1
|
Pi X, Zhu L, Liu J, Zhang B. Effect of Thermal Processing on Food Allergenicity: Mechanisms, Application, Influence Factor, and Future Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20225-20240. [PMID: 39254084 DOI: 10.1021/acs.jafc.4c04860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Thermally processed foods are essential in the human diet, and their induced allergic reactions are also very common, seriously affecting human health. This review covers the effects of thermal processing on food allergenicity, involving boiling, water/oil bath heating, roasting, autoclaving, steaming, frying, microwave heating, ohmic heating, infrared heating, and radio frequency heating. It was found that thermal processing decreased the protein electrophoretic band intensity (except for infrared heating and radio frequency heating) responsible for destruction of linear epitopes and changed the protein structure responsible for the masking of linear/conformational epitopes or the destruction of conformational epitopes, thus decreasing food allergenicity. The outcome was related to thermal processing (e.g., temperature, time) and food (e.g., types, pH) condition. Of note, as for conventional thermal processing, it is necessary to control the generation of the advanced glycation end products in roasting/baking and frying, and the increase of structural flexibility in boiling and water/oil bath heating, autoclaving, and steaming must be controlled; otherwise, it might increase food allergenicity. As for novel thermal processing, the temperature nonuniformity of microwave and radio frequency heating, low penetration of infrared heating, and unwanted metal ion production of ohmic heating must be considered; otherwise, it might be the nonuniformity and low effect of allergenicity reduction and safety problems.
Collapse
Affiliation(s)
- Xiaowen Pi
- College of Food Science, Southwest University, Chongqing, 400715, P. R. China
- "Modern Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, P. R. China
| | - LiLin Zhu
- College of Food Science, Southwest University, Chongqing, 400715, P. R. China
| | - Jiayuan Liu
- College of Food Science, Southwest University, Chongqing, 400715, P. R. China
| | - Binjia Zhang
- College of Food Science, Southwest University, Chongqing, 400715, P. R. China
- "Modern Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, P. R. China
| |
Collapse
|
2
|
Cui K, Wang J, Guan S, Liang J, Fang L, Ding R, Li T, Dong Z, Ma G, Wu X, Zheng Y. Residue changes, degradation, processing factors and their relation between physicochemical properties of pesticides in peanuts during multiproduct processing. Food Chem 2024; 452:139535. [PMID: 38728890 DOI: 10.1016/j.foodchem.2024.139535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
This study systematically investigates the residue changes, processing factors (PFs), and relation between the physicochemical properties of pesticides during peanut processing. Results revealed that peeling, washing, and boiling treatments removed partial or substantial pesticide residues from peanuts with PFs of 0.29-1.10 (most <1). By contrast, pesticides appeared to be partially concentrated during roasting, stir-frying, and deep-frying peanuts with PFs of 0.16-1.25. During oil pressing, 13 of the 28 pesticides were concentrated in the peanut oil (PF range: 1.06-2.01) and 25 of the pesticides were concentrated in the peanut meal (1.07-1.46). Physicochemical parameters such as octanol-water partition coefficient, degradation point, molecular weight, and melting point showed significant correlations with PFs during processing. Notably, log Kow exhibited strong positive correlations with the PFs of boiling, roasting, and oil pressing. Overall, this study describes the fate of pesticides during multiproduct processing, providing guidance to promote the healthy consumption of peanuts for human health.
Collapse
Affiliation(s)
- Kai Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Jian Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Shuai Guan
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Jingyun Liang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Liping Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Ruiyan Ding
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Teng Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Zhan Dong
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China.
| | - Guoping Ma
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China.
| | - Xiaohu Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yongquan Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| |
Collapse
|
3
|
Zeng J, Ma F, Zhai L, Du C, Zhao J, Li Z, Wang J. Recent advance in sesame allergens: Influence of food processing and their detection methods. Food Chem 2024; 448:139058. [PMID: 38531299 DOI: 10.1016/j.foodchem.2024.139058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Sesame (Sesamum indicum L.) is a valuable oilseed crop with numerous nutritional benefits containing a diverse range of bioactive compounds. However, sesame is also considered an allergenic food that triggers various mild to severe adverse reactions (e.g., anaphylaxis). Strict dietary avoidance of sesame components is the best option to protect the sensitized consumers. Sesame or sesame-derived foods are always consumed after certain food processing operations, which would cause a considerable impact on the structure of sesame proteins, changing their sensitization capacity and detectability. In the review, the molecular structure properties, and immunological characteristics of the sesame allergens were described. Meanwhile, the influence of food processing techniques on sesame proteins and the relevant detection techniques used for the sesame allergens quantification are also emphasized critically. Hopefully, this review could provide valuable insight into the development and management for the new "Big Eight" sesame allergen in food industry.
