1
|
Zhou R, Zhe L, Chen F, Gao T, Zhang X, Huang L, Zhuo Y, Xu S, Lin Y, Feng B, Che L, Wu D, Fang Z. Maternal folic acid and vitamin B 12 supplementation during medium to late gestation promotes fetal development via improving placental antioxidant capacity, angiogenesis and amino acid transport. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2832-2841. [PMID: 38018634 DOI: 10.1002/jsfa.13171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Folic acid and vitamin B12 (FV), being B vitamins, not only facilitate the remethylation of homocysteine (Hcy) but also contribute to embryonic development. This study aimed to assess the impact of FV supplementation during late pregnancy on sows' reproductive performance, amino acid metabolism, placental angiogenesis, and related parameters. Twenty primiparous sows at day 60 of gestation were randomly allocated to two groups: a basal diet (CON) group and a group receiving a basal diet supplemented with folic acid at 20 ppm and vitamin B12 at 125 ppb. RESULTS The findings revealed that dietary FV supplementation significantly reduced the incidence of intrauterine growth retardation compared to the CON group (P < 0.05). Furthermore, it led to a decrease in the Hcy levels in umbilical cord serum (P < 0.05) and activation of the placental mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway (P < 0.05). Additionally, FV supplementation lowered placental malondialdehyde levels (P < 0.05) and increased the expression of placental thioredoxin (P = 0.05). Moreover, maternal FV supplementation notably elevated placental vascular density (P < 0.05) and the expression of sodium-coupled neutral amino acid transporter 2 (SNAT2) (P < 0.05), as well as amino acid concentrations in umbilical cord blood (P < 0.05). CONCLUSION Maternal FV supplementation during medium to late gestation reduced Hcy levels in umbilical cord blood and positively impacted fetal development. This improvement was closely associated with increased placental antioxidant capacity and vascular density, as well as activation of the placental mTORC1-SNAT2 signaling pathway. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui Zhou
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Li Zhe
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Fangyuan Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Tianle Gao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lingjie Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Zhang Y, Zhuang Z, Liu Y, Huang J, Luan M, Zhao X, Dong L, Ye J, Yang M, Zheng E, Cai G, Wu Z, Yang J. Genomic prediction based on preselected single-nucleotide polymorphisms from genome-wide association study and imputed whole-genome sequence data annotation for growth traits in Duroc pigs. Evol Appl 2024; 17:e13651. [PMID: 38362509 PMCID: PMC10868536 DOI: 10.1111/eva.13651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 10/31/2023] [Accepted: 01/13/2024] [Indexed: 02/17/2024] Open
Abstract
The use of whole-genome sequence (WGS) data is expected to improve genomic prediction (GP) power of complex traits because it may contain mutations that in strong linkage disequilibrium pattern with causal mutations. However, a few previous studies have shown no or small improvement in prediction accuracy using WGS data. Incorporating prior biological information into GP seems to be an attractive strategy that might improve prediction accuracy. In this study, a total of 6334 pigs were genotyped using 50K chips and subsequently imputed to the WGS level. This cohort includes two prior discovery populations that comprise 294 Landrace pigs and 186 Duroc pigs, as well as two validation populations that consist of 3770 American Duroc pigs and 2084 Canadian Duroc pigs. Then we used annotation information and genome-wide association study (GWAS) from the WGS data to make GP for six growth traits in two Duroc pig populations. Based on variant annotation, we partitioned different genomic classes, such as intron, intergenic, and untranslated regions, for imputed WGS data. Based on GWAS results of WGS data, we obtained trait-associated single-nucleotide polymorphisms (SNPs). We then applied the genomic feature best linear unbiased prediction (GFBLUP) and genomic best linear unbiased prediction (GBLUP) models to estimate the genomic estimated breeding values for growth traits with these different variant panels, including six genomic classes and trait-associated SNPs. Compared with 50K chip data, GBLUP with imputed WGS data had no increase in prediction accuracy. Using only annotations resulted in no increase in prediction accuracy compared to GBLUP with 50K, but adding annotation information into the GFBLUP model with imputed WGS data could improve the prediction accuracy with increases of 0.00%-2.82%. In conclusion, a GFBLUP model that incorporated prior biological information might increase the advantage of using imputed WGS data for GP.
