1
|
Yao Y, Fan D. Advances in MUC1 resistance to chemotherapy in pancreatic cancer. J Chemother 2024; 36:449-456. [PMID: 38006297 DOI: 10.1080/1120009x.2023.2282839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023]
Abstract
The incidence of pancreatic cancer (PC), a highly fatal malignancy, is increasing every year. Chemotherapy is an important treatment for it in addition to surgery, yet most patients become resistant to chemotherapeutic agents within a few weeks of treatment initiation. MUC1 is a highly glycosylated transmembrane protein, and studies have shown that aberrantly glycosylated overexpression of MUC1 is involved in regulating the biology of chemoresistance in cancer cells. This article summarizes the mechanism of MUC1 in PC chemoresistance and reviews MUC1-based targeted therapies.
Collapse
Affiliation(s)
- Youhao Yao
- The Fifth Clinical Medical College of Shanxi Medical University, Shanxi, PR China
- Surgery Department, Shanxi Provincial People's Hospital, Taiyuan, PR China
| | - Daguang Fan
- Surgery Department, Shanxi Provincial People's Hospital, Taiyuan, PR China
| |
Collapse
|
2
|
Kawano T, Englisch C, Hisada Y, Paul D, Archibald S, Grover S, Pabinger I, Ay C, Mackman N. Mucin 1 and venous thrombosis in tumor-bearing mice and patients with cancer. Thromb Res 2024; 237:23-30. [PMID: 38547690 PMCID: PMC11058007 DOI: 10.1016/j.thromres.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024]
Abstract
INTRODUCTION Mucins released from epithelial tumors have been proposed to play a role in cancer-associated thrombosis. Mucin1 (MUC1) is a transmembrane mucin that is overexpressed in a variety of human malignancies, including breast and pancreatic cancer. We analyzed the association of MUC1 and venous thrombosis in a mouse tumor model and in patients with cancer. MATERIALS AND METHODS We used a human pancreatic cancer cell line HPAF-II that expresses a high level of MUC1. We grew HPAF-II tumors in the pancreas of Crl:NU-Foxn1nu male mice. MUC1 in plasma and extracellular vesicles (EVs) isolated from plasma was measured using an enzyme-linked immunosorbent assay. MUC1 in EVs and venous thrombi from tumor-bearing mice was assessed by western blotting. We measured MUC1 in plasma from healthy controls and patients with stomach, colorectal or pancreatic cancer with or without venous thromboembolism. RESULTS AND DISCUSSION MUC1 was detected in the plasma of mice bearing HPAF-II tumors and was associated with EVs. MUC1 was present in venous thrombi from mice bearing HFAP-II tumors. Recombinant MUC1 did not induce platelet aggregation. Levels of MUC1 were higher in patients with pancreatic cancer compared with healthy controls. In contrast to the mouse model, MUC1 was present in EV-free plasma in samples from healthy controls and patients with cancer. There was no significant difference in the levels of MUC1 in cancer patients with or without VTE. Our data did not find any evidence that MUC1 contributed to VTE in patients with cancer.
Collapse
Affiliation(s)
- Tomohiro Kawano
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cornelia Englisch
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Yohei Hisada
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Paul
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sierra Archibald
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven Grover
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ingrid Pabinger
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Cihan Ay
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Zhou R, Wu ST, Yazdanifar M, Williams C, Sanders A, Brouwer C, Maher J, Mukherjee P. Mucin-1-Targeted Chimeric Antigen Receptor T Cells Are Effective and Safe in Controlling Solid Tumors in Immunocompetent Host. J Immunother 2024; 47:77-88. [PMID: 38270462 PMCID: PMC10913860 DOI: 10.1097/cji.0000000000000505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024]
Abstract
The chimeric antigen receptor (CAR) T-cell therapy in solid epithelial tumors has been explored, however, with limited success. As much of the preclinical work has relied on xenograft models in immunocompromised animals, the immune-related efficacies and toxicities may have been missed. In this study, we engineered syngeneic murine CAR T cells targeting the tumor form of human mucin-1 (tMUC1) and tested the MUC1 CAR T cells' efficacy and toxicity in the immunocompetent human MUC1-expressing mouse models. The MUC1 CAR T cells significantly eliminated murine pancreatic and breast cancer cell lines in vitro. In vivo, MUC1 CAR T cells significantly slowed the mammary gland tumor progression in the spontaneous PyVMT×MUC1.Tg (MMT) mice, prevented lung metastasis, and prolonged survival. Most importantly, there was minimal short or long-term toxicity with acceptable levels of transient liver toxicity but no kidney toxicity. In addition, the mice did not show any signs of weight loss or other behavioral changes with the treatment. We also report that a single dose of MUC1 CAR T-cell treatment modestly reduced the pancreatic tumor burden in a syngeneic orthotopic model of pancreatic ductal adenocarcinoma given at late stage of an established tumor. Taken together, these findings suggested the further development of tMUC1-targeted CAR T cells as an effective and relatively safe treatment modality for various tMUC1-expressing solid tumors.
Collapse
Affiliation(s)
- Ru Zhou
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC
| | - Shu-ta Wu
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC
- Medpace, Irving, TX
| | - Mahboubeh Yazdanifar
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC
- Adaptive Biotechnologies, South San Francisco, CA
| | - Chandra Williams
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC
- Pfizer, Cambridge, MA
| | - Alexa Sanders
- Department of Bioinformatics, University of North Carolina at Charlotte, Charlotte, NC
| | - Cory Brouwer
- Department of Bioinformatics, University of North Carolina at Charlotte, Charlotte, NC
| | - John Maher
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, London, UK
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC
| |
Collapse
|
4
|
Genco E, Modena F, Sarcina L, Björkström K, Brunetti C, Caironi M, Caputo M, Demartis VM, Di Franco C, Frusconi G, Haeberle L, Larizza P, Mancini MT, Österbacka R, Reeves W, Scamarcio G, Scandurra C, Wheeler M, Cantatore E, Esposito I, Macchia E, Torricelli F, Viola FA, Torsi L. A Single-Molecule Bioelectronic Portable Array for Early Diagnosis of Pancreatic Cancer Precursors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304102. [PMID: 37452695 DOI: 10.1002/adma.202304102] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
A cohort of 47 patients is screened for pancreatic cancer precursors with a portable 96-well bioelectronic sensing-array for single-molecule assay in cysts fluid and blood plasma, deployable at point-of-care (POC). Pancreatic cancer precursors are mucinous cysts diagnosed with a sensitivity of at most 80% by state-of-the-art cytopathological molecular analyses (e.g., KRASmut DNA). Adding the simultaneous assay of proteins related to malignant transformation (e.g., MUC1 and CD55) is deemed essential to enhance diagnostic accuracy. The bioelectronic array proposed here, based on single-molecule-with-a-large-transistor (SiMoT) technology, can assay both nucleic acids and proteins at the single-molecule limit-of-identification (LOI) (1% of false-positives and false-negatives). It comprises an enzyme-linked immunosorbent assay (ELISA)-like 8 × 12-array organic-electronics disposable cartridge with an electrolyte-gated organic transistor sensor array, and a reusable reader, integrating a custom Si-IC chip, operating via software installed on a USB-connected smart device. The cartridge is complemented by a 3D-printed sensing gate cover plate. KRASmut , MUC1, and CD55 biomarkers either in plasma or cysts-fluid from 5 to 6 patients at a time, are multiplexed at single-molecule LOI in 1.5 h. The pancreatic cancer precursors are classified via a machine-learning analysis resulting in at least 96% diagnostic-sensitivity and 100% diagnostic-specificity. This preliminary study opens the way to POC liquid-biopsy-based early diagnosis of pancreatic-cancer precursors in plasma.