Collapse
Affiliation(s)
- Jianhua Zeng
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China; College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, China
| | - Feifei Ma
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China; Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo, Ourense 32004, Spain
| | - Ligong Zhai
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China
| | - Chuanlai Du
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China
| | - Jinlong Zhao
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China.
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, China
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, No. 87 Dingjiaqiao Rd., Nanjing, Jiangsu Province 210009, China
| |
Collapse
|
4
|
De Agrela-Mendes I, Pedrosa M, Gómez-Traseira C, Phillips-Anglés E, Rodríguez-Álvarez M, Quirce S. Tolerance of peanuts and tree nuts in Spanish children with exclusive sensitization to lipid transfer proteins. Pediatr Allergy Immunol 2024; 35:e14204. [PMID: 39016336 DOI: 10.1111/pai.14204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Allergy to peanuts and tree nuts is a common cause of food allergy in Spain, with lipid transfer proteins (LTP) being the most frequently recognized panallergen. LTP sensitization often leads to multiple food group sensitivities, resulting in overly restrictive diets that hinder patient's quality of life. This study aimed to assess the tolerance of peanuts and tree nuts (hazelnuts and walnuts) in children sensitized to LTP, potentially mitigating the need for such diets. METHODS This prospective study enrolled individuals diagnosed with allergy to peanuts, hazelnuts, or walnuts. Data were collected from medical records, including demographics and clinical history. Allergological assessment comprised skin prick tests using commercial extracts and the nuts in question, alongside measurements of total and specific IgE to nuts and their primary molecular components. Participants showing positive LTP sensitization without sensitization to seed storage proteins underwent open oral nut challenges. RESULTS A total of 75 individuals labeled as allergic to peanuts, 44 to hazelnuts, and 51 to walnuts were included. All of them underwent an open oral provocation test with the incriminated nut, showing a high tolerance rate. Peanut was tolerated by 98.6% of patients, 97.72% tolerated hazelnut, and 84.3% tolerated walnut. CONCLUSION The findings suggest that the majority of patients allergic to peanuts, hazelnuts, or walnuts, due to LTP sensitization and lacking IgE reactivity to seed storage proteins, can tolerate these nuts. This supports the need for personalized nut tolerance assessments to avoid unnecessary dietary restrictions.
Collapse
Affiliation(s)
| | - María Pedrosa
- Department of Allergy, La Paz University Hospital, Madrid, Spain
| | - Carmen Gómez-Traseira
- Department of Allergy, La Paz University Hospital, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain
| | - Elsa Phillips-Anglés
- Department of Allergy, La Paz University Hospital, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain
| | - Mónica Rodríguez-Álvarez
- Department of Allergy, La Paz University Hospital, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain
| | - Santiago Quirce
- Department of Allergy, La Paz University Hospital, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain
| |
Collapse
|
5
|
Hsieh KC, Ting Y. Atmospheric cold plasma reduces Ara h 1 antigenicity in roasted peanuts by altering the protein structure and amino acid profile. Food Chem 2024; 441:138115. [PMID: 38183716 DOI: 10.1016/j.foodchem.2023.138115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/23/2023] [Accepted: 11/27/2023] [Indexed: 01/08/2024]
Abstract
Ara h 1 is the major allergen in peanuts. To enhance the unique flavor, peanuts are usually roasted at high temperatures. However, roasting can increase the allergenic potential, owing to glycation of allergens. Atmospheric cold plasma (ACP) is a non-thermal processing technology that generates reactive species, enabling protein structural changes. Herein, glucose was also added to the ACP-treated peanut protein before roasting. The content and antigenicity of the advanced glycation end products were measured. The antigenicity was evaluated by ELISA and in vitro digestion assays. The amino acid profile and secondary and tertiary protein structures were also assessed. The antigenicity of Ara h 1 decreased by 91 % and 76 % after 30 min of air and nitrogen plasma treatment, respectively. The glycation degree and thermal and digestive stabilities were also reduced. These results correlated with the structural changes, denaturation, and aggregation. Therefore, cold plasma may reduce the allergic effects of peanuts.
