Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Sushil Changan
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| |
Collapse
|
12
|
Zhou D, Li T, Cong K, Suo A, Wu C. Influence of cold plasma on quality attributes and aroma compounds in fresh-cut cantaloupe during low temperature storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112893] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Queiroz C, Lopes MLM, Da Silva AJR, Fialho E, Valente‐Mesquita VL. Effect of high hydrostatic pressure and storage in fresh‐cut cashew apple: Changes in phenolic profile and polyphenol oxidase activity. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christiane Queiroz
- Departamento de Nutrição Universidade Federal do Paraná Curitiba Brazil
- Instituto de Nutrição Josué de Castro Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Maria Lúcia M. Lopes
- Instituto de Nutrição Josué de Castro Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Antonio Jorge R. Da Silva
- Instituto de Pesquisa de Produtos Naturais Walter Mors Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Eliane Fialho
- Instituto de Nutrição Josué de Castro Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | | |
Collapse
|
14
|
Pigłowski M. The Intra-European Union Food Trade with the Relation to the Notifications in the Rapid Alert System for Food and Feed. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041623. [PMID: 33567732 PMCID: PMC7915521 DOI: 10.3390/ijerph18041623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 11/27/2022]
Abstract
About three-quarters of food exports from European Union (EU) countries goes to the common market in which the free movement of products is ensured. Therefore, it is important to examine from which EU countries the food is exported, what food products they are, and what hazards may be present in these products. The data for research were obtained for 1999–2018 from the Eurostat database (according to the Standard International Trade Classification—SITC) and the Rapid Alert System for Food and Feed (RASFF) database. Then, cluster analysis was performed using joining (tree clustering) and two-way joining methods. The main food exporters were the following countries: Belgium, France, Germany, Italy, the Netherlands, Spain, and the United Kingdom. They exported: cereals, fruits and vegetables, beverages and feeding stuff (in quantitative terms) and fruits and vegetables, meat, dairy products, and cereals (in terms of value). In turn, the most frequently notified hazards in food originating from these countries were: pathogenic micro-organisms, microbial contaminants, metals, composition, foreign bodies, allergens, and pesticide residues. The increase in the number of alert notifications in the RASFF is particularly noticeable in recent years. The results of the research may be useful for activities related to food traceability, changes in the European law, and encouraging the use of extensive methods in agriculture.
Collapse
Affiliation(s)
- Marcin Pigłowski
- Department of Quality Management, Faculty of Management and Quality Science, Gdynia Maritime University, Morska 81-87 Str., 81-225 Gdynia, Poland
| |
Collapse
|
15
|
Li L, Yi P, Li C, Xin M, Sun J, He X, Sheng J, Zhou Z, Zheng F, Li J, Liu G, Ling D, Tang J, Li Z, Yang Y, Tang Y. Influence of polysaccharide-based edible coatings on enzymatic browning and oxidative senescence of fresh-cut lettuce. Food Sci Nutr 2021; 9:888-899. [PMID: 33598172 PMCID: PMC7866572 DOI: 10.1002/fsn3.2052] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Fresh-cut lettuce has a short shelf-life due to enzymatic browning and oxidative senescence. The present study investigated effects of polysaccharide-based edible coatings (alginate, chitosan, and carrageenan) on enzymatic browning and antioxidant defense system of fresh-cut lettuces during cold storage (4°C) for 15 days. The results showed that three coatings could inhibit enzymatic browning through maintaining total phenolics (TP) content and decreasing polyphenol oxidase (PPO) and phenylalanine ammonialyase (PAL) activities. These coatings also reduced phospholipase D (PLD) and lipoxygenase (LOX) activities, lowered malondialdehyde (MDA) content, and enhanced antioxidant enzymes (superoxide dismutase, SOD; peroxidase, POD; catalase, CAT; ascorbate peroxidase, APX) activities. Besides, all coatings positively affected sensory properties of fresh-cut lettuces after 3 days storage. Additionally, among three coating treatments, chitosan coating had the most positive effects on quality of fresh-cut lettuce and was the most suitable coating for retarding enzymatic browning and alleviating membrane oxidative damage. These results indicated that polysaccharide-based edible coatings were helpful to maintain quality, inhibit enzymatic browning, and postpone senescence of fresh-cut lettuce.
Collapse
Affiliation(s)
- Li Li
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Ping Yi
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Changbao Li
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Ming Xin
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Jian Sun
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Xuemei He
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Jinfeng Sheng
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Zhugui Zhou
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Fengjin Zheng
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Jiemin Li
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Guoming Liu
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Dongning Ling
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Jie Tang
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Zhichun Li
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Ying Yang
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Yayuan Tang
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| |
Collapse
|
16
|
Huang H, Huang C, Yin C, Khan MR, Zhao H, Xu Y, Huang L, Zheng D, Qi M. Preparation and characterization of β-cyclodextrin-oregano essential oil microcapsule and its effect on storage behavior of purple yam. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4849-4857. [PMID: 32476141 DOI: 10.1002/jsfa.10545] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/06/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Natural plant essential oils have antimicrobial properties; however, essential oils are difficult to maintain in a system because of their volatile nature. First, we prepared microcapsules from β-cyclodextrin and oregano essential oil and characterized their properties. Second, the effect of microcapsules on the preservation of freshly cut purple yam was studied using an edible coating technique. Purple yams immersed in distilled water were used as control, and their characteristics were compared with yams coated with citric acid, citric acid + sodium alginate, and citric acid + sodium alginate + β-cyclodextrin-oregano essential oil microcapsules (CA-SA-MC) and stored at 4 °C for 5 days. RESULTS Microcapsules of oregano essential oil and β-cyclodextrin solution were successfully prepared via the inclusion method, with an optimal encapsulation efficiency of 55.14%. Scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis showed strong bonds between β-cyclodextrin and oregano essential oil. All edible coatings, particularly CA-SA-MC, significantly (P ≤ 0.05) maintained firmness, total soluble solids, ascorbic acid content, and anthocyanin content compared with control treatment. This treatment also prevented browning and extended the shelf life of purple yam. CONCLUSION Oregano essential oil can be successfully encapsulated into cyclodextrin microcapsules. It has a great impact on the shelf life extension of purple yam and could be successfully applied to other fresh produce. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haohe Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Chongxing Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Cheng Yin
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
- School of Mechanical Engineering, Jiangnan University, Wuxi, China
| | - Muhammad Ru Khan
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Hui Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yangfan Xu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Lijie Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Dantong Zheng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Minghui Qi
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
17
|
Collado E, Venzke Klug T, Martínez-Hernández GB, Artés-Hernández F, Martínez-Sánchez A, Aguayo E, Artés F, Fernández JA, Gómez PA. UV-C pretreatment of fresh-cut faba beans ( Vicia faba) for shelf life extension: Effects of domestic microwaving for consumption. FOOD SCI TECHNOL INT 2019; 26:140-150. [PMID: 31544525 DOI: 10.1177/1082013219873227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Faba beans have a short shelf life which is even reduced after fresh-cut processing mainly due to browning and dehydration. In that sense, the effects of a UV-C treatment (3 kJ m-2), compared with non-exposed beans (CTRL), were studied on the sensory and microbial quality, and bioactive and anti-nutritional content of fresh-cut faba beans (cv. Muchamiel) during storage at 5 ℃. The effect of a domestic microwaving (3 min, 900 W) on bioactive and anti-nutritional compounds of fresh seeds prior to consumption at each sampling time was also studied. UV-C treatment extended the fresh-cut faba bean shelf life from 7 to 10 days with browning score (the main sensory parameter adversely affected) of 8 and 1 log unit lower than CTRL at day 10. UV-C did not negatively affect the total antioxidant capacity of samples during storage. The phytic acid and raffinose contents decreased by 30/40%, respectively, after 10 days, without influence of the UV-C treatment. Microwaving reduced the phytic acid and condensed tannins contents by 30% in those samples stored for up to six days, with low microwaving effect in the last storage days. Nevertheless, UV-C improved the condensed tannins reductions through storage (≈30%) compared with non-irradiated samples.
Collapse
Affiliation(s)
- Elena Collado
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena (UPCT), Cartagena, Spain
| | - Tâmmila Venzke Klug
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena (UPCT), Cartagena, Spain.,Department of Food Engineering, UPCT, Cartagena, Spain
| | - Ginés Benito Martínez-Hernández
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena (UPCT), Cartagena, Spain.,Department of Food Engineering, UPCT, Cartagena, Spain
| | - Francisco Artés-Hernández
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena (UPCT), Cartagena, Spain.,Department of Food Engineering, UPCT, Cartagena, Spain
| | - Ascensión Martínez-Sánchez
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena (UPCT), Cartagena, Spain.,Department of Food Engineering, UPCT, Cartagena, Spain
| | - Encarna Aguayo
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena (UPCT), Cartagena, Spain.,Department of Food Engineering, UPCT, Cartagena, Spain
| | - Francisco Artés
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena (UPCT), Cartagena, Spain.,Department of Food Engineering, UPCT, Cartagena, Spain
| | - Juan A Fernández
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena (UPCT), Cartagena, Spain.,Department of Horticulture, UPCT, Cartagena, Spain
| | - Perla A Gómez
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena (UPCT), Cartagena, Spain
| |
Collapse
|