Collapse
Affiliation(s)
- Enrico Genco
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Francesco Modena
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milan, 20134, Italy
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Kim Björkström
- The Faculty of Science and Engineering, Åbo Akademi University, Turku, 20500, Finland
| | | | - Mario Caironi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milan, 20134, Italy
| | - Mariapia Caputo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Virginia Maria Demartis
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, 25123, Italy
| | | | - Giulia Frusconi
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, 25123, Italy
| | - Lena Haeberle
- Institute of Pathology, Heinrich-Heine University and University Hospital of Düsseldorf, 40225, Duesseldorf, Germany
| | - Piero Larizza
- Masmec Biomed - Masmec SpA division, Modugno (BA), 70026, Italy
| | | | - Ronald Österbacka
- The Faculty of Science and Engineering, Åbo Akademi University, Turku, 20500, Finland
| | | | - Gaetano Scamarcio
- CNR IFN, Bari, 70126, Italy
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy
| | - Cecilia Scandurra
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - May Wheeler
- FlexEnable Technology Ltd, Cambridge, CB4 0FX, UK
| | - Eugenio Cantatore
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Irene Esposito
- Institute of Pathology, Heinrich-Heine University and University Hospital of Düsseldorf, 40225, Duesseldorf, Germany
| | - Eleonora Macchia
- The Faculty of Science and Engineering, Åbo Akademi University, Turku, 20500, Finland
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, 25123, Italy
| | - Fabrizio Antonio Viola
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milan, 20134, Italy
| | - Luisa Torsi
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| |
Collapse
|
5
|
Bose M, Sanders A, De C, Zhou R, Lala P, Shwartz S, Mitra B, Brouwer C, Mukherjee P. Targeting tumor-associated MUC1 overcomes anoikis-resistance in pancreatic cancer. Transl Res 2023; 253:41-56. [PMID: 36031050 DOI: 10.1016/j.trsl.2022.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 02/01/2023]
Abstract
The third leading cause of cancer-related deaths in the United States is pancreatic cancer, more than 95% of which is pancreatic ductal adenocarcinoma (PDA). The incidence rate of PDA nearly matches its mortality rate and the best treatment till date is surgical resection for which only 25% are eligible. Tumor recurrence and metastasis are the main causes of cancer-related mortality. MUC1 is a transmembrane glycoprotein expressed on most epithelial cells. It is overexpressed and aberrantly glycosylated in cancer and is known as tumor-associated MUC1 (tMUC1). More than 80% of PDAs express tMUC1. A monoclonal antibody called TAB004 has been developed specifically against human tMUC1 extracellular domain. We report that treatment with TAB004 significantly reduced the colony forming potential of multiple PDA cell lines while sparing normal pancreatic epithelial cell line. Binding of TAB004 to tMUC1 compromised desmosomal integrity, induced ER stress and anoikis in PDA cells. The mechanisms underlying TAB004's antitumor effects were found to be reduced activation of the EGFR-PI3K signaling pathway, and degradation of tMUC1, thereby reducing expression of its transcriptional targets, c-Src and c-Myc. This reduction in oncogenic signaling triggered anoikis as indicated by reduced expression of antiapoptotic proteins, PTRH2 and BCL2. TAB004 treatment slowed the growth of PDA xenograft compared to IgG control and enhanced survival of mice when combined with 5-FU. Since TAB004 significantly reduced colony forming potential and triggered anoikis in the PDA cells, we suggest that it could be used as a potential prophylactic agent to curb tumor relapse after surgery, prevent metastasis and help increase the efficacy of chemotherapeutic agents.
Collapse
Affiliation(s)
- Mukulika Bose
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Alexa Sanders
- Department of Bioinformatics, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Chandrav De
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Ru Zhou
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Priyanka Lala
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Sophia Shwartz
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Bhaskar Mitra
- Pacific Northwest National Laboratory, Richland, Washington
| | - Cory Brouwer
- Department of Bioinformatics, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina.
| |
Collapse
|
6
|
Huynh U, Wu P, Qiu J, Prachyathipsakul T, Singh K, Jerry DJ, Gao J, Thayumanavan S. Targeted Drug Delivery Using a Plug-to-Direct Antibody-Nanogel Conjugate. Biomacromolecules 2023; 24:849-857. [PMID: 36639133 PMCID: PMC9928872 DOI: 10.1021/acs.biomac.2c01269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Targeted drug delivery using antibody-drug conjugates has attracted great attention due to its enhanced therapeutic efficacy compared to traditional chemotherapy. However, the development has been limited due to a low drug-to-antibody ratio and laborious linker-payload optimization. Herein, we present a simple and efficient strategy to combine the favorable features of polymeric nanocarriers with antibodies to generate an antibody-nanogel conjugate (ANC) platform for targeted delivery of cytotoxic agents. Our nanogels stably encapsulate several chemotherapeutic agents with a wide range of mechanisms of action and solubility. We showcase the targetability of ANCs and their selective killing of cancer cells over-expressing disease-relevant antigens such as human epidermal growth factor receptor 2, epidermal growth factor receptor, and tumor-specific mucin 1, which cover a broad range of breast cancer cell types while maintaining low to no toxicity to non-targeted cells. Overall, our system represents a versatile approach that could impact next-generation nanomedicine in antibody-targeted therapeutics.