Collapse
Affiliation(s)
- Kuan-Chen Hsieh
- Institute of Food Science and Technology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd, Taipei, Taiwan
| | - Yuwen Ting
- Institute of Food Science and Technology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd, Taipei, Taiwan.
| |
Collapse
|
6
|
Zhang Y, Geng Q, Song M, Li X, Yang A, Tong P, Wu Z, Chen H. The structure and potential allergenicity of peanut allergen monomers after roasting. Food Funct 2024; 15:2577-2586. [PMID: 38353700 DOI: 10.1039/d3fo05351b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Given that roasted peanut (Ro) products are commonly used in daily life, peanut allergenicity is a foremost concern. Analyzing the changes in the structure and potential allergenicity of individual allergens can promote the exploration of the structural basis of the alterations in the potential allergenicity of Ro. This work focused on four major allergens in raw peanut (Ra) and Ro. Structural changes were analyzed on the basis of circular dichroism, ultraviolet and fluorescence spectroscopy, and molecular dynamic simulation. The IgE recognition capability of allergens was assessed via western blot analysis. The IgE binding capacity of allergens was detected by conducting enzyme-linked immunosorbent assay. The potential allergenicity of allergens was evaluated using the KU812 cell degranulation model. The results showed that roasting induced different changes in the overall structures of allergens and altered the structures and electrostatic potential of IgE epitopes, especially Ara h 1 and Ara h 6. These alterations affected the potential allergenicity of allergens. Ara h 1 and Ara h 6 in Ro showed significantly enhanced IgE binding capacities and abilities to elicit KU812 cell degranulation, while Ara h 2 and Ara h 3 did not change significantly. For total protein, the roasted peanut protein showed decreased abilities to elicit KU812 cell degranulation. The results indicated that different allergens in Ro showed different changes of structures and potential allergenicity and that the conformational structure plays a crucial role in potential allergenicity of allergens.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food Science and Technology, Nanchang University, Nanchang, 330031, China
| | - Qin Geng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food Science and Technology, Nanchang University, Nanchang, 330031, China
| | - Min Song
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food Science and Technology, Nanchang University, Nanchang, 330031, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food Science and Technology, Nanchang University, Nanchang, 330031, China
| | - Anshu Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food Science and Technology, Nanchang University, Nanchang, 330031, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
7
|
Yan Y, Li L, Long C, Dong Y, Li J, Shen C, Zhao Y, Zhao J, Wang J, Xiong A, Li X, Chen H, He S. A novel IgE epitope-specific antibodies-based sandwich ELISA for sensitive measurement of immunoreactivity changes of peanut allergen Ara h 2 in processed foods. Front Nutr 2024; 11:1323553. [PMID: 38439921 PMCID: PMC10910080 DOI: 10.3389/fnut.2024.1323553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Background Peanut is an important source of dietary protein for human beings, but it is also recognized as one of the eight major food allergens. Binding of IgE antibodies to specific epitopes in peanut allergens plays important roles in initiating peanut-allergic reactions, and Ara h 2 is widely considered as the most potent peanut allergen and the best predictor of peanut allergy. Therefore, Ara h 2 IgE epitopes can serve as useful biomarkers for prediction of IgE-binding variations of Ara h 2 and peanut in foods. This study aimed to develop and validate an IgE epitope-specific antibodies (IgE-EsAbs)-based sandwich ELISA (sELISA) for detection of Ara h 2 and measurement of Ara h 2 IgE-immunoreactivity changes in foods. Methods DEAE-Sepharose Fast Flow anion-exchange chromatography combining with SDS-PAGE gel extraction were applied to purify Ara h 2 from raw peanut. Hybridoma and epitope vaccine techniques were employed to generate a monoclonal antibody against a major IgE epitope of Ara h 2 and a polyclonal antibody against 12 IgE epitopes of Ara h 2, respectively. ELISA was carried out to evaluate the target binding and specificity of the generated IgE-EsAbs. Subsequently, IgE-EsAbs-based sELISA was developed to detect Ara h 2 and its allergenic residues in food samples. The IgE-binding capacity of Ara h 2 and peanut in foods was determined by competitive ELISA. The dose-effect relationship between the Ara h 2 IgE epitope content and Ara h 2 (or peanut) IgE-binding ability was further established to validate the reliability of the developed sELISA in measuring IgE-binding variations of Ara h 2 and peanut in foods. Results The obtained Ara h 2 had a purity of 94.44%. Antibody characterization revealed that the IgE-EsAbs recognized the target IgE epitope(s) of Ara h 2 and exhibited high specificity. Accordingly, an IgE-EsAbs-based sELISA using these antibodies was able to detect Ara h 2 and its allergenic residues in food samples, with high sensitivity (a limit of detection of 0.98 ng/mL), accuracy (a mean bias of 0.88%), precision (relative standard deviation < 16.50%), specificity, and recovery (an average recovery of 98.28%). Moreover, the developed sELISA could predict IgE-binding variations of Ara h 2 and peanut in foods, as verified by using sera IgE derived from peanut-allergic individuals. Conclusion This novel immunoassay could be a user-friendly method to monitor low level of Ara h 2 and to preliminary predict in vitro potential allergenicity of Ara h 2 and peanut in processed foods.
Collapse
Affiliation(s)
- Yan Yan
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Liming Li
- Department of Dermatology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Caiyun Long
- Department of Laboratory, Ganzhou Center for Disease Control and Prevention, Ganzhou, China
| | - Yaping Dong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jinyu Li
- Department of Dermatology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Caiyi Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yiqian Zhao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jiangqiang Zhao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jianbin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Anqi Xiong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Shengfa He
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
- Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| |
Collapse
|
8
|
Song M, Zhang Y, Zhu W, Zhou W, Li X, Yang A, Tong P, Wu Z, Chen H. Mass Spectrometry Analysis on the Breakage of Allergens in High-Molecular-Mass Polymer of Roasted Peanuts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3142-3149. [PMID: 38299554 DOI: 10.1021/acs.jafc.3c07007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Peanut allergy is a prevalent and concerning food allergy. Roasting can introduce structural changes to peanut allergens, affecting their allergenicity, but the structure on the primary structure is unclear. Here, the breakage sites were identified by mass spectrometry and software tools, and structural changes were simulated by molecular dynamics and displayed by PyMOL software. Results revealed that the appearance frequencies of L, Q, F, and E were high at the N-terminal of the breakage site, while S and E were dominant at the C-terminal. In the conformational structure, breakage sites were found close to disulfide bonds and the Cupin domains of Ara h 1 and Ara h 3. The breakage of allergens destroyed linear epitopes and might change the conformation of epitopes, which could influence peanuts' potential allergenicity.
Collapse
Affiliation(s)
- Min Song
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China
- College of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ying Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China
- College of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Weichao Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China
- College of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wenlong Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China
- College of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China
- College of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Anshu Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China
- College of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
9
|
Xu Y, Ahmed I, Zhao Z, Lv L. A comprehensive review on glycation and its potential application to reduce food allergenicity. Crit Rev Food Sci Nutr 2023; 64:12184-12206. [PMID: 37683268 DOI: 10.1080/10408398.2023.2248510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Food allergens are a major concern for individuals who are susceptible to food allergies and may experience various health issues due to allergens in their food. Most allergenic foods are subjected to heat treatment before being consumed. However, thermal processing and prolonged storage can cause glycation reactions to occur in food. The glycation reaction is a common processing method requiring no special chemicals or equipment. It may affect the allergenicity of proteins by altering the structure of the epitope, revealing hidden epitopes, concealing linear epitopes, or creating new ones. Changes in food allergenicity following glycation processing depend on several factors, including the allergen's characteristics, processing parameters, and matrix, and are therefore hard to predict. This review examines how glycation reactions affect the allergenicity of different allergen groups in allergenic foods.
Collapse
Affiliation(s)
- Yue Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Ishfaq Ahmed
- Haide College, Ocean University of China, Qingdao, China
| | - Zhengxi Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Liangtao Lv
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
10
|
Shu E, Wang S, Niu B, Chen Q. Effect of Peanut Protein Treated with Alkaline Protease and Flavorzyme on BALB/c Mice. Foods 2023; 12:2634. [PMID: 37444372 DOI: 10.3390/foods12132634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
This article aims to analyze the effects of enzyme treatment concentration, temperature, and time on peanut protein so as to obtain an optimal enzymatic hydrolysis condition for flavorzyme (Fla) and alkaline protease (Alk). The results were as follows: enzymatic hydrolysis temperature 60 °C and 55 °C, enzyme concentration 10% and 4%, enzymatic hydrolysis time 80 min and 60 min, and double enzyme hydrolysis ratio 2% Fla + 5% Alk, respectively. The BALB/c mice were sensitized with gavage of peanut protein before and after enzyme treatment to evaluate the effects of different enzyme treatments on peanut allergenicity. Compared with the mice sensitized with raw peanuts, the weight growth rate of the mice sensitized with enzyme treatment peanut increased but not as much as the control, the degranulation degree of mast cell and basophils decreased, the inflammatory infiltration and congestion in jejunum and lung tissue decreased, the expression of proinflammatory factors and thymic stromal lymphopoietin (TSLP) gene decreased, and the secretion of specific antibodies (IgE, and IgG) decreased, and the binding ability of peanut protein with peanut-specific IgE antibodies decreased as well. The results above indicate that the allergenicity of peanut protein decreases after enzyme treatment and the dual enzyme (Fla + Alk) treatment can be much more efficient.
Collapse
Affiliation(s)
- Erlian Shu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shuo Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
11
|
Chen J, Shi C, Xu J, Wang X, Zhong J. Correlation between physicochemical properties and volatile compound profiles in tilapia muscles subjected to four different thermal processing techniques. Food Chem X 2023; 18:100748. [PMID: 37360973 PMCID: PMC10285089 DOI: 10.1016/j.fochx.2023.100748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
This work studied the physicochemical properties and odor profiles of tilapia muscles after exposure to four types of thermal processing methods: microwaving, roasting, boiling, or steaming. The effect of thermal processing on textural properties followed a pH-water state-water content-tissue microstructure-mass loss-textural properties route, expressed in the following manner: microwaving > roasting > steaming ≈ boiling. After processing, muscle pH increased from 6.59 ± 0.10 to 6.73 ± 0.04-7.01 ± 0.06, and hardness changed from 1468.49 ± 180.77 g to 452.76 ± 46.94-10723.66 ± 2898.46 g. Gas chromatography-based E-nose analysis confirmed that these methods had significant odor fingerprint effects on the tilapia muscles. Finally, the combined analysis of headspace solid-phase microextraction-gas chromatography-mass spectrometry, statistical MetaboAnalyst, and odor activity value showed that the microwaved, roasted, steamed, and boiled tilapia muscles had, respectively, three (hexanal, nonanal, and decanal), four (2-methyl-butanal, 3-methyl-butanal, decanal, and trimethylamine), one (2-methyl-butanal), and one (decanal) relatively important volatile compounds.
Collapse
Affiliation(s)
- Jiahui Chen
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Cuiping Shi
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jiamin Xu
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
12
|
Prodić I, Krstić Ristivojević M, Smiljanić K. Antioxidant Properties of Protein-Rich Plant Foods in Gastrointestinal Digestion—Peanuts as Our Antioxidant Friend or Foe in Allergies. Antioxidants (Basel) 2023; 12:antiox12040886. [PMID: 37107261 PMCID: PMC10135473 DOI: 10.3390/antiox12040886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Thermally processed peanuts are ideal plant models for studying the relationship between allergenicity and antioxidant capacity of protein-rich foods, besides lipids, carbohydrates and phytochemicals. Peanut is highly praised in the human diet; however, it is rich in allergens (>75% of total proteins). One-third of peanut allergens belong to the products of genes responsible for the defence of plants against stress conditions. The proximate composition of major peanut macromolecules and polyphenols is reviewed, focusing on the identity and relative abundance of all peanut proteins derived from recent proteomic studies. The importance of thermal processing, gastrointestinal digestion (performed by INFOGEST protocol) and their influence on allergenicity and antioxidant properties of protein-rich plant food matrices is elaborated. Antioxidant properties of bioactive peptides from nuts were also considered. Moreover, there are no studies dealing simultaneously with the antioxidant and allergenic properties of protein- and polyphenol-rich foods, considering all the molecules that can significantly contribute to the antioxidant capacity during and after gastrointestinal digestion. In summary, proteins and carbohydrates are underappreciated sources of antioxidant power released during the gastrointestinal digestion of protein-rich plant foods, and it is crucial to decipher their antioxidant contribution in addition to polyphenols and vitamins before and after gastrointestinal digestion.