Collapse
Affiliation(s)
- Yuling Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Agro‐animal Genomics and Molecular BreedingSouth China Agricultural UniversityGuangzhouChina
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Agro‐animal Genomics and Molecular BreedingSouth China Agricultural UniversityGuangzhouChina
| | - Yiyi Liu
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Agro‐animal Genomics and Molecular BreedingSouth China Agricultural UniversityGuangzhouChina
| | - Jinyan Huang
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Agro‐animal Genomics and Molecular BreedingSouth China Agricultural UniversityGuangzhouChina
| | - Menghao Luan
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Agro‐animal Genomics and Molecular BreedingSouth China Agricultural UniversityGuangzhouChina
| | - Xiang Zhao
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Agro‐animal Genomics and Molecular BreedingSouth China Agricultural UniversityGuangzhouChina
| | - Linsong Dong
- Guangdong Zhongxin Breeding Technology Co., LtdGuangzhouChina
| | - Jian Ye
- Guangdong Zhongxin Breeding Technology Co., LtdGuangzhouChina
| | - Ming Yang
- College of Animal Science and TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Agro‐animal Genomics and Molecular BreedingSouth China Agricultural UniversityGuangzhouChina
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Agro‐animal Genomics and Molecular BreedingSouth China Agricultural UniversityGuangzhouChina
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Agro‐animal Genomics and Molecular BreedingSouth China Agricultural UniversityGuangzhouChina
- Guangdong Zhongxin Breeding Technology Co., LtdGuangzhouChina
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Agro‐animal Genomics and Molecular BreedingSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
3
|
Xiong L, Wang K, Song M, Azad MAK, Zhu Q, Kong X. Dietary Betaine Supplementation Enhances Colonic Barrier Function through the Nrf2/Keap1 and TLR4-NF-κB/MAPK Signaling Pathways and Alters Colonic Microbiota in Bama Mini-Pigs. Antioxidants (Basel) 2023; 12:1926. [PMID: 38001779 PMCID: PMC10669150 DOI: 10.3390/antiox12111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
This study evaluated the effects of betaine supplementation in sows and/or their offspring's diets on the redox status, immune and inflammatory levels, colonic barrier function, and colonic microbial community of offspring piglets. Thirty-six Bama mini-sows on day 3 of gestation and their weaned offspring piglets (28 d of age) were randomly allocated to the following treatments: (1) sows and their weaned offspring fed the basal diet (control group, Con group); (2) sows fed the basal diet with 3.50 kg/t betaine, and their weaned offspring fed the basal diet (sows betaine group, SB group); (3) sows fed the basal diet with 3.50 kg/t betaine, and their weaned offspring fed the basal diet with 2.50 kg/t betaine (sow-offspring betaine group, S-OB group). Six offspring piglets from each group were selected to collect plasma and colon samples on d 30, 60, and 90 after weaning. Compared with the Con group, the plasma levels of IgA, IgM, GSH-Px, and SOD during d 30-90 after weaning, IFN-α, T-AOC, and GSH on d 30 and 60 after weaning were increased, while MDA during d 30-90 after weaning was decreased in the SB and S-OB groups (p < 0.05). In addition, the plasma levels of IFN-γ on d 60 and T-AOC on d 30 after weaning were higher in the S-OB group than those in the Con group (p < 0.05). In the colon, betaine supplementation increased plasma T-AOC, GSH, and SOD levels while decreasing MDA concentration (p < 0.05). Betaine supplementation improved the colonic protein abundances of ZO-1, occludin, and claudin in offspring and activated the Nrf2/Keap1 signaling pathway while inhibiting the TLR4-NF-κB/MAPK signaling pathway on d 90 after weaning. The 16S rRNA sequencing results showed that betaine supplementation altered colonic microbiota composition by increasing the relative abundances of Verrucomicrobia and Actinobacteria in the SB group while decreasing proinflammatory-associated microbiota abundances (Tenericutes, Prevotella, and Parabacteroides) (p < 0.05). Collectively, these findings suggest that dietary betaine supplementation in sows and/or their offspring could improve offspring piglets' redox status and immune and anti-inflammatory levels and enhance the colonic barrier function by activating Nrf2/Keap1 and inhibiting TLR4-NF-κB/MAPK signaling pathways.
Collapse
Affiliation(s)
- Liang Xiong
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Regions, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.X.); (K.W.); (M.S.); (M.A.K.A.); (Q.Z.)
| | - Kai Wang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Regions, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.X.); (K.W.); (M.S.); (M.A.K.A.); (Q.Z.)