Collapse
Affiliation(s)
- Uyen Huynh
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Peidong Wu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jingyi Qiu
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | | | - Khushboo Singh
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - D. Joseph Jerry
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jingjing Gao
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
7
|
Ning WJ, Liu X, Zeng HY, An ZQ, Luo WX, Xia NS. Recent progress in antibody-based therapeutics for triple-negative breast cancer. Expert Opin Drug Deliv 2022; 19:815-832. [PMID: 35738312 DOI: 10.1080/17425247.2022.2093853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is a subtype of severely aggressive breast cancer that lacks the expression of oestrogen receptor (ER), progesterone receptor and human epidermal growth factor receptor 2 (HER2) and is highly metastatic and related to a poor prognosis. Current standard treatments are still limited to systemic chemotherapy, radiotherapy, and surgical resection. More effective treatments are urgently needed. AREAS COVERED The immunogenicity of TNBC has provided opportunities for the development of targeted immunotherapy. In this review, we focus on the recent development in antibody-based drug modalities, including angiogenesis inhibitors, immune checkpoint inhibitors, antibody-drug conjugates, immunoconjugates, T cell-redirecting bispecific antibodies and CAR-T cells, and their mechanisms of action in TNBC. EXPERT OPINION At present, the treatment of TNBC is still a major challenge that needs to be addressed. Novel immunotherapies are promising opportunities for improving the management of this aggressive disease.
Collapse
Affiliation(s)
- Wen-Jing Ning
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Xue Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Hong-Ye Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Zhi-Qiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wen-Xin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. CAR T cells redirected against tumor-specific antigen glycoforms: can low-sugar antigens guarantee a sweet success? Front Med 2022; 16:322-338. [PMID: 35687277 DOI: 10.1007/s11684-021-0901-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/23/2021] [Indexed: 11/04/2022]
Abstract
Immune-based therapies have experienced a pronounced breakthrough in the past decades as they acquired multiple US Food and Drug Administration (FDA) approvals for various indications. To date, six chimeric antigen receptor T cell (CAR-T) therapies have been permitted for the treatment of certain patients with relapsed/refractory hematologic malignancies. However, several clinical trials of solid tumor CAR-T therapies were prematurely terminated, or they reported life-threatening treatment-related damages to healthy tissues. The simultaneous expression of target antigens by healthy organs and tumor cells is partly responsible for such toxicities. Alongside targeting tumor-specific antigens, targeting the aberrantly glycosylated glycoforms of tumor-associated antigens can also minimize the off-tumor effects of CAR-T therapies. Tn, T, and sialyl-Tn antigens have been reported to be involved in tumor progression and metastasis, and their expression results from the dysregulation of a series of glycosyltransferases and the endoplasmic reticulum protein chaperone, Cosmc. Moreover, these glycoforms have been associated with various types of cancers, including prostate, breast, colon, gastric, and lung cancers. Here, we discuss how underglycosylated antigens emerge and then detail the latest advances in the development of CAR-T-based immunotherapies that target some of such antigens.
Collapse
Affiliation(s)
- Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115/111, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, P.O. Box 44771/66595, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115/111, Iran. .,Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, P.O. Box 14115/111, Iran.
| |
Collapse
|
9
|
Walker MR, Goel HL, Mukhopadhyay D, Chhoy P, Karner ER, Clark JL, Liu H, Li R, Zhu JL, Chen S, Mahal LK, Bensing BA, Mercurio AM. O-linked α2,3 sialylation defines stem cell populations in breast cancer. SCIENCE ADVANCES 2022; 8:eabj9513. [PMID: 34995107 PMCID: PMC8741191 DOI: 10.1126/sciadv.abj9513] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
We pursued the hypothesis that specific glycans can be used to distinguish breast cancer stem cells (CSCs) and influence their function. Comparison of CSCs and non-CSCs from multiple breast cancer models revealed that CSCs are distinguished by expression of α2,3 sialylated core2 O-linked glycans. We identified a lectin, SLBR-N, which binds to O-linked α2,3 sialic acids, that was able to enrich for CSCs in vitro and in vivo. This O-glycan is expressed on CD44 and promotes its interaction with hyaluronic acid, facilitating CD44 signaling and CSC properties. In contrast, FUT3, which contributes to sialyl Lewis X (sLeX) production, is preferentially expressed in the non-CSC population, and it antagonizes CSC function. Collectively, our data indicate that SLBR-N can be more efficient at enriching for CSCs than CD44 itself because its use avoids the issues of CD44 splicing and glycan status. These data also reveal how differential glycosylation influences CSC fate.
Collapse
Affiliation(s)
- Melanie R. Walker
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hira Lal Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dimpi Mukhopadhyay
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Peter Chhoy
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Emmet R. Karner
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jennifer L. Clark
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Haibo Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Julie Lihua Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shuhui Chen
- Biomedical Research Institute, Department of Chemistry, New York University, New York, NY, USA
| | - Lara K. Mahal
- Biomedical Research Institute, Department of Chemistry, New York University, New York, NY, USA
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Barbara A. Bensing
- Department of Medicine, The San Francisco Veterans Affairs Medical Center, and the University of California, San Francisco, San Francisco, CA, USA
| | - Arthur M. Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
10
|
Quader S, Tanabe S, Cabral H. Abnormal Glycosylation in Cancer Cells and Cancer Stem Cells as a Therapeutic Target. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1393:141-156. [PMID: 36587306 DOI: 10.1007/978-3-031-12974-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tumor resistance and recurrence have been associated with the presence of cancer stem cells (CSCs) in tumors. The functions and survival of the CSCs have been associated with several intracellular and extracellular features. Particularly, the abnormal glycosylation of these signaling pathways and markers of CSCs have been correlated with maintaining survival, self-renewal and extravasation properties. Here, we highlight the importance of glycosylation in promoting the stemness character of CSCs and the current strategies for targeting abnormal glycosylation toward generating effective therapies against the CSC population.
Collapse
Affiliation(s)
- Sabina Quader
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
11
|
Tarannum M, Hossain MA, Holmes B, Yan S, Mukherjee P, Vivero-Escoto JL. Advanced Nanoengineering Approach for Target-Specific, Spatiotemporal, and Ratiometric Delivery of Gemcitabine-Cisplatin Combination for Improved Therapeutic Outcome in Pancreatic Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104449. [PMID: 34758094 PMCID: PMC8758547 DOI: 10.1002/smll.202104449] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/03/2021] [Indexed: 05/13/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an intractable malignancy with a dismal survival rate. Recent combination therapies have had a major impact on the improvement of PDAC prognosis. Nevertheless, clinically used combination regimens such as FOLFIRINOX and gemcitabine (Gem)/nab-paclitaxel still face major challenges due to lack of the safe and ratiometric delivery of multiple drugs. Here, a rationally designed mesoporous silica nanoparticle (MSN)-based platform is reported for the target-specific, spatiotemporal, ratiometric, and safe co-delivery of Gem and cisplatin (cisPt). It is shown that systemic administration of the nanoparticles results in synergistic therapeutic outcome in a syngeneic and clinically relevant genetically engineered PDAC mouse model that has rarely been used for the therapeutic evaluation of nanomedicine. This synergism is associated with a strategic engineering approach, in which nanoparticles provide redox-responsive controlled delivery and in situ differential release of Gem/cisPt drugs with the goal of overcoming resistance to Pt-based drugs. The platform is also rendered with additional tumor-specificity via a novel tumor-associated mucin1 (tMUC1)-specific antibody, TAB004. Overall, the platform suppresses tumor growth and eliminates the off-target toxicities of a highly toxic chemotherapy combination.