Collapse
Affiliation(s)
- Ivana Prodić
- Innovative Centre of the Faculty of Chemistry in Belgrade Ltd., University of Belgrade, Studentski Trg 12–16, 11158 Belgrade, Serbia
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Maja Krstić Ristivojević
- Centre of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski Trg 12–16, 11158 Belgrade, Serbia
| | - Katarina Smiljanić
- Centre of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski Trg 12–16, 11158 Belgrade, Serbia
| |
Collapse
|
13
|
Peanut Allergenicity: An Insight into Its Mitigation Using Thermomechanical Processing. Foods 2023; 12:foods12061253. [PMID: 36981179 PMCID: PMC10048206 DOI: 10.3390/foods12061253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Peanuts are the seeds of a legume crop grown for nuts and oil production. Peanut allergy has gained significant attention as a public health issue due to its increasing prevalence, high rate of sensitization, severity of the corresponding allergic symptoms, cross-reactivity with other food allergens, and lifelong persistence. Given the importance of peanuts in several sectors, and taking into consideration the criticality of their high allergic potential, strategies aiming at mitigating their allergenicity are urgently needed. In this regard, most of the processing methods used to treat peanuts are categorized as either thermal or thermomechanical techniques. The purpose of this review is to provide the reader with an updated outlook of the peanut’s allergens, their mechanisms of action, the processing methods as applied to whole peanuts, as well as a critical insight on their impact on the allergenicity. The methods discussed include boiling, roasting/baking, microwaving, ultrasonication, frying, and high-pressure steaming/autoclaving. Their effectiveness in alleviating the allergenicity, and their capacity in preserving the structural integrity of the treated peanuts, were thoroughly explored. Research data on this matter may open further perspectives for future relevant investigation ultimately aiming at producing hypoallergenic peanuts.
Collapse
|
14
|
Geng Q, Zhang Y, Song M, Zhou X, Tang Y, Wu Z, Chen H. Allergenicity of peanut allergens and its dependence on the structure. Compr Rev Food Sci Food Saf 2023; 22:1058-1081. [PMID: 36624611 DOI: 10.1111/1541-4337.13101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 01/11/2023]
Abstract
Food allergies are a global food safety problem. Peanut allergies are common due, in part, to their popular utilization in the food industry. Peanut allergy is typically an immunoglobulin E-mediated reaction, and peanuts contain 17 allergens belonging to different families in peanut. In this review, we first introduce the mechanisms and management of peanut allergy, followed by the basic structures of associated allergens. Subsequently, we summarize methods of epitope localization for peanut allergens. These methods can be instrumental in speeding up the discovery of allergenicity-dependent structures. Many attempts have been made to decrease the allergenicity of peanuts. The structures of hypoallergens, which are manufactured during processing, were analyzed to strengthen the desensitization process and allergen immunotherapy. The identification of conformational epitopes is the bottleneck in both peanut and food allergies. Further, the identification and modification of such epitopes will lead to improved strategies for managing and preventing peanut allergy. Combining traditional wet chemistry research with structure simulation studies will help in the epitopes' localization.
Collapse
Affiliation(s)
- Qin Geng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ying Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Min Song
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xiaoya Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yu Tang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Yang Q, Qu X, Wang X, Che H, Huang Z, Ge X, Lv L. Effects of methylglyoxal on shrimp tropomyosin structure and allergenicity during thermal processing. Food Chem X 2022; 17:100532. [PMID: 36845508 PMCID: PMC9943847 DOI: 10.1016/j.fochx.2022.100532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
This study aimed to analyze the effect of methylglyoxal (MGO) on the structure and allergenicity of shrimp tropomyosin (TM) during thermal processing. The structural changes were determined by SDS-PAGE, intrinsic fluorescence, circular dichroism, and HPLC-MS/MS. The allergenicity was evaluated by in vitro and in vivo experiments. MGO could cause conformational structural changes in TM during thermal processing. Moreover, the Lys, Arg, Asp, and Gln residues of TM were modified by MGO, which could destroy and/or mask TM epitopes. In addition, TM-MGO samples could lead to lower mediators and cytokines released from RBL-2H3 cells. In vivo, TM-MGO caused a significant reduction in antibodies, histamine, and mast cell protease 1 levels in sera. These results indicate that MGO can modify the allergic epitopes and reduce the allergenicity of shrimp TM during thermal processing. The study will help to understand the changes in the allergenic properties of shrimp products during thermal processing.
Collapse
Affiliation(s)
- Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Qu
- Qingdao Municipal Center for Disease Control and Prevention, 175 Shandong Road, Shibei District, Qingdao, Shandong Province 266033, China
| | - Xiudan Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hongxia Che
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ziqian Huang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinyu Ge
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Liangtao Lv
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
- Corresponding author.
| |
Collapse
|
16
|
Liu K, Lin S, Liu Y, Wang S, Liu Q, Sun K, Sun N. Mechanism of the reduced allergenicity of shrimp (Macrobrachium nipponense) by combined thermal/pressure processing: insight into variations in protein structure, gastrointestinal digestion and immunodominant linear epitopes. Food Chem 2022; 405:134829. [DOI: 10.1016/j.foodchem.2022.134829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
17
|
Dok-1 regulates mast cell degranulation negatively through inhibiting calcium-dependent F-actin disassembly. Clin Immunol 2022; 238:109008. [PMID: 35421591 DOI: 10.1016/j.clim.2022.109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
Abstract
In food allergies, antigen-induced aggregation of FcεRI on mast cells initiates highly ordered and sequential signaling events. Dok-1(downstream of tyrosine kinase 1), undergoes intense tyrosine phosphorylation upon FcεRI stimulation, which negatively regulates Ras/Erk signaling and the subsequent cytokine release, but it remains unclear whether Dok-1 regulates Fc-mediated degranulation. In this study, we investigated the role of Dok-1 in FcεRI-mediated degranulation. Dok-1 overexpressing RBL-2H3 cells were established. Degranulation, immunoprecipitation, co-immunoprecipitation, immunoblotting and flow cytometry assay were performed to explore the effects of Dok-1 and its underlying mechanisms. We found that, following FcεRI activation, Dok-1 was recruited to the plasma membrane, leading to tyrosine phosphorylation. Phosphorylated Dok-1 inhibits FcεRI-operated calcium influx, and negatively regulated degranulation by inhibiting calcium-dependent disassembly of actin filaments. Our data revealed that Dok-1 is a negative regulator of FcεRI-mediated mast cell degranulation. These findings contribute to the identification of therapeutic targets for food allergies.
Collapse
|
18
|
Pan T, Wu Y, He S, Wu Z, Jin R. Food allergenic protein conjugation with plant polyphenols for allergenicity reduction. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Chang X, Zhou X, Tang Y, Zhang Y, Yuan J, Li X, Yang A, Tong P, Wu Z, Chen H. Effect of Processing on the Structure and Allergenicity of Peanut Allergen Ara h 2 Roasted in a Matrix. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:626-633. [PMID: 35000380 DOI: 10.1021/acs.jafc.1c06828] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peanut allergy is the leading pediatric food allergy. Many attempts have been made to reduce its allergenicity by processing. After roasting, Ara h 2 and its derivatives in the matrix were isolated by immunoaffinity chromatography (IAC). The structure and allergenicity of Ara h 2 were analyzed by circular dichroism, mass spectrometry (MS), western blotting, the enzyme-linked immunoassay, and cell modeling. Our results showed that a large portion of Ara h 2 was fragmented and cross-linked. Ara h 2 monomers accounted for only 13% of the total proteins after IAC purification. In addition, the structure of Ara h 2 changed after roasting. In addition to methylation and oxidation modification, the disulfide bonds of Ara h 2 were found to be rearranged after roasting. In the conformational structure of Ara h 2, the content of the α-helix decreased from 27.1 to 21.6% after roasting, while the content of the random coil increased from 29.1 to 34.3%. Six cleavage sites of trypsin were exposed, while three were covered. In terms of allergenicity, most of the cross-linking products were not recognized by patients' sera. Only one faint band around 40 kDa was observed in our blotting. For Ara h 2 monomers, roasting enhanced their IgE binding capacity and ability to stimulate the degranulation of basophils. The potential allergenicity increase of Ara h 2 monomers did not reflect the allergenicity change of Ara h 2 in the matrix due to the amount and property of its derivatives after roasting.
Collapse
Affiliation(s)
- Xuejiao Chang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Xiaoya Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Yu Tang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Ying Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Juanli Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Pharmaceutical Science, Nanchang University, Nanchang 330006, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Anshu Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
20
|
|
21
|
Wang S, Sun X, Wang M, Deng Z, Niu B, Chen Q. Effect of roasted peanut allergen Ara h 3 protein on the sensitization of Caco-2 cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5325-5336. [PMID: 33650104 DOI: 10.1002/jsfa.11180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Roasted peanut is widely loved as a kind of food with rich taste. However, peanut allergy is one of the major threats to human health, which affects about 5% of children and 1.4-2% of adults in the world. RESULTS To evaluate the sensitization mechanism of peanut allergen Ara h 3, Caco-2 cells as the model, which has the similar structure and function to differentiated small intestinal epithelial cells. Compared with Ara h 3-raw (purified from raw peanut) group, more significant results such as the inhibited Caco-2 cell viability and proliferation, the increased secretion of reactive oxygen species (ROS) and the decreased transepithelial electrical resistance were obtained in Ara h 3-roasted (purified from roasted peanut) group. Accordingly, oxidative stress and NF-κB signaling pathway were more imbalanced, which lead to the increased of thymic stromal lymphopoietin (TSLP), interleukin 6 (IL-6), IL-8 and monocyte chemotactic protein 1 (MCP-1). Then, the gene expression of tight junction proteins ZO-1, occludin and JAM-1 were reduced, which proved that the integrity of the Caco-2 monolayer barrier is severely damaged. CONCLUSION These finding identify the mechanisms of the allergenicity of roasted peanut allergy proteins are probably associated with intestinal uptake and cytokine dependent allergies. The aggravated allergic reaction might be caused by the increment of TSLP, IL-6, IL-8 and MCP-1 due to the activated NF-κB signaling pathway, and the enhanced transport of Ara h 3-roasted protein by Caco-2 monolayer. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuo Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiaodong Sun
- School of Medicine, Shanghai University, Shanghai, China
| | - Minjia Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhirui Deng
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
22
|
Pan M, Yang J, Liu K, Xie X, Hong L, Wang S, Wang S. Irradiation technology: An effective and promising strategy for eliminating food allergens. Food Res Int 2021; 148:110578. [PMID: 34507726 DOI: 10.1016/j.foodres.2021.110578] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 11/29/2022]
Abstract
Food allergies are one of the major health concerns worldwide and have been increasing at an alarming rate in recent times. The elimination of food allergenicity has been an important issue in current research on food. Irradiation is a typical nonthermal treatment technology that can effectively reduce the allergenicity of food, showing great application prospects in improving the quality and safety of foods. In this review, the mechanism and remarkable features of irradiation in the elimination of food allergens are mainly introduced, and the research progress on reducing the allergenicity of animal foods (milk, egg, fish and shrimp) and plant foods (soybean, peanut, wheat and nuts) using irradiation is summarized. Furthermore, the influencing factors for irradiation in the elimination of food allergens are analyzed and further research directions of irradiation desensitization technology are also discussed. This article aims to provide a reference for promoting the application of irradiation technology in improving the safety of foods.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
23
|
Palmer LK, Marsh JT, Baumert JL, Johnson PE. Persistence of peanut allergen-derived peptides throughout excessive dry thermal processing. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Dwivedi PD, Das M, Kumar S, Verma AK. Safety assessment of food derived from genetically modified crops. Anim Biotechnol 2020. [DOI: 10.1016/b978-0-12-811710-1.00025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|