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Mingtong Song
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Regions, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.X.); (K.W.); (M.S.); (M.A.K.A.); (Q.Z.)
| | - Md. Abul Kalam Azad
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Regions, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.X.); (K.W.); (M.S.); (M.A.K.A.); (Q.Z.)
| | - Qian Zhu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Regions, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.X.); (K.W.); (M.S.); (M.A.K.A.); (Q.Z.)
| | - Xiangfeng Kong
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Regions, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.X.); (K.W.); (M.S.); (M.A.K.A.); (Q.Z.)
| |
Collapse
|
4
|
Lee J, Belal SA, Lin X, Park J, Shim K. Insect Peptide CopA3 Mitigates the Effects of Heat Stress on Porcine Muscle Satellite Cells. Animals (Basel) 2023; 13:3209. [PMID: 37893933 PMCID: PMC10603636 DOI: 10.3390/ani13203209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Heat stress inhibits cell proliferation as well as animal production. Here, we aimed to demonstrate that 9-mer disulfide dimer peptide (CopA3) supplementation stabilizes porcine muscle satellite cell (PMSC) proliferation and heat shock protein (HSP) expression at different temperatures. Therefore, we investigated the beneficial effects of CopA3 on PMSCs at three different temperatures (37, 39, and 41 °C). Based on temperature and CopA3 treatment, PMSCs were divided into six different groups including treatment and control groups for each temperature. Cell viability was highest with 10 µg/mL CopA3 and decreased as the concentration increased in a dose-dependent manner. CopA3 significantly increased the cell viability at all temperatures at 24 and 48 h. It significantly decreased apoptosis compared to that in the untreated groups. In addition, it decreased the apoptosis-related protein, Bcl-2-associated X (BAX), expression at 41 °C. Notably, temperature and CopA3 had no effects on the apoptosis-related protein, caspase 3. Expression levels of HSP40, HSP70, and HSP90 were significantly upregulated, whereas those of HSP47 and HSP60 were not affected by temperature changes. Except HSP90, CopA3 did not cause temperature-dependent changes in protein expression. Therefore, CopA3 promotes cell proliferation, inhibits apoptosis, and maintains stable HSP expression, thereby enhancing the heat-stress-tolerance capacity of PMSCs.
Collapse
Affiliation(s)
- Jeongeun Lee
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Shah Ahmed Belal
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Xi Lin
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jinryong Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- 3D Tissue Culture Research Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Kwanseob Shim
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea;
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| |
Collapse
|
5
|
Ding R, Zhuang Z, Qiu Y, Wang X, Wu J, Zhou S, Ruan D, Xu C, Hong L, Gu T, Zheng E, Cai G, Huang W, Wu Z, Yang J. A composite strategy of genome-wide association study and copy number variation analysis for carcass traits in a Duroc pig population. BMC Genomics 2022; 23:590. [PMID: 35964005 PMCID: PMC9375371 DOI: 10.1186/s12864-022-08804-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Carcass traits are important in pig breeding programs for improving pork production. Understanding the genetic variants underlies complex phenotypes can help explain trait variation in pigs. In this study, we integrated a weighted single-step genome-wide association study (wssGWAS) and copy number variation (CNV) analyses to map genetic variations and genes associated with loin muscle area (LMA), loin muscle depth (LMD) and lean meat percentage (LMP) in Duroc pigs. RESULTS Firstly, we performed a genome-wide analysis for CNV detection using GeneSeek Porcine SNP50 Bead chip data of 3770 pigs. A total of 11,100 CNVs were detected, which were aggregated by overlapping 695 CNV regions (CNVRs). Next, we investigated CNVs of pigs from the same population by whole-genome resequencing. A genome-wide analysis of 21 pigs revealed 23,856 CNVRs that were further divided into three categories (851 gain, 22,279 loss, and 726 mixed), which covered 190.8 Mb (~ 8.42%) of the pig autosomal genome. Further, the identified CNVRs were used to determine an overall validation rate of 68.5% for the CNV detection accuracy of chip data. CNVR association analyses identified one CNVR associated with LMA, one with LMD and eight with LMP after applying stringent Bonferroni correction. The wssGWAS identified eight, six and five regions explaining more than 1% of the additive genetic variance for LMA, LMD and LMP, respectively. The CNVR analyses and wssGWAS identified five common regions, of which three regions were associated with LMA and two with LMP. Four genes (DOK7, ARAP1, ELMO2 and SLC13A3) were highlighted as promising candidates according to their function. CONCLUSIONS We determined an overall validation rate for the CNV detection accuracy of low-density chip data and constructed a genomic CNV map for Duroc pigs using resequencing, thereby proving a value genetic variation resource for pig genome research. Furthermore, our study utilized a composite genetic strategy for complex traits in pigs, which will contribute to the study for elucidating the genetic architecture that may be influenced and regulated by multiple forms of variations.
Collapse
Affiliation(s)
- Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.,Guangdong Wens Breeding Swine Technology Co., Ltd, Guangdong, 527439, P.R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Yibin Qiu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Xingwang Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Cineng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Linjun Hong
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Ting Gu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Wen Huang
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China. .,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China.
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China. .,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Chen X, Luo J, Yang L, Guo Y, Fan Y, Liu J, Sun J, Zhang Y, Jiang Q, Chen T, Xi Q. miR-143-Mediated Responses to Betaine Supplement Repress Lipogenesis and Hepatic Gluconeogenesis by Targeting MAT1a and MAPK11. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7981-7992. [PMID: 35734958 DOI: 10.1021/acs.jafc.2c02940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The liver as the central organ is responsible for lipogenesis, gluconeogenesis and one-carbon metabolism. Methyl donors (e.g., betaine) modulate metabolic homeostasis and gene regulation through one-carbon metabolism. MiR-143 regulates DNA methylation by targeting DNMT3A, thereby suggesting that this miRNA participates in one-carbon metabolic pathways. However, the effect and mechanism that regulate glucose and lipid metabolism via the methyl group metabolism pathway remain elusive. In this study, we found that a betaine supplement and miR-143 KO significantly promoted lipolysis and glucose utilization and repressed lipogenesis and gluconeogenesis through enhancing energy consumption and thermogenesis, repressing GPNMB and targeting MAPK11, respectively. We further explored the relationship between miR-143 and a methyl donor (betaine) and the miR-143-mediated responses to the betaine supplement regulating the mechanism of the glucose and lipid metabolism. The results showed that betaine significantly down-regulated the expression of miR-143 that subsequently increased SAM levels in the liver by targeting MAT1a. In brief, the regulations of glucose and lipid metabolism are related to the miR-143-regulation of one-carbon units, and the relationship between betaine and miR-143 in the methionine cycle is a typical yin-yang type of regulation. Thus, betaine and miR-143 function together as key regulators and biomarkers for preventing and diagnosing metabolic diseases such as fatty liver disease, obesity, and diabetes.
Collapse
Affiliation(s)
- Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642 China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642 China
| | - Lekai Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642 China
| | - Yue Guo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642 China
| | - Yaotian Fan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642 China
| | - Jie Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642 China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642 China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642 China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642 China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642 China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642 China
| |
Collapse
|
7
|
Zhu Q, Song M, Azad MAK, Ma C, Yin Y, Kong X. Probiotics and Synbiotics Addition to Bama Mini-Pigs' Diet Improve Carcass Traits and Meat Quality by Altering Plasma Metabolites and Related Gene Expression of Offspring. Front Vet Sci 2022; 9:779745. [PMID: 35873696 PMCID: PMC9301501 DOI: 10.3389/fvets.2022.779745] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
This study evaluated the effects of maternal probiotics and synbiotics addition on several traits and parameters in offspring. A total of 64 Bama mini pigs were randomly allocated into the control (basal diet), antibiotic (50 g/t virginiamycin), probiotics (200 mL/day probiotics), or synbiotics (500 g/t xylo-oligosaccharides and 200 mL/day probiotics) group and fed with experimental diets during pregnancy and lactation. After weaning, two piglets per litter and eight piglets per group were selected and fed with a basal diet. Eight pigs per group were selected for analysis at 65, 95, and 125 days of age. The results showed that the addition of probiotics increased the average daily feed intake of the pigs during the 66- to 95-day-old periods and backfat thickness at 65 and 125 days of age, and that the addition of synbiotics increased backfat thickness and decreased muscle percentage and loin-eye area at 125 days of age. The addition of maternal probiotics increased the cooking yield and pH45min value at 65 and 95 days of age, respectively, the addition of synbiotics increased the meat color at 95 days of age, and the addition of probiotics and synbiotics decreased drip loss and shear force in 65- and 125-day-old pigs, respectively. However, maternal antibiotic addition increased shear force in 125-day-old pigs. Dietary probiotics and synbiotics addition in sows' diets increased several amino acids (AAs), including total AAs, histidine, methionine, asparagine, arginine, and leucine, and decreased glycine, proline, isoleucine, α-aminoadipic acid, α-amino-n-butyric acid, β-alanine, and γ-amino-n-butyric acid in the plasma and longissimus thoracis (LT) muscle of offspring at different stages. In the LT muscle fatty acid (FA) analysis, saturated FA (including C16:0, C17:0, and C20:0) and C18:1n9t contents were lower, and C18:2n6c, C16:1, C20:1, and unsaturated FA contents were higher in the probiotics group. C10:0, C12:0, and C14:0 contents were higher in 65-day-old pigs, and C20:1 and C18:1n9t contents were lower in the synbiotics group in 95- and 125-day-old pigs, respectively. The plasma biochemical analysis revealed that the addition of maternal probiotics and synbiotics decreased plasma cholinesterase, urea nitrogen, and glucose levels in 95-day-old pigs, and that the addition of synbiotics increased plasma high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total cholesterol concentrations in 65-day-old pigs and triglyceride concentration in 125-day-old pigs. The addition of maternal probiotics and synbiotics regulated muscle fiber type, myogenic regulation, and lipid metabolism-related gene expression of LT muscle in offspring. In conclusion, the addition of maternal probiotics and synbiotics improved the piglet feed intake and altered the meat quality parameters, plasma metabolites, and gene expression related to meat quality.
Collapse
Affiliation(s)
- Qian Zhu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingtong Song
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Md. Abul Kalam Azad
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Cui Ma
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
- Yulong Yin
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
- Research Center of Mini-Pig, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, China
- *Correspondence: Xiangfeng Kong
| |
Collapse
|
8
|
Fu R, Wang Q, Kong C, Liu K, Si H, Sui S. Mechanism of action and the uses betaine in pig production. J Anim Physiol Anim Nutr (Berl) 2021; 106:528-536. [PMID: 34486782 DOI: 10.1111/jpn.13633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/27/2021] [Accepted: 08/25/2021] [Indexed: 01/03/2023]
Abstract
Betaine, the trimethyl derivative of glycine, is a good methyl group donor, and an important component in pig production. However, betaine has not been extensively studied in this field. Therefore, in this study, we reviewed the effects of betaine in pig production performance, meat quality and reproductive performance, as well as its mechanisms, to provide a theoretical basis for the optimal use and development of this compound.
Collapse
Affiliation(s)
- Rong Fu
- College of Public Health, Dali University, Dali, China
| | - Qin Wang
- College of Public Health, Dali University, Dali, China
| | - Caihua Kong
- College of Agrononmy and Biological Sciences, Dali University, Dali, China
| | - Kena Liu
- College of Public Health, Dali University, Dali, China
| | - Huaxin Si
- College of Public Health, Dali University, Dali, China
| | - Shiyan Sui
- Health Research Center, School of Public Health, Dali University, Dali, China
| |
Collapse
|
9
|
Korsmo HW, Jiang X. One carbon metabolism and early development: a diet-dependent destiny. Trends Endocrinol Metab 2021; 32:579-593. [PMID: 34210607 PMCID: PMC8282711 DOI: 10.1016/j.tem.2021.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022]
Abstract
One carbon metabolism (OCM) is critical for early development, as it provides one carbon (1C) units for the biosynthesis of DNA, proteins, and lipids and epigenetic modification of the genome. Epigenetic marks established early in life can be maintained and exert lasting impacts on gene expression and functions later in life. Animal and human studies have increasingly demonstrated that prenatal 1C nutrient deficiencies impair fetal growth, neurodevelopment, and cardiometabolic parameters in childhood, while sufficient maternal 1C nutrient intake is protective against these detrimental outcomes. However, recent studies also highlight the potential risk of maternal 1C nutrient excess or imbalance in disrupting early development. Further studies are needed to delineate the dose-response relationship among prenatal 1C nutrient exposure, epigenetic modifications, and developmental outcomes.
Collapse
Affiliation(s)
- Hunter W Korsmo
- PhD Program in Biochemistry, The Graduate Center CUNY (City University of New York), New York, NY 10016, USA; Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| | - Xinyin Jiang
- PhD Program in Biochemistry, The Graduate Center CUNY (City University of New York), New York, NY 10016, USA; Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA.
| |
Collapse
|
10
|
He Q, Zou T, Chen J, He J, Jian L, Xie F, You J, Wang Z. Methyl-Donor Micronutrient for Gestating Sows: Effects on Gut Microbiota and Metabolome in Offspring Piglets. Front Nutr 2021; 8:675640. [PMID: 34164424 PMCID: PMC8215270 DOI: 10.3389/fnut.2021.675640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
This study aimed to investigate the effects of maternal methyl-donor micronutrient supplementation during gestation on gut microbiota and the fecal metabolic profile in offspring piglets. Forty-three Duroc × Erhualian gilts were assigned to two dietary groups during gestation: control diet (CON) and CON diet supplemented with MET (folic acid, methionine, choline, vitamin B6, and vitamin B12). The body weights of offspring piglets were recorded at birth and weaning. Besides this, fresh fecal samples of offspring piglets were collected at 7, 14, and 21 days. The gut microbiota composition, metabolic profile, and short-chain fatty acid (SCFA) profiles in the fecal samples were determined using 16S rDNA sequencing, liquid chromatography-mass spectrometry metabolomics, and gas chromatography methods, respectively. The results showed that maternal methyl-donor micronutrient supplementation increased the microbiota diversity and uniformity in feces of offspring piglets as indicated by increased Shannon and Simpson indices at 7 days, and greater Simpson, ACE, Chao1 and observed species indices at 21 days. Specifically, at the phylum level, the relative abundance of Firmicutes and the Firmicutes to Bacteroidetes ratio were elevated by maternal treatment. At the genus level, the relative abundance of SCFA-producing Dialister, Megasphaera, and Turicibacter, and lactate-producing Sharpea as well as Akkermansia, Weissella, and Pediococcus were increased in the MET group. The metabolic analyses show that maternal methyl-donor micronutrient addition increased the concentrations of individual and total SCFAs of 21-day piglets and increased metabolism mainly involving amino acids, pyrimidine, and purine biosynthesis. Collectively, maternal methyl-donor micronutrient addition altered gut microbiota and the fecal metabolic profile, resulting in an improved weaning weight of offspring piglets.
Collapse
Affiliation(s)
- Qin He
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Tiande Zou
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Jun Chen
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Jia He
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Li Jian
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Fei Xie
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Jinming You
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Zirui Wang
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
11
|
Ruan D, Zhuang Z, Ding R, Qiu Y, Zhou S, Wu J, Xu C, Hong L, Huang S, Zheng E, Cai G, Wu Z, Yang J. Weighted Single-Step GWAS Identified Candidate Genes Associated with Growth Traits in a Duroc Pig Population. Genes (Basel) 2021; 12:genes12010117. [PMID: 33477978 PMCID: PMC7835741 DOI: 10.3390/genes12010117] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
Growth traits are important economic traits of pigs that are controlled by several major genes and multiple minor genes. To better understand the genetic architecture of growth traits, we performed a weighted single-step genome-wide association study (wssGWAS) to identify genomic regions and candidate genes that are associated with days to 100 kg (AGE), average daily gain (ADG), backfat thickness (BF) and lean meat percentage (LMP) in a Duroc pig population. In this study, 3945 individuals with phenotypic and genealogical information, of which 2084 pigs were genotyped with a 50 K single-nucleotide polymorphism (SNP) array, were used for association analyses. We found that the most significant regions explained 2.56–3.07% of genetic variance for four traits, and the detected significant regions (>1%) explained 17.07%, 18.59%, 23.87% and 21.94% for four traits. Finally, 21 genes that have been reported to be associated with metabolism, bone growth, and fat deposition were treated as candidate genes for growth traits in pigs. Moreover, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses implied that the identified genes took part in bone formation, the immune system, and digestion. In conclusion, such full use of phenotypic, genotypic, and genealogical information will accelerate the genetic improvement of growth traits in pigs.
Collapse
Affiliation(s)
- Donglin Ruan
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Zhanwei Zhuang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Rongrong Ding
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Yibin Qiu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Shenping Zhou
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Jie Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Cineng Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Sixiu Huang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
- Correspondence: (Z.W.); (J.Y.)
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
- Correspondence: (Z.W.); (J.Y.)
| |
Collapse
|
12
|
Zhou S, Ding R, Meng F, Wang X, Zhuang Z, Quan J, Geng Q, Wu J, Zheng E, Wu Z, Yang J, Yang J. A meta-analysis of genome-wide association studies for average daily gain and lean meat percentage in two Duroc pig populations. BMC Genomics 2021; 22:12. [PMID: 33407097 PMCID: PMC7788875 DOI: 10.1186/s12864-020-07288-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background Average daily gain (ADG) and lean meat percentage (LMP) are the main production performance indicators of pigs. Nevertheless, the genetic architecture of ADG and LMP is still elusive. Here, we conducted genome-wide association studies (GWAS) and meta-analysis for ADG and LMP in 3770 American and 2090 Canadian Duroc pigs. Results In the American Duroc pigs, one novel pleiotropic quantitative trait locus (QTL) on Sus scrofa chromosome 1 (SSC1) was identified to be associated with ADG and LMP, which spans 2.53 Mb (from 159.66 to 162.19 Mb). In the Canadian Duroc pigs, two novel QTLs on SSC1 were detected for LMP, which were situated in 3.86 Mb (from 157.99 to 161.85 Mb) and 555 kb (from 37.63 to 38.19 Mb) regions. The meta-analysis identified ten and 20 additional SNPs for ADG and LMP, respectively. Finally, four genes (PHLPP1, STC1, DYRK1B, and PIK3C2A) were detected to be associated with ADG and/or LMP. Further bioinformatics analysis showed that the candidate genes for ADG are mainly involved in bone growth and development, whereas the candidate genes for LMP mainly participated in adipose tissue and muscle tissue growth and development. Conclusions We performed GWAS and meta-analysis for ADG and LMP based on a large sample size consisting of two Duroc pig populations. One pleiotropic QTL that shared a 2.19 Mb haplotype block from 159.66 to 161.85 Mb on SSC1 was found to affect ADG and LMP in the two Duroc pig populations. Furthermore, the combination of single-population and meta-analysis of GWAS improved the efficiency of detecting additional SNPs for the analyzed traits. Our results provide new insights into the genetic architecture of ADG and LMP traits in pigs. Moreover, some significant SNPs associated with ADG and/or LMP in this study may be useful for marker-assisted selection in pig breeding.
Collapse
Affiliation(s)
- Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Fanming Meng
- State Key Laboratory of Livestock and Poultry Breeding / Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Xingwang Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Qian Geng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jianhui Yang
- YueYang Vocational Technical College, Yueyang, 414000, Hunan, People's Republic of China.
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|
13
|
He Q, Zou T, Chen J, Jian L, He J, Xia Y, Xie F, Wang Z, You J. Maternal Methyl-Donor Micronutrient Supplementation During Pregnancy Promotes Skeletal Muscle Differentiation and Maturity in Newborn and Weaning Pigs. Front Nutr 2020; 7:609022. [PMID: 33330599 PMCID: PMC7734050 DOI: 10.3389/fnut.2020.609022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Adequate maternal methyl-donor micronutrient (MET) intake is an important determinant of the organ development and metabolic renovation of offspring. The mechanism involved in skeletal myogenesis and the effect of MET supplementation during pregnancy on the maternal body remain unclear. Thus, this study aimed to investigate the potential effect of methyl donor micronutrients (MET) on skeletal muscle development and metabolism in offspring using pig models. Forty-three Duroc × Erhualian gilts were assigned to two dietary groups during gestation: control diet (CON) and CON diet supplemented with MET (folic acid, methionine, choline, vitamin B6, and vitamin B12). The results showed that maternal MET exposure during pregnancy significantly increased the concentrations of protein, triiodothyronine (T3), and thyroxine (T4) in colostrum and methyl metabolites, including S-adenosylmethionine (SAM), S-adenosyl-L-homocysteine (SAH), 5-methyl-tetrahydrofolate (5-MTHF), and betaine, in the maternal and offspring umbilical vein serum. A similar pattern was demonstrated in the body weight gain and myofiber diameters in offspring. In addition, maternal MET supplementation significantly increased the concentration of offspring serum insulin-like growth factor 1 (IGF-1), T3, and T4; upregulated the mRNA expression of IGF-1 and IGF-1 receptor (IGF-1r) and the phosphorylation level of protein kinases in offspring longissimus dorsi muscle; and upregulated the expression of myogenic genes and fast myosin heavy chain (fast MyHC) in offspring skeletal muscle. Supplementing sows with higher levels of MET during gestation may promote skeletal muscle differentiation and maturity and improve the skeletal muscle mass of the piglets.
Collapse
Affiliation(s)
- Qin He
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Nanchang, China
| | - Tiande Zou
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Nanchang, China
| | - Jun Chen
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Nanchang, China
| | - Li Jian
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Nanchang, China
| | - Jia He
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Nanchang, China
| | - Yingying Xia
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Nanchang, China
| | - Fei Xie
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Nanchang, China
| | - Zirui Wang
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Nanchang, China
| | - Jinming You
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Nanchang, China
| |
Collapse
|
14
|
Li Z, Wang B, Li H, Jian L, Luo H, Wang B, Zhang C, Zhao X, Xue Y, Peng S, Zuo S. Maternal Folic Acid Supplementation Differently Affects the Small Intestinal Phenotype and Gene Expression of Newborn Lambs from Differing Litter Sizes. Animals (Basel) 2020; 10:E2183. [PMID: 33266421 PMCID: PMC7700240 DOI: 10.3390/ani10112183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to investigate the effect of maternal dietary folic acid (FA) supplementation during gestation on small intestinal development of newborn lambs of different litter sizes, focusing on the intestinal morphology and development-, apoptosis- and digestion-related genes expression. One hundred and twenty Hu ewes (Ovis aries) were inseminated and randomly allotted to three groups. One group received a control diet [without FA supplementation, control (CON)] and the other two groups received control diets supplemented with different amount of FA [16 or 32 mg FA per kg dry matter (DM), i.e., F16 and F32] during pregnancy. After lambing, according to the dietary FA levels and litter size (twins, TW; triplets, TR), the neonatal lambs were divided into 6 (TW-CON, TW-F16, TW-F32, TR-CON, TR-F16, TR-F32) treatment groups. The results showed that the ratio of small intestinal weight to live body weight and the thickness of the intestinal muscle layer in the offspring was enhanced significantly with increasing maternal FA supplementation (p < 0.05). Meanwhile, the expression levels of insulin-like growth factor I (IGF-I), B-cell lymphoma-2 (BCL-2) and sodium/glucose co-transporter-1 (SGLT1) in the small intestines of the newborn lambs were increased, while the opposite was true for Bcl2-associated × (BAX) in response to FA supplementation (p < 0.05). Moreover, the small intestinal weights of twins were significantly higher than those of triplets (p < 0.01), and the expression levels of IGF-I (p < 0.05), sucrase-isomaltase (SI) (p < 0.05) and solute carrier family 2 member 5 (SLC2A5) (p < 0.01) were significantly lower than those in triplets. These findings suggest that maternal FA supplementation could improve the offspring's small intestinal phenotype and the expression of development-, apoptosis- and digestion-related genes, so it could promote the small intestinal development of newborn lambs. Furthermore, the small intestine phenotypic development of twins was generally better than that of triplets, while the expression levels of the above genes of twins were lower than those of triplets.
Collapse
Affiliation(s)
| | | | | | | | - Hailing Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.L.); (B.W.); (H.L.); (L.J.); (B.W.); (C.Z.); (X.Z.); (Y.X.); (S.P.); (S.Z.)
| | | | | | | | | | | | | |
Collapse
|
15
|
Song B, Di S, Cui S, Chen N, Wang H, Wang X, Gao Q, Tong G, Wang H, Huang X, Ding L, Gao Y, Liu J, Wang X. Distinct Patterns of PPARγ Promoter Usage, Lipid Degradation Activity, and Gene Expression in Subcutaneous Adipose Tissue of Lean and Obese Swine. Int J Mol Sci 2018; 19:ijms19123892. [PMID: 30563100 PMCID: PMC6321263 DOI: 10.3390/ijms19123892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022] Open
Abstract
Subcutaneous adipose tissue is a loose connective tissue specializing in the regulation of energy storage and metabolization. In domesticated pigs (Sus scrofa), the temporal development of subcutaneous adipose tissue is critical for meat production. However, the regulation of adipose tissue development remains unclear. Here, the subcutaneous adipose tissue development was characterized and compared in lean (Danish-Landrace) and obese (Min) pigs at juvenile and the juvenile-to-adult growth stages. Using RNA sequencing, we profiled the transcriptome of subcutaneous adipose tissue isolated from 4- and 16-week-old pigs and identified 24,718 expressed transcription units. Of them, 6327 genes were differentially expressed between the breeds and/or developmental stages. Compared with obese pigs, upregulated genes in lean pigs showed significant function and pathway enrichment in fatty acid degradation and mitochondrial functions. Further analysis uncovered the distinct usage preferences of the three alternative peroxisomeproliferator-activatedreceptorγ (PPARγ) promoters associated with the development of subcutaneous adipose tissue in both breeds. Transcriptome analysis of subcutaneous adipose tissue in lean and obese pigs suggested that marker-assisted selection of fatty acid degradation and PPARγ signaling pathways could be important directions for future pork quality improvement and modern breeding.
Collapse
Affiliation(s)
- Bin Song
- The Northeast Agricultural University, 59 Mucai St, Xiangfang District, Harbin 150030, China.
- Animal Science Institute of Heilongjiang Province, 2 Heyi St, Longsha District, Qiqihaer 161005, China.
| | - Shengwei Di
- The Northeast Agricultural University, 59 Mucai St, Xiangfang District, Harbin 150030, China.
| | - Shiquan Cui
- The Northeast Agricultural University, 59 Mucai St, Xiangfang District, Harbin 150030, China.
| | - Na Chen
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xuan Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Department of Biological Sciences, Xian Jiaotong-Liverpool University, Suzhou 215123, China.
| | - Qian Gao
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Guizhi Tong
- Animal Science Institute of Heilongjiang Province, 2 Heyi St, Longsha District, Qiqihaer 161005, China.
| | - Hongbao Wang
- Animal Science Institute of Heilongjiang Province, 2 Heyi St, Longsha District, Qiqihaer 161005, China.
| | - Xuankai Huang
- The Northeast Agricultural University, 59 Mucai St, Xiangfang District, Harbin 150030, China.
- Animal Science Institute of Heilongjiang Province, 2 Heyi St, Longsha District, Qiqihaer 161005, China.
| | - Liyan Ding
- Animal Science Institute of Heilongjiang Province, 2 Heyi St, Longsha District, Qiqihaer 161005, China.
| | - Ying Gao
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jun Liu
- The Northeast Agricultural University, 59 Mucai St, Xiangfang District, Harbin 150030, China.
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xibiao Wang
- The Northeast Agricultural University, 59 Mucai St, Xiangfang District, Harbin 150030, China.
| |
Collapse
|