Collapse
Affiliation(s)
- Mubin Tarannum
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Md Akram Hossain
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Bryce Holmes
- Analytical Research Laboratory, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Shan Yan
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Pinku Mukherjee
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Juan L Vivero-Escoto
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
12
|
Merikhian P, Darvishi B, Jalili N, Esmailinejad MR, Khatibi AS, Kalbolandi SM, Salehi M, Mosayebzadeh M, Barough MS, Majidzadeh-A K, Yadegari F, Rahbarizadeh F, Farahmand L. Recombinant nanobody against MUC1 tandem repeats inhibits growth, invasion, metastasis, and vascularization of spontaneous mouse mammary tumors. Mol Oncol 2021; 16:485-507. [PMID: 34694686 PMCID: PMC8763658 DOI: 10.1002/1878-0261.13123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/20/2021] [Accepted: 10/19/2021] [Indexed: 11/11/2022] Open
Abstract
Alteration in glycosylation pattern of MUC1 mucin tandem repeats during carcinomas has been shown to negatively affect adhesive properties of malignant cells and enhance tumor invasiveness and metastasis. In addition, MUC1 overexpression is closely interrelated with angiogenesis, making it a great target for immunotherapy. Alongside, easier interaction of nanobodies (single-domain antibodies) with their antigens, compared to conventional antibodies, is usually associated with superior desirable results. Herein, we evaluated the preclinical efficacy of a recombinant nanobody against MUC1 tandem repeats in suppressing tumor growth, angiogenesis, invasion, and metastasis. Expressed nanobody demonstrated specificity only toward MUC1-overexpressing cancer cells and could internalize in cancer cell lines. The IC50 values (the concentration at which the nanobody exerted half of its maximal inhibitory effect) of the anti-MUC1 nanobody against MUC1-positive human cancer cell lines ranged from 1.2 to 14.3 nm. Similar concentrations could also effectively induce apoptosis in MUC1-positive cancer cells but not in normal cells or MUC1-negative human cancer cells. Immunohistochemical staining of spontaneously developed mouse breast tumors prior to in vivo studies confirmed cross-reactivity of nanobody with mouse MUC1 despite large structural dissimilarities between mouse and human MUC1 tandem repeats. In vivo, a dose of 3 µg nanobody per gram of body weight in tumor-bearing mice could attenuate tumor progression and suppress excessive circulating levels of IL-1a, IL-2, IL-10, IL-12, and IL-17A pro-inflammatory cytokines. Also, a significant decline in expression of Ki-67, MMP9, and VEGFR2 biomarkers, as well as vasculogenesis, was evident in immunohistochemically stained tumor sections of anti-MUC1 nanobody-treated mice. In conclusion, the anti-MUC1 tandem repeat nanobody of the present study could effectively overcome tumor growth, invasion, and metastasis.
Collapse
Affiliation(s)
- Parnaz Merikhian
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Behrad Darvishi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Neda Jalili
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | | | - Azadeh Sharif Khatibi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Shima Moradi Kalbolandi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Malihe Salehi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Marjan Mosayebzadeh
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mahdieh Shokrollahi Barough
- Cancer Immunotherapy and Regenerative Medicine, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Yadegari
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
13
|
Horst EN, Bregenzer ME, Mehta P, Snyder CS, Repetto T, Yang-Hartwich Y, Mehta G. Personalized models of heterogeneous 3D epithelial tumor microenvironments: Ovarian cancer as a model. Acta Biomater 2021; 132:401-420. [PMID: 33940195 PMCID: PMC8969826 DOI: 10.1016/j.actbio.2021.04.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Intractable human diseases such as cancers, are context dependent, unique to both the individual patient and to the specific tumor microenvironment. However, conventional cancer treatments are often nonspecific, targeting global similarities rather than unique drivers. This limits treatment efficacy across heterogeneous patient populations and even at different tumor locations within the same patient. Ultimately, this poor efficacy can lead to adverse clinical outcomes and the development of treatment-resistant relapse. To prevent this and improve outcomes, it is necessary to be selective when choosing a patient's optimal adjuvant treatment. In this review, we posit the use of personalized, tumor-specific models (TSM) as tools to achieve this remarkable feat. First, using ovarian cancer as a model disease, we outline the heterogeneity and complexity of both the cellular and extracellular components in the tumor microenvironment. Then we examine the advantages and disadvantages of contemporary cancer models and the rationale for personalized TSM. We discuss how to generate precision 3D models through careful and detailed analysis of patient biopsies. Finally, we provide clinically relevant applications of these versatile personalized cancer models to highlight their potential impact. These models are ideal for a myriad of fundamental cancer biology and translational studies. Importantly, these approaches can be extended to other carcinomas, facilitating the discovery of new therapeutics that more effectively target the unique aspects of each individual patient's TME. STATEMENT OF SIGNIFICANCE: In this article, we have presented the case for the application of biomaterials in developing personalized models of complex diseases such as cancers. TSM could bring about breakthroughs in the promise of precision medicine. The critical components of the diverse tumor microenvironments, that lead to treatment failures, include cellular- and extracellular matrix- heterogeneity, and biophysical signals to the cells. Therefore, we have described these dynamic components of the tumor microenvironments, and have highlighted how contemporary biomaterials can be utilized to create personalized in vitro models of cancers. We have also described the application of the TSM to predict the dynamic patterns of disease progression, and predict effective therapies that can produce durable responses, limit relapses, and treat any minimal residual disease.
Collapse
Affiliation(s)
- Eric N Horst
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Michael E Bregenzer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Pooja Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Catherine S Snyder
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Taylor Repetto
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT 06510, United States
| | - Geeta Mehta
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, United States; Precision Health, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
14
|
Repression of MUC1 Promotes Expansion and Suppressive Function of Myeloid-Derived Suppressor Cells in Pancreatic and Breast Cancer Murine Models. Int J Mol Sci 2021; 22:ijms22115587. [PMID: 34070449 PMCID: PMC8197523 DOI: 10.3390/ijms22115587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that are responsible for immunosuppression in tumor microenvironment. Here we report the impact of mucin 1 (MUC1), a transmembrane glycoprotein, on proliferation and functional activity of MDSCs. To determine the role of MUC1 in MDSC phenotype, we analyzed MDSCs derived from wild type (WT) and MUC1-knockout (MUC1KO) mice bearing syngeneic pancreatic (KCKO) or breast (C57MG) tumors. We observed enhanced tumor growth of pancreatic and breast tumors in the MUC1KO mice compared to the WT mice. Enhanced tumor growth in the MUC1KO mice was associated with increased numbers of suppressive MDSCs and T regulatory (Tregs) cells in the tumor microenvironment. Compared to the WT host, MUC1KO host showed higher levels of iNOS, ARG1, and TGF-β, thus promoting proliferation of MDSCs with an immature and immune suppressive phenotype. When co-cultured with effector T cells, MDSCs from MUC1KO mice led to higher repression of IL-2 and IFN-γ production by T cells as compared to MDSCs from WT mice. Lastly, MDSCs from MUC1KO mice showed higher levels of c-Myc and activated pSTAT3 as compared to MDSCs from WT mice, suggesting increased survival, proliferation, and prevention of maturation of MDSCs in the MUC1KO host. We report diminished T cell function in the KO versus WT mice. In summary, the data suggest that MUC1 may regulate signaling pathways that are critical to maintain the immunosuppressive properties of MDSCs.
Collapse
|
15
|
Khan T, Cabral H. Abnormal Glycosylation of Cancer Stem Cells and Targeting Strategies. Front Oncol 2021; 11:649338. [PMID: 33889547 PMCID: PMC8056457 DOI: 10.3389/fonc.2021.649338] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cell (CSCs) are deemed as one of the main reasons of tumor relapse due to their resistance to standard therapies. Numerous intracellular signaling pathways along with extracellular features are crucial in regulating CSCs properties, such as heterogeneity, plasticity and differentiation. Aberrant glycosylation of these cellular signaling pathways and markers of CSCs have been directly correlated with maintaining survival, self-renewal and extravasation properties. In this review, we highlight the importance of glycosylation in promoting stemness character of CSCs, and present strategies for targeting abnormal glycosylation to eliminate the resistant CSC population.
Collapse
Affiliation(s)
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Mucins reprogram stemness, metabolism and promote chemoresistance during cancer progression. Cancer Metastasis Rev 2021; 40:575-588. [PMID: 33813658 DOI: 10.1007/s10555-021-09959-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
Mucins are high-molecular-weight glycoproteins dysregulated in aggressive cancers. The role of mucins in disease progression, tumor proliferation, and chemotherapy resistance has been studied extensively. This article provides a comprehensive review of mucin's function as a physical barrier and the implication of mucin overexpression in impeded drug delivery to solid tumors. Mucins regulate the epithelial to mesenchymal transition (EMT) of cancer cells via several canonical and non-canonical oncogenic signaling pathways. Furthermore, mucins play an extensive role in enriching and maintaining the cancer stem cell (CSC) population, thereby sustaining the self-renewing and chemoresistant cellular pool in the bulk tumor. It has recently been demonstrated that mucins regulate the metabolic reprogramming during oncogenesis and cancer progression, which account for tumor cell survival, proliferation, and drug-resistance. This review article focuses on delineating mucin's role in oncogenic signaling and aberrant regulation of gene expressions, culminating in CSC maintenance, metabolic rewiring, and development of chemoresistance, tumor progression, and metastasis.
Collapse
|
17
|
Glycosylation of Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Bose M, Mukherjee P. Potential of Anti-MUC1 Antibodies as a Targeted Therapy for Gastrointestinal Cancers. Vaccines (Basel) 2020; 8:E659. [PMID: 33167508 PMCID: PMC7712407 DOI: 10.3390/vaccines8040659] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal cancers (GI) account for 26% of cancer incidences globally and 35% of all cancer-related deaths. The main challenge is to target cancer specific antigens. Mucins are heavily O-glycosylated proteins overexpressed in different cancers. The transmembrane glycoprotein MUC1 is the most likeable target for antibodies, owing to its specific overexpression and aberrant glycosylation in many types of cancers. For the past 30 years, MUC1 has remained a possible diagnostic marker and therapeutic target. Despite initiation of numerous clinical trials, a comprehensively effective therapy with clinical benefit is yet to be achieved. However, the interest in MUC1 as a therapeutic target remains unaltered. For all translational studies, it is important to incorporate updated relevant research findings into therapeutic strategies. In this review we present an overview of the antibodies targeting MUC1 in GI cancers, their potential role in immunotherapy (i.e., antibody-drug and radioimmunoconjugates, CAR-T cells), and other novel therapeutic strategies. We also present our perspectives on how the mechanisms of action of different anti-MUC1 antibodies can target specific hallmarks of cancer and therefore be utilized as a combination therapy for better clinical outcomes.
Collapse
Affiliation(s)
- Mukulika Bose
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA;
| | | |
Collapse
|
19
|
Pourjafar M, Samadi P, Saidijam M. MUC1 antibody-based therapeutics: the promise of cancer immunotherapy. Immunotherapy 2020; 12:1269-1286. [PMID: 33019839 DOI: 10.2217/imt-2020-0019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Antibody-based targeted therapies have been able to target cancers with enhanced specificity and high efficacy. In this regard, identifying cancer markers (antigens) that are only present (tumor-specific antigens) or have an increased expression (tumor-associated antigen) on the surface of cancer cells is a crucial step for targeted cancer treatment. Various cancer antigens have already been used for therapeutic and diagnostic purposes. MUC1 is one of the most important tumor markers with high levels of expression in various solid tumors which makes it as a potential target for antibody-based therapies. This review discusses preclinical and clinical results from various platforms based on monoclonal antibodies, nanobodies as well as bispecific antibodies against MUC1. We also highlight unmet challenges that must be overcome to generate more effective cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Mona Pourjafar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
20
|
Kelly VJ, Wu ST, Gottumukkala V, Coelho R, Palmer K, Nair S, Erick T, Puri R, Ilovich O, Mukherjee P. Preclinical evaluation of an 111In/ 225Ac theranostic targeting transformed MUC1 for triple negative breast cancer. Theranostics 2020; 10:6946-6958. [PMID: 32550914 PMCID: PMC7295045 DOI: 10.7150/thno.38236] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
Rationale: Transformed MUC1 (tMUC1) is a cancer-associated antigen that is overexpressed in >90% of triple-negative breast cancers (TNBC), a highly metastatic and aggressive subtype of breast cancer. TAB004, a murine antibody targeting tMUC1, has shown efficacy for the targeted delivery of therapeutics to cancer cells. Our aim was to evaluate humanized TAB004 (hTAB004) as a potential theranostic for TNBC. Methods: The internalization of hTAB004 in tMUC1 expressing HCC70 cells was assessed via fluorescent microscopy. hTAB004 was DOTA-conjugated and radiolabeled with Indium-111 or Actinium-225 and tested for stability and tMUC1 binding (ELISA, flow cytometry). Lastly, in vivo biodistribution (SPECT-CT), dosimetry, and efficacy of hTAB004 were evaluated using a TNBC orthotopic mouse model. Results: hTAB004 was shown to bind and internalize into tMUC1-expressing cells. A production method of 225Ac-DOTA-hTAB004 (yield>97%, RCP>97% SA=5 kBq/µg) and 111In-DOTA-hTAB004 (yield>70%, RCP>99%, SA=884 kBq/µg) was developed. The labeled molecules retained their affinity to tMUC1 and were stable in formulation and mouse serum. In NSG female mice bearing orthotopic HCC70 xenografts, the in vivo tumor concentration of 111In-DOTA-hTAB004 was 65 ± 15 %ID/g (120 h post injection). A single 225Ac-DOTA-hTAB004 dose (18.5 kBq) caused a significant reduction in tumor volume (P<0.001, day 22) and increased survival compared to controls (P<0.007). The human dosimetry results were comparable to other clinically used agents. Conclusion: The results obtained with hTAB004 suggest that the 111In/225Ac-DOTA-hTAB004 combination has significant potential as a theranostic strategy in TNBC and merits further development toward clinical translation.
Collapse
|
21
|
Wakui H, Tanaka Y, Ose T, Matsumoto I, Kato K, Min Y, Tachibana T, Sato M, Naruchi K, Martin FG, Hinou H, Nishimura SI. A straightforward approach to antibodies recognising cancer specific glycopeptidic neoepitopes. Chem Sci 2020; 11:4999-5006. [PMID: 34122956 PMCID: PMC8159228 DOI: 10.1039/d0sc00317d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 11/18/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Aberrantly truncated immature O-glycosylation in proteins occurs in essentially all types of epithelial cancer cells, which was demonstrated to be a common feature of most adenocarcinomas and strongly associated with cancer proliferation and metastasis. Although extensive efforts have been made toward the development of anticancer antibodies targeting MUC1, one of the most studied mucins having cancer-relevant immature O-glycans, no anti-MUC1 antibody recognises carbohydrates and the proximal MUC1 peptide region, concurrently. Here we present a general strategy that allows for the creation of antibodies interacting specifically with glycopeptidic neoepitopes by using homogeneous synthetic MUC1 glycopeptides designed for the streamlined process of immunization, antibody screening, three-dimensional structure analysis, epitope mapping and biochemical analysis. The X-ray crystal structure of the anti-MUC1 monoclonal antibody SN-101 complexed with the antigenic glycopeptide provides for the first time evidence that SN-101 recognises specifically the essential epitope by forming multiple hydrogen bonds both with the proximal peptide and GalNAc linked to the threonine residue, concurrently. Remarkably, the structure of the MUC1 glycopeptide in complex with SN-101 is identical to its solution NMR structure, an extended conformation induced by site-specific glycosylation. We demonstrate that this method accelerates dramatically the development of a new class of designated antibodies targeting a variety of "dynamic neoepitopes" elaborated by disease-specific O-glycosylation in the immunodominant mucin domains and mucin-like sequences found in intrinsically disordered regions of many proteins.
Collapse
Affiliation(s)
- Hajime Wakui
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Toyoyuki Ose
- Field of X-ray Structural Biology, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N10 W8, Kita-ku Sapporo 060-0810 Japan
| | - Isamu Matsumoto
- Field of X-ray Structural Biology, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N10 W8, Kita-ku Sapporo 060-0810 Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University 3-1-1, Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| | - Yao Min
- Field of X-ray Structural Biology, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N10 W8, Kita-ku Sapporo 060-0810 Japan
| | - Taro Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University Sumiyoshi-ku Osaka 558-8585 Japan
| | - Masaharu Sato
- Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9 W15, Chuo-ku Sapporo 060-0009 Japan
| | - Kentaro Naruchi
- Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9 W15, Chuo-ku Sapporo 060-0009 Japan
| | - Fayna Garcia Martin
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Hiroshi Hinou
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| |
Collapse
|
22
|
WEE1 inhibitor, AZD1775, overcomes trastuzumab resistance by targeting cancer stem-like properties in HER2-positive breast cancer. Cancer Lett 2020; 472:119-131. [DOI: 10.1016/j.canlet.2019.12.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 11/27/2019] [Accepted: 12/16/2019] [Indexed: 11/23/2022]
|
23
|
Yazdanifar M, Zhou R, Grover P, Williams C, Bose M, Moore LJ, Wu ST, Maher J, Dreau D, Mukherjee P. Overcoming Immunological Resistance Enhances the Efficacy of A Novel Anti-tMUC1-CAR T Cell Treatment against Pancreatic Ductal Adenocarcinoma. Cells 2019; 8:cells8091070. [PMID: 31514488 PMCID: PMC6770201 DOI: 10.3390/cells8091070] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells have shown remarkable success in treating hematologic cancers. However, this efficacy has yet to translate to treatment in solid tumors. Pancreatic ductal adenocarcinoma (PDA) is a fatal malignancy with poor prognosis and limited treatment options. We have developed a second generation CAR T cell using the variable fragments of a novel monoclonal antibody, TAB004, which specifically binds the tumor-associated-MUC1 (tMUC1). tMUC1 is overexpressed on ~85% of all human PDA. We present data showing that TAB004-derived CAR T cells specifically bind to tMUC1 on PDA cells and show robust killing activity; however, they do not bind or kill normal epithelial cells. We further demonstrated that the tMUC1-CAR T cells control the growth of orthotopic pancreatic tumors in vivo. We witnessed that some PDA cells (HPAFII and CFPAC) were refractory to CAR T cell treatment. qPCR analysis of several genes revealed overexpression of indoleamine 2, 3-dioxygenases-1 (IDO1), cyclooxygenase 1 and 2 (COX1/2), and galectin-9 (Gal-9) in resistant PDA cells. We showed that combination of CAR T cells and biological inhibitors of IDO1, COX1/2, and Gal-9 resulted in significant enhancement of CAR T cell cytotoxicity against PDA cells. Overcoming PDA resistance is a significant advancement in the field.
Collapse
Affiliation(s)
- Mahboubeh Yazdanifar
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Ru Zhou
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Priyanka Grover
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Chandra Williams
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Mukulika Bose
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Laura J. Moore
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Shu-ta Wu
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - John Maher
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Hospital Campus, Great Maze Pond, London SE1 9RT, UK;
| | - Didier Dreau
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
- Correspondence:
| |
Collapse
|
24
|
Nallanthighal S, Heiserman JP, Cheon DJ. The Role of the Extracellular Matrix in Cancer Stemness. Front Cell Dev Biol 2019; 7:86. [PMID: 31334229 PMCID: PMC6624409 DOI: 10.3389/fcell.2019.00086] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
As our understanding of cancer cell biology progresses, it has become clear that tumors are a heterogenous mixture of different cell populations, some of which contain so called "cancer stem cells" (CSCs). Hallmarks of CSCs include self-renewing capability, tumor-initiating capacity and chemoresistance. The extracellular matrix (ECM), a major structural component of the tumor microenvironment, is a highly dynamic structure and increasing evidence suggests that ECM proteins establish a physical and biochemical niche for CSCs. In cancer, abnormal ECM dynamics occur due to disrupted balance between ECM synthesis and secretion and altered expression of matrix-remodeling enzymes. Tumor-derived ECM is biochemically distinct in its composition and is stiffer compared to normal ECM. In this review, we will provide a brief overview of how different components of the ECM modulate CSC properties then discuss how physical, mechanical, and biochemical cues from the ECM drive cancer stemness. Given the fact that current CSC targeting therapies face many challenges, a better understanding of CSC-ECM interactions will be crucial to identify more effective therapeutic strategies to eliminate CSCs.
Collapse
Affiliation(s)
| | | | - Dong-Joo Cheon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| |
Collapse
|
25
|
Zhou R, Yazdanifar M, Roy LD, Whilding LM, Gavrill A, Maher J, Mukherjee P. CAR T Cells Targeting the Tumor MUC1 Glycoprotein Reduce Triple-Negative Breast Cancer Growth. Front Immunol 2019; 10:1149. [PMID: 31178870 PMCID: PMC6543840 DOI: 10.3389/fimmu.2019.01149] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 05/07/2019] [Indexed: 12/02/2022] Open
Abstract
Antibody-derived chimeric antigen receptor (CAR) T cell therapy has achieved gratifying breakthrough in hematologic malignancies but has shown limited success in solid tumor immunotherapy. Monoclonal antibody, TAB004, specifically recognizes the aberrantly glycosylated tumor form of MUC1 (tMUC1) in all subtypes of breast cancer including 95% of triple-negative breast cancer (TNBC) while sparing recognition of normal tissue MUC1. We transduced human T cells with MUC28z, a chimeric antigen receptor comprising of the scFv of TAB004 coupled to CD28 and CD3ζ. MUC28z was well-expressed on the surface of engineered activated human T cells. MUC28z CAR T cells demonstrated significant target-specific cytotoxicity against a panel of human TNBC cells. Upon recognition of tMUC1 on TNBC cells, MUC28z CAR T cells increased production of Granzyme B, IFN-γ and other Th1 type cytokines and chemokines. A single dose of MUC28z CAR T cells significantly reduced TNBC tumor growth in a xenograft model. Thus, MUC28z CAR T cells have high therapeutic potential against tMUC1-positive TNBC tumors with minimal damage to normal breast epithelial cells.
Collapse
Affiliation(s)
- Ru Zhou
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Mahboubeh Yazdanifar
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Lopamudra Das Roy
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Lynsey M Whilding
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital Campus, London, United Kingdom
| | - Artemis Gavrill
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital Campus, London, United Kingdom
| | - John Maher
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital Campus, London, United Kingdom
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
26
|
Dréau D, Moore LJ, Wu M, Roy LD, Dillion L, Porter T, Puri R, Momin N, Wittrup KD, Mukherjee P. Combining the Specific Anti-MUC1 Antibody TAB004 and Lip-MSA-IL-2 Limits Pancreatic Cancer Progression in Immune Competent Murine Models of Pancreatic Ductal Adenocarcinoma. Front Oncol 2019; 9:330. [PMID: 31114758 PMCID: PMC6503151 DOI: 10.3389/fonc.2019.00330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/11/2019] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy regimens have shown success in subsets of cancer patients; however, their efficacy against pancreatic ductal adenocarcinoma (PDA) remain unclear. Previously, we demonstrated the potential of TAB004, a monoclonal antibody targeting the unique tumor-associated form of MUC1 (tMUC1) in the early detection of PDA. In this study, we evaluated the therapeutic benefit of combining the TAB004 antibody with Liposomal-MSA-IL-2 in immune competent and human MUC1 transgenic (MUC1.Tg) mouse models of PDA and investigated the associated immune responses. Treatment with TAB004 + Lip-MSA-IL-2 resulted in significantly improved survival and slower tumor growth compared to controls in MUC1.Tg mice bearing an orthotopic PDA.MUC1 tumor. Similarly, in the spontaneous model of PDA that expresses human MUC1, the combination treatment stalled the progression of pancreatic intraepithelial pre-neoplastic (PanIN) lesion to adenocarcinoma. Treatment with the combination elicited a robust systemic and tumor-specific immune response with (a) increased percentages of systemic and tumor infiltrated CD45+CD11b+ cells, (b) increased levels of myeloperoxidase (MPO), (c) increased antibody-dependent cellular cytotoxicity/phagocytosis (ADCC/ADCP), (d) decreased percentage of immune regulatory cells (CD8+CD69+ cells), and (e) reduced circulating levels of immunosuppressive tMUC1. We report that treatment with a novel antibody against tMUC1 in combination with a unique formulation of IL-2 can improve survival and lead to stable disease in appropriate models of PDA by reducing tumor-induced immune regulation and promoting recruitment of CD45+CD11b+ cells, thereby enhancing ADCC/ADCP.
Collapse
Affiliation(s)
- Didier Dréau
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, United States
| | | | - Mike Wu
- OncoTab Inc., Charlotte, NC, United States
| | | | | | - Travis Porter
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, United States
| | - Rahul Puri
- OncoTab Inc., Charlotte, NC, United States
| | - Noor Momin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Pinku Mukherjee
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, United States.,OncoTab Inc., Charlotte, NC, United States
| |
Collapse
|
27
|
Xu S, Yue Y, Zhang S, Zhou C, Cheng X, Xie X, Wang X, Lu W. STON2 negatively modulates stem-like properties in ovarian cancer cells via DNMT1/MUC1 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:305. [PMID: 30518424 PMCID: PMC6282299 DOI: 10.1186/s13046-018-0977-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/23/2018] [Indexed: 12/14/2022]
Abstract
Background Cancer stem cells (CSCs) possess abilities of self-renewal and differentiation, have oncogenic potential and are regarded to be the source of cancer recurrence. However, the mechanism by which CSCs maintain their stemness remains largely unclear. Methods In this study, the cell line-derived ovarian CSCs (OCSCs), 3AO and Caov3, were enriched in serum-free medium (SFM). Differentially expressed proteins were compared between the OCSC subpopulation and parental cells using liquid chromatography (LC)-mass spectrometry (MS)/MS label-free quantitative proteomics. Sphere-forming ability assays, flow cytometry, quantitative real-time polymerase chain reaction (qPCR), western blotting, and in vivo xenograft experiments were performed to evaluate stemness. RNA-sequencing (RNA-seq) and pyrosequencing were used to reveal the mechanism by which STON2 negatively modulates the stem-like properties of ovarian cancer cells. Results Among the 74 most differentially expressed proteins, stonin 2 (STON2) was confirmed to be down-regulated in the OCSC subpopulation. We show that STON2 negatively modulates the stem-like properties of ovarian cancer cells, which are characterized by sphere formation, a CD44+CD24− ratio, and by CSC- and epithelial mesenchymal transition (EMT)-related markers. STON2 knockdown also accelerated tumorigenesis in NOD/SCID mice. Further investigation revealed a downstream target, mucin 1 (MUC1), as up-regulated upon the down regulation of STON2. A decrease in both DNA methyltransferase 1 (DNMT1) expression and methylation in the promoter region of MUC1 was associated with subsequently elevated MUC1 expression, as detected in STON2 knockdown in 3AO and Caov3 cells. Direct DNMT1 knockdown simultaneously elevated MUC1 expression. The functional significance of this STON2-DNMT1/MUC1 pathway is supported by the observation that STON2 overexpression suppresses MUC1-induced sphere formation of OCSCs. The paired expression of STON2 and MUC1 in ovarian cancer specimens was also detected revealing the prognostic value of STON2 expression to be highly dependent on MUC1 expression. Conclusions Our results imply that STON2 may negatively regulate stemness in ovarian cancer cells via DNMT1-MUC1 mediated epigenetic modification. STON2 is therefore involved in OCSC biology and may represent a therapeutic target for innovative treatments aimed at ovarian cancer eradication. Electronic supplementary material The online version of this article (10.1186/s13046-018-0977-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Yongfang Yue
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Songfa Zhang
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Caiyun Zhou
- Department of Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xiaodong Cheng
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xing Xie
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xinyu Wang
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China. .,Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| | - Weiguo Lu
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China. .,Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
28
|
Barkeer S, Chugh S, Batra SK, Ponnusamy MP. Glycosylation of Cancer Stem Cells: Function in Stemness, Tumorigenesis, and Metastasis. Neoplasia 2018; 20:813-825. [PMID: 30015157 PMCID: PMC6037882 DOI: 10.1016/j.neo.2018.06.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023] Open
Abstract
Aberrant glycosylation plays a critical role in tumor aggressiveness, progression, and metastasis. Emerging evidence associates cancer initiation and metastasis to the enrichment of cancer stem cells (CSCs). Several universal markers have been identified for CSCs characterization; however, a specific marker has not yet been identified for different cancer types. Specific glycosylation variation plays a major role in the progression and metastasis of different cancers. Interestingly, many of the CSC markers are glycoproteins and undergo differential glycosylation. Given the importance of CSCs and altered glycosylation in tumorigenesis, the present review will discuss current knowledge of altered glycosylation of CSCs and its application in cancer research.
Collapse
Affiliation(s)
- Srikanth Barkeer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE.
| | - Seema Chugh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
29
|
Nishiguchi A, Matsusaki M, Kano MR, Nishihara H, Okano D, Asano Y, Shimoda H, Kishimoto S, Iwai S, Akashi M. In vitro 3D blood/lymph-vascularized human stromal tissues for preclinical assays of cancer metastasis. Biomaterials 2018; 179:144-155. [PMID: 29986232 DOI: 10.1016/j.biomaterials.2018.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/09/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022]
Abstract
Tumour models mimicking in vivo three-dimensional (3D) microenvironments are of increasing interest in drug discovery because of the limitations inherent to current models. For example, preclinical assays that rely on monolayer or spheroid cell cultures cannot easily predict 3D cancer behaviours because they have no vasculature. Furthermore, there are major differences in cancer behaviour between human and animal experiments. Here, we show the construction of 3D blood/lymph-vascularized human stromal tissues that can be combined with cancer cells to mimic dynamic metastasis for real-time throughput screening of secreted proteinases. We validated this tool using three human carcinoma cell types that are known to invade blood/lymph vessels and promote angiogenesis. These cell types exhibited characteristic haematogenous/lymphogenous metastasis and tumour angiogenesis properties. Importantly, these carcinoma cells selectively secreted different matrix metalloproteinases depending on their metastasis stage and target vasculature, suggesting the possibility of developing drugs that can target each secreted proteinase. We conclude that the 3D tissue tool will be a powerful throughput system for predicting cancer cell responses and time-dependent secretion of molecules in preclinical assays.
Collapse
Affiliation(s)
- Akihiro Nishiguchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, Japan
| | - Mitsunobu R Kano
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Pharmaceutical Biomedicine, Okayama University, 1-1-1 Tsushima-Naka Kita-ku, Okayama 700-8530, Japan
| | - Hiroshi Nishihara
- Department of Translational Pathology, Hokkaido University, Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Daisuke Okano
- Department of Anatomical Science, and Cell Biology and Histology, Hirosaki University, Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Yoshiya Asano
- Department of Anatomical Science, and Cell Biology and Histology, Hirosaki University, Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Hiroshi Shimoda
- Department of Anatomical Science, and Cell Biology and Histology, Hirosaki University, Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Satoko Kishimoto
- Department of Oral and Maxillofacial Surgery II, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Soichi Iwai
- Department of Oral and Maxillofacial Surgery II, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mitsuru Akashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
30
|
Wu ST, Fowler AJ, Garmon CB, Fessler AB, Ogle JD, Grover KR, Allen BC, Williams CD, Zhou R, Yazdanifar M, Ogle CA, Mukherjee P. Treatment of pancreatic ductal adenocarcinoma with tumor antigen specific-targeted delivery of paclitaxel loaded PLGA nanoparticles. BMC Cancer 2018; 18:457. [PMID: 29685122 PMCID: PMC5914049 DOI: 10.1186/s12885-018-4393-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/17/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDA) remains the most aggressive cancers with a 5-year survival below 10%. Systemic delivery of chemotherapy drugs has severe side effects in patients with PDA and does not significantly improve overall survival rate. It is highly desirable to advance the therapeutic efficacy of chemotherapeