1
|
Liang X, Qu Y, Yan S, Wang J, Sha Y, Zhang M, Sun Y, Xie X, Song H, Zhao S, Hu L. Assessment of the effect of lactic acid bacteria fermentation on IgE-/IgG-binding ability and nutritional properties of cow milk. J Food Sci 2024. [PMID: 39331406 DOI: 10.1111/1750-3841.17369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
Cow milk (CM) is an important food source for humans, and food allergy caused by CM has attracted attention worldwide. To our knowledge, systematic studies about the effects of Lactobacillus paracasei, Lactobacillus plantarum, and Pediococcus pentosaceus on the IgE-/IgG-binding ability and nutritional properties of CM are very rare. In this study, L. paracasei, L. plantarum, and P. pentosaceus fermentation on the IgE-/IgG-binding ability was determined by Enzyme-Linked Immunosorbent Assay (ELISA), and the protein quality, amino acid profile, and color were systematically evaluated. The results showed that these LAB strains exhibited higher protein degradation ability, and the IgE reactivity reduction rate was 41.03%-60.00% and the IgG reduction rate was 29.86%-67.20%, respectively. Additionally, the nutritional value was improved obviously, and the color was altered significantly, which was conductive to develop dairy products. These findings provided a theoretical foundation for the development of hypoallergenic dairy products. PRACTICAL APPLICATION: In this study, L. paracasei, L. plantarum and P. pentosaceus could be considered as good potential candidates for solving cow milk allergy owing to their decreased IgE/IgG binding ability andimproved nutritional and sensory properties, which provide a promising strategy to develop hypoallergenic dairy products.
Collapse
Affiliation(s)
- Xiaona Liang
- Jiangsu Key Laboratory of Huaiyang Food Safety and Nutrition Function Evaluation, Huaiyin Normal University, Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Co-constructed by the Province and Ministry, Huaiyin Normal University, Huai'an, China
| | - Yezhi Qu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Shuangping Yan
- Jiangsu Key Laboratory of Huaiyang Food Safety and Nutrition Function Evaluation, Huaiyin Normal University, Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Co-constructed by the Province and Ministry, Huaiyin Normal University, Huai'an, China
| | - Jing Wang
- Jiangsu Key Laboratory of Huaiyang Food Safety and Nutrition Function Evaluation, Huaiyin Normal University, Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Co-constructed by the Province and Ministry, Huaiyin Normal University, Huai'an, China
| | - Yicheng Sha
- Jiangsu Key Laboratory of Huaiyang Food Safety and Nutrition Function Evaluation, Huaiyin Normal University, Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Co-constructed by the Province and Ministry, Huaiyin Normal University, Huai'an, China
| | - Meng Zhang
- Jiangsu Key Laboratory of Huaiyang Food Safety and Nutrition Function Evaluation, Huaiyin Normal University, Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Co-constructed by the Province and Ministry, Huaiyin Normal University, Huai'an, China
| | - Yufei Sun
- Jiangsu Key Laboratory of Huaiyang Food Safety and Nutrition Function Evaluation, Huaiyin Normal University, Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Co-constructed by the Province and Ministry, Huaiyin Normal University, Huai'an, China
| | - Xianxiang Xie
- Jiangsu Key Laboratory of Huaiyang Food Safety and Nutrition Function Evaluation, Huaiyin Normal University, Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Co-constructed by the Province and Ministry, Huaiyin Normal University, Huai'an, China
| | - Huwei Song
- Jiangsu Key Laboratory of Huaiyang Food Safety and Nutrition Function Evaluation, Huaiyin Normal University, Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Co-constructed by the Province and Ministry, Huaiyin Normal University, Huai'an, China
| | - Shanshan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Li Hu
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| |
Collapse
|
2
|
Liu C, Wei J, Shi M, Huang X, Wang Z, Liu Q, Lang T, Zhu Z. Metabolomic analysis reveals the positive effects of Rhizopus oryzae fermentation on the nutritional and functional constituents of adlay millet seeds. Sci Rep 2024; 14:17435. [PMID: 39075211 PMCID: PMC11286764 DOI: 10.1038/s41598-024-68478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024] Open
Abstract
Adlay millet seeds are well known for excellent health benefits. However, using fungal fermentation to improve their nutritional and functional constituents and the underlying mechanisms has not been thoroughly investigated. Herein, we used Rhizopus oryzae as starter and applied metabolomics combining with quantitative verification to understand the changes of the nutritional and functional profiles of adlay millet seeds. Results showed that a total of 718 metabolites from 18 compound classes were identified. The fermentation with R. oryzae varied 203 differential metabolites, of which 184 became more abundant and 19 got less abundant, and many components such as amino acids, nucleotides, vitamins, flavonoids, terpenoids, and phenols significantly increased after the fermentation process. Interestingly, we found that R. oryzae synthesized high levels of two important beneficial compounds, S-adenosylmethionine (SAMe) and β-Nicotinamide mononucleotide (β-NMN), with their contents increased from 0.56 to 370.26 μg/g and 0.55 to 8.32 μg/g, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of enriched metabolites revealed the amino acid metabolic pathways were important for conversion of the primary and secondary metabolites. Specifically, aspartate can up-regulate the biosynthesis of SAMe and β-NMN. These findings improved our understanding into the effects of R. oryzae fermentation on enhancing the nutritional and functional values of cereal foods.
Collapse
Affiliation(s)
- Caihua Liu
- College of Agriculture and Food Engineering, Baise University, Baise, China
- Industrial College of Subtropical Characteristic Agriculture, Baise, China
| | - Jian Wei
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Mingde Shi
- College of Agriculture and Food Engineering, Baise University, Baise, China
- Industrial College of Subtropical Characteristic Agriculture, Baise, China
| | - Xunwen Huang
- College of Agriculture and Food Engineering, Baise University, Baise, China
- Industrial College of Subtropical Characteristic Agriculture, Baise, China
| | - Zisong Wang
- College of Agriculture and Food Engineering, Baise University, Baise, China
- Industrial College of Subtropical Characteristic Agriculture, Baise, China
| | - Qiuliu Liu
- College of Agriculture and Food Engineering, Baise University, Baise, China
| | - Tao Lang
- Shenzhen Key Laboratory of Marine Bio-Resource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
| | - Zhengjie Zhu
- College of Agriculture and Food Engineering, Baise University, Baise, China.
- Industrial College of Subtropical Characteristic Agriculture, Baise, China.
| |
Collapse
|
3
|
Silva FG, Silva SR, Pereira AMF, Cerqueira JL, Conceição C. A Comprehensive Review of Bovine Colostrum Components and Selected Aspects Regarding Their Impact on Neonatal Calf Physiology. Animals (Basel) 2024; 14:1130. [PMID: 38612369 PMCID: PMC11010951 DOI: 10.3390/ani14071130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Colostrum contains macro- and micronutrients necessary to meet the nutritional and energy requirements of the neonatal calf, bioactive components that intervene in several physiological aspects, and cells and microorganisms that modulate the calf's immune system and gut microbiome. Colostrum is sometimes mistaken as transition milk, which, although more nutritive than whole milk, has a distinct biochemical composition. Furthermore, most research about colostrum quality and colostrum management focuses on the transfer of maternal IgG to the newborn calf. The remaining components of colostrum and transition milk have not received the same attention, despite their importance to the newborn animal. In this narrative review, a large body of literature on the components of bovine colostrum was reviewed. The variability of these components was summarized, emphasizing specific components that warrant deeper exploration. In addition, the effects of each component present in colostrum and transition milk on several key physiological aspects of the newborn calf are discussed.
Collapse
Affiliation(s)
- Flávio G. Silva
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (J.L.C.)
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Department of Zootechnics, School of Science and Technology, University of Évora, Pólo da Mitra Apartado 94, 7006-554 Évora, Portugal; (A.M.F.P.); (C.C.)
- Center for Research and Development in Agrifood Systems and Sustainability, Polytechnic Institute of Viana do Castelo, Agrarian School of Ponte de Lima, Rua D. Mendo Afonso, 147 Refóios do Lima, 4990-706 Ponte de Lima, Portugal
| | - Severiano R. Silva
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (J.L.C.)
| | - Alfredo M. F. Pereira
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Department of Zootechnics, School of Science and Technology, University of Évora, Pólo da Mitra Apartado 94, 7006-554 Évora, Portugal; (A.M.F.P.); (C.C.)
| | - Joaquim Lima Cerqueira
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (J.L.C.)
- Center for Research and Development in Agrifood Systems and Sustainability, Polytechnic Institute of Viana do Castelo, Agrarian School of Ponte de Lima, Rua D. Mendo Afonso, 147 Refóios do Lima, 4990-706 Ponte de Lima, Portugal
| | - Cristina Conceição
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Department of Zootechnics, School of Science and Technology, University of Évora, Pólo da Mitra Apartado 94, 7006-554 Évora, Portugal; (A.M.F.P.); (C.C.)
| |
Collapse
|
4
|
Liang X, Diao E, Qian S, Song H, Xiang X, Gou X, Hu X. Comparative metabolomic analysis and antigenicity comparison of cow milk and enzymatically treated cow milk. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:536-545. [PMID: 37621148 DOI: 10.1002/jsfa.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Amino acids (AAs) are important protein building blocks that play a critical role in the function of the immune system. However, comprehensive comparative metabolomics and antigenicity analyses of cow milk (CM) and enzymatically treated CM are relatively scarce. This study analyzed the AAs in the CM and Flavourzyme-treated milk groups (FT), and their antigenicity was also explored. RESULTS Overall, 50 AAs were detected in the CM and FT groups, with 23 significantly different AAs. The interaction network of these significantly different AAs was analyzed, and 34 significantly different metabolic pathways were found to be involved. It was also found that the antigenicity of the FT group was significantly reduced in comparison with that of the CM group. CONCLUSION These results enhance our understanding of AAs and antigenicity regarding CM and FT, and provide new ideas and directions for the development of high-quality hypoallergenic dairy products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaona Liang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China
- School of Life Science, Huaiyin Normal University, Huaian, China
| | - Enjie Diao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China
- School of Life Science, Huaiyin Normal University, Huaian, China
| | - Shiquan Qian
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China
- School of Life Science, Huaiyin Normal University, Huaian, China
| | - Huwei Song
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China
- School of Life Science, Huaiyin Normal University, Huaian, China
| | - Xinran Xiang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China
- School of Life Science, Huaiyin Normal University, Huaian, China
| | - Xiurong Gou
- School of Life Science, Huaiyin Normal University, Huaian, China
| | - Xiumin Hu
- School of Life Science, Huaiyin Normal University, Huaian, China
| |
Collapse
|
5
|
Poonia A, Shiva. Bioactive compounds, nutritional profile and health benefits of colostrum: a review. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022; 4:26. [PMCID: PMC9592540 DOI: 10.1186/s43014-022-00104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Bovine colostrum is defined as first milk by milching animals responsible for providing the innate immunity to the neonatal and possess many immunoglobulins for preventing the calf from diseases. Colostrum consist of many bioactive compounds like proteins, enzymes, growth factors, immunoglobulins and nucleotides that provides several benefits to human health. Numerous clinical and pre-clinical studies have demonstrated the therapeutic benefits of the bovine colostrum. This review focusses on bioactive compounds, their health benefits, potential of colostrum for developing several health foods and prevention of respiratory and gastrointestinal tract disorders. Processing can also be done to extend shelf-life and extraction of bioactive constituents either as encapsulated or as extracts. The products derived from bovine colostrum are high-end supplements possessing high nutraceutical value.
Collapse
Affiliation(s)
- Amrita Poonia
- grid.411507.60000 0001 2287 8816Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Shiva
- grid.411507.60000 0001 2287 8816Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
6
|
Liang X, Cheng J, Sun J, Yang M, Luo X, Yang H, Wu J, Wang Z, Yue X, Zheng Y. Reduction of immunoreactivity and improvement of the nutritional qualities in cow milk products by enzymatic hydrolysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Liang X, Qian G, Sun J, Yang M, Shi X, Yang H, Wu J, Wang Z, Zheng Y, Yue X. Evaluation of antigenicity and nutritional properties of enzymatically hydrolyzed cow milk. Sci Rep 2021; 11:18623. [PMID: 34545177 PMCID: PMC8452708 DOI: 10.1038/s41598-021-98136-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022] Open
Abstract
While enzymatic hydrolysis is an effective method for lowering the antigenicity of cow milk (CM), research regarding the antigenicity and nutritional traits of CM hydrolysate is limited. Here, we evaluated the protein content, amino acid composition, sensory traits, color, flow behavior, and antigenicity of CM following enzymatic hydrolysis. The results showed that enzymatic hydrolysis increased the degree of hydrolysis, destroyed allergenic proteins, including casein, β-lactoglobulin, and ɑ-lactalbumin, and significantly increased the content of free amino acids and nutritional quality. In particular, the antigenicity of CM was significantly reduced from 44.05 to 86.55% (P < 0.5). Simultaneously, the taste, color, and flow behavior of CM were altered, the sweetness and richness intensity decreased significantly (P < 0.5), and astringency and bitterness were produced. A slightly darker and more yellow color was observed in CM hydrolysate. In addition, apparent viscosity decreased and shear stress significantly increased with increasing shear rate intensity. The results will provide a solid theoretical foundation for the development of high-quality hypoallergenic dairy products.
Collapse
Affiliation(s)
- Xiaona Liang
- College of Food Science, Shenyang Agricultural University, Shenyang, 100866, People's Republic of China
| | - Guanlin Qian
- College of Food Science, Shenyang Agricultural University, Shenyang, 100866, People's Republic of China
| | - Jing Sun
- College of Food Science, Shenyang Agricultural University, Shenyang, 100866, People's Republic of China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang, 100866, People's Republic of China
| | - Xinyang Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, 100866, People's Republic of China
| | - Hui Yang
- College of Food Science, Shenyang Agricultural University, Shenyang, 100866, People's Republic of China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 100866, People's Republic of China
| | - Zongzhou Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, 100866, People's Republic of China
| | - Yan Zheng
- College of Food Science, Shenyang Agricultural University, Shenyang, 100866, People's Republic of China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, 100866, People's Republic of China.
| |
Collapse
|
8
|
Zhang X, Zhang M, Lin T, Zhao J, Luo Z, Hou J, Sun B, Chen L. Relationship between traditional maternal diet pattern and breastmilk composition of rural lactating women during the first month postpartum in Shigatse, Tibet. Food Sci Nutr 2021; 9:4185-4198. [PMID: 34401070 PMCID: PMC8358384 DOI: 10.1002/fsn3.2384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/10/2022] Open
Abstract
Maternal nutrition can influence the composition of human breastmilk by altering the components that are sensitive to maternal diet pattern. Traditional Tibetan maternal diet pattern among native rural lactating women possesses distinct characteristics due to its unique geographical environment and dietary habits. This study investigated maternal diet pattern and human breastmilk composition of Tibetan lactating women through different lactation stages during the first month postpartum in Shigatse. The results indicated that Tibetan maternal diet profile was apparently monotonous, mainly sufficient in Zanba, buttered tea, red meat, and fatty soup, yet insufficient in white meat, eggs, leafy vegetables, and fruits, leading to imperfect maternal nutritional intakes with high-level carbohydrates and deficient proteins. Distinctions of maternal diet profiles in various degrees can be discovered upon different lactation stages, which brings multiple influences to the composition of human milk. There was significantly weak-to-medium correlation of protein contents between maternal diet intakes and human milk, while other macronutrients correlated insignificantly. Micronutrient constituents in human milk, involving functional unsaturated fatty acids and free essential amino acids, were also impacted by maternal diet intakes through different lactation stages. These results show that more systematic and profound research is requisite for the clarification and development of Tibetan maternal diet to offer more enhanced and individualized nutritional recommendations for Tibetan lactating women and infants.
Collapse
Affiliation(s)
- Xiaomei Zhang
- National Engineering Center of Dairy for Maternal and Child HealthBeijing Sanyuan Foods Co. Ltd.BeijingChina
- Beijing Engineering Research Center of DairyBeijing Technical Innovation Center of Human Milk ResearchBeijing Sanyuan Foods Co. Ltd.BeijingChina
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology & Business UniversityBeijingChina
| | - Minghui Zhang
- National Engineering Center of Dairy for Maternal and Child HealthBeijing Sanyuan Foods Co. Ltd.BeijingChina
- Beijing Engineering Research Center of DairyBeijing Technical Innovation Center of Human Milk ResearchBeijing Sanyuan Foods Co. Ltd.BeijingChina
| | - Tie Lin
- National Engineering Center of Dairy for Maternal and Child HealthBeijing Sanyuan Foods Co. Ltd.BeijingChina
- Beijing Engineering Research Center of DairyBeijing Technical Innovation Center of Human Milk ResearchBeijing Sanyuan Foods Co. Ltd.BeijingChina
| | - Junying Zhao
- National Engineering Center of Dairy for Maternal and Child HealthBeijing Sanyuan Foods Co. Ltd.BeijingChina
- Beijing Engineering Research Center of DairyBeijing Technical Innovation Center of Human Milk ResearchBeijing Sanyuan Foods Co. Ltd.BeijingChina
| | - Zhang Luo
- Food Science CollegeTibet Agriculture & Animal Husbandry UniversityNyingchi, TibetChina
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of EducationCollege of Food ScienceNortheast Agricultural UniversityHarbinChina
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology & Business UniversityBeijingChina
| | - Lijun Chen
- National Engineering Center of Dairy for Maternal and Child HealthBeijing Sanyuan Foods Co. Ltd.BeijingChina
- Beijing Engineering Research Center of DairyBeijing Technical Innovation Center of Human Milk ResearchBeijing Sanyuan Foods Co. Ltd.BeijingChina
| |
Collapse
|
9
|
Abdelmeguid NE, Khalil MI, Badr NS, Alkhuriji AF, El-Gerbed MS, Sultan AS. Ameliorative effects of colostrum against DMBA hepatotoxicity in rats. Saudi J Biol Sci 2021; 28:2254-2266. [PMID: 33911940 PMCID: PMC8071819 DOI: 10.1016/j.sjbs.2021.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/09/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Colostrum, the sole diet for newborns, is an emerging nutraceutical. To date, the chemopreventive effect of Bovine Colostrum against liver injury induced by the potent carcinogen, 7,12-dimethyl-Benz[a]anthracene (DMBA) is unexplored. Humans are daily exposed to DMBA which is a highly lipophilic environmental organic pollutant. The study aimed to investigate the hepatoprotective role of Bovine Colostrum against DMBA-induced hepatotoxicity using a rat model. Fifty male rats were divided into five groups; GI (control), GII (olive oil, vehicle for DMBA), GIII (DMBA), GIV (DMBA + Bovine Colostrum), GV (Bovine Colostrum). After 12 weeks, body weight changes and mortality were calculated. Histological and ultrastructural examinations of liver tissue were performed. Expressions of p53, TGFβ2, TNF-α, S6K2, and c20orf20 were assessed by RT-PCR. Post-treatment with Bovine Colostrum increased both the body weight and the survival rate of rats treated with DMBA. In addition, remarkable protection against the pathological effect of DMBA was noted. Ultrastructurally, Bovine Colostrum ameliorated/prevented most of the toxic effects of DMBA on hepatocytes, including irregularities of nuclear envelope, clumping, and margination of heterochromatin aggregates, segregated nucleoli, and mitochondrial pleomorphism. Bovine Colostrum administration down-regulated p53, C20orf20, and S6K2 mRNA levels, and up-regulated TNF-α and TGFβ2. In conclusion, Bovine Colostrum have a protective effect against DMBA-induced toxicity on the liver of albino rats. Consequently, Bovine Colostrum may prevent polycyclic aromatic hydrocarbons-induced hepatotoxicity and may be useful in promoting human health if supplemented in the diet.
Collapse
Key Words
- BC, Bovine Colostrum
- CAM, Complementary and Alternative Medicine
- Colostrum
- DMBA
- DMBA, 7,12-dimethyl-Benz[a]anthracene
- Hepatoprotective
- IGF, insulin-like growth factor
- IL-1β, cytokines including interleukin-1 beta
- IL-6, interleukin-6
- INF-γ, interferon-gamma
- Nutraceutical
- PAHs, polycyclic aromatic hydrocarbons
- ROS, reactive oxygen species
- S6K, 40S ribosomal protein S6 kinase
- S6K2
- TGFβ, transforming growth factor-beta
- TNFα, tumor necrosis factor-alpha
- p53
Collapse
Affiliation(s)
| | - Mahmoud I. Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Lebanon
- Molecular Biology Unit, Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nada S. Badr
- Zoology Department, Faculty of Science, Damanhur University, Damanhur, Egypt
| | - Afrah F. Alkhuriji
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Ahmed S. Sultan
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Liang X, Yang H, Sun J, Cheng J, Luo X, Wang Z, Yang M, Bing Tao D, Yue X, Zheng Y. Effects of enzymatic treatments on the hydrolysis and antigenicity reduction of natural cow milk. Food Sci Nutr 2021; 9:985-993. [PMID: 33598181 PMCID: PMC7866585 DOI: 10.1002/fsn3.2066] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Cow milk (CM) allergy is one of the most common food allergies worldwide; the most abundant CM proteins, such as casein (CN), β-lactoglobulin (β-LG), and ɑ-lactalbumin (ɑ-LA), are all potentially allergenic. Reducing the antigenicity of CM continues to be a major challenge. However, previous studies have focused on the antigenicity of individual allergic CM proteins. Thus, in the present study, we aimed to evaluate the effects of different food-grade enzymes on the antigenicity of CN, β-LG, ɑ-LA in natural CM. The degree of hydrolysis (DH) and molecular mass (MW) distribution of CM hydrolysates were assessed. Additionally, the residual antigenicity of CM hydrolysates was evaluated through enzyme-linked immunosorbent assay and Western blotting with anti-CN, anti-β-LG, and anti-ɑ-LA rabbit polyclonal antibodies. The results showed that Alcalase- and Protamex-mediated hydrolysis could efficiently reduce the antigenicity of CN, β-LG, and ɑ-LA, inducing a higher DH, the loss of density of CM proteins, and the increasing levels of low MW (<3 kDa) peptides in CM hydrolysates. Further, Protamex and Alcalase could more efficiently hydrolyze the major allergenic components of CM than the other enzymes, which could represent an advantage for the development of hypoallergenic CM. These findings add further knowledge about the study and development of hypoallergenic CM.
Collapse
Affiliation(s)
- Xiaona Liang
- College of Food ScienceShenyang Agricultural UniversityShenYangChina
| | - Hui Yang
- College of Food ScienceShenyang Agricultural UniversityShenYangChina
| | - Jing Sun
- College of Food ScienceShenyang Agricultural UniversityShenYangChina
| | - Jiao Cheng
- College of Food ScienceShenyang Agricultural UniversityShenYangChina
| | - Xue Luo
- College of Food ScienceShenyang Agricultural UniversityShenYangChina
| | - Zongzhou Wang
- College of Food ScienceShenyang Agricultural UniversityShenYangChina
| | - Mei Yang
- College of Food ScienceShenyang Agricultural UniversityShenYangChina
| | - Dong Bing Tao
- College of Food ScienceShenyang Agricultural UniversityShenYangChina
| | - Xiqing Yue
- College of Food ScienceShenyang Agricultural UniversityShenYangChina
| | - Yan Zheng
- College of Food ScienceShenyang Agricultural UniversityShenYangChina
| |
Collapse
|
11
|
WITHDRAWN: Enzymatic hydrolysis effects on immunoreactivity and nutritional quality of natural cow milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Wen A, Xie C, Mazhar M, Wang C, Zeng H, Qin L, Zhu Y. Tetramethylpyrazine from adlay ( Coix lacryma-jobi) biotransformation by Bacillus subtilis and its quality characteristics. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:4092-4102. [PMID: 33071330 PMCID: PMC7520485 DOI: 10.1007/s13197-020-04443-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/24/2019] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
Abstract
Adlay, as a traditional Chinese medicine, has been used in nourishing foods, which are rich in a variety of nutrients (special biological compounds). The study was designed to optimize the fermentation parameters of dehulled, polished and broken adlay fermented by Bacillus subtilis BJ3-2 with regard to tetramethylpyrazine (TMP) yield and fibrinolytic enzyme activity. Then the proximate and bioactive components of B. subtilis-fermented adlay were evaluated. Box-Behnken design results showed that the TMP yield was 6.93 mg/g DW (dried weight) of B. subtilis-fermented polished adlay, which was about 136 times higher than that of B. subtilis-fermented soybean (BSB). The fibrinolytic enzyme activity was 2236.17 U/g in B. subtilis-fermented dehulled adlay, and slightly less than in BSB. B. subtilis-fermented adlay contained higher fat, free amino acids and fatty acids contents but lower protein and starch contents than raw adlay. Except for coixol and coixan, the levels of γ-aminobutyric acid, triterpenes, phenolics, flavonoids and coixenolide in B. subtilis-fermented adlay increased by 14.05, 2.02, 2.31 and 1.36 times, respectively. The contents of phenolic acids including caffeic, gallic, catechinic and chlonogenic acids in the free phenolic extracts significantly increased (p < 0.05). The results demonstrated that the biotransformation of high-yield TMP, fibrinolytic enzyme and other bioactive components of B. subtilis-fermented adlay products was realized. B. subtilis-fermented adlay could be a promising value-added food, and that is more suitable for human consumption.
Collapse
Affiliation(s)
- Anyan Wen
- College of Life Science, Guizhou University, Guiyang, 550025 China
| | - Chunzhi Xie
- College of Life Science, Guizhou University, Guiyang, 550025 China
| | - Muhammad Mazhar
- College of Life Science, Guizhou University, Guiyang, 550025 China
| | - Chunxiao Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025 China
| | - Haiying Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025 China
| | - Likang Qin
- School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025 China
- Key Laboratory of Agricultural and Animal Products Storage and Processing of Guizhou Province, Guiyang, 550025 China
- National and Local Joint Engineering Research Center for the Exploition of Homology Resources of Medicine and Food, Guiyang, China
| | - Yi Zhu
- Plant Protection and Plant Quarantine Station of Guizhou Province, Guiyang, 550001 China
| |
Collapse
|
13
|
|
14
|
Phan M, Momin SR, Senn MK, Wood AC. Metabolomic Insights into the Effects of Breast Milk Versus Formula Milk Feeding in Infants. Curr Nutr Rep 2020; 8:295-306. [PMID: 31203566 DOI: 10.1007/s13668-019-00284-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW This review summarizes the latest scientific evidence for the presence of metabolomic differences between infants fed breast milk (I-BM) and infants fed formula milk (I-FM). RECENT FINDINGS Across the studies included in this review, a total of 261 metabolites were analyzed, of which 151 metabolites were reported as significantly associated with infant feeding modality (BM versus FM). However, taken as a whole, the relevant literature was notable both for methodological limitations, such as small sample sizes, and heterogeneity between the studies. This may be why many associations between infant metabolite profile and feeding modality have not replicated across studies. To our knowledge, this is the first review to integrate the available literature on metabolomic differences between I-BM versus I-FM. This narrative review synthesized the data across studies and identified those metabolites which show the most robust associations with infant feeding modality. Methodological limitations of the current studies are identified, followed by recommendations for how to address these in future studies.
Collapse
Affiliation(s)
- Mimi Phan
- USDA / ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, TX, 77030, USA
| | - Shabnam R Momin
- USDA / ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, TX, 77030, USA
| | - Mackenzie K Senn
- USDA / ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, TX, 77030, USA
| | - Alexis C Wood
- USDA / ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Li M, Li Q, Zheng Y, Shi X, Zhang J, Ma C, Guan B, Peng Y, Yang M, Yue X. New insights into the alterations of full spectrum amino acids in human colostrum and mature milk between different domains based on metabolomics. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03470-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Bardanzellu F, Peila C, Fanos V, Coscia A. Clinical insights gained through metabolomic analysis of human breast milk. Expert Rev Proteomics 2019; 16:909-932. [PMID: 31825672 DOI: 10.1080/14789450.2019.1703679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Among the OMICS technologies, that have emerged in recent years, metabolomics has allowed relevant step forwards in clinical research. Several improvements in disease diagnosis and clinical management have been permitted, even in neonatology. Among potentially evaluable biofluids, breast milk (BM) results are highly interesting, representing a fluid of conjunction between mothers newborns, describing their interaction.Areas covered: in this review, updating a previous review article, we discuss research articles and reviews on BM metabolomics and found in MEDLINE using metabolomics, breast milk, neonatal nutrition, breastfeeding, human milk composition, and preterm neonates as keywords.Expert opinion: Our research group has a profound interest in metabolomics research. In 2012, we published the first metabolomic analysis on BM samples, reporting interesting data on its composition and relevant differences with formula milk (FM), useful to improve FM composition. As confirmed by successive studies, such technology can detect the specific BM composition and its dependence on several variables, including lactation stage, gestational age, maternal or environmental conditions. Moreover, since BM contaminants or drug levels can be detected, metabolomics also results useful to determine BM safety. These are only a few practical applications of BM analysis, which will be reviewed in this paper.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU University of Cagliari, Monserrato, Italy
| | - Chiara Peila
- Neonatology Unit, Department of Public Health and Pediatrics, Università degli Studi di Torino, Turin, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU University of Cagliari, Monserrato, Italy
| | - Alessandra Coscia
- Neonatology Unit, Department of Public Health and Pediatrics, Università degli Studi di Torino, Turin, Italy
| |
Collapse
|
17
|
Metabolomics methods to analyze full spectrum of amino acids in different domains of bovine colostrum and mature milk. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03385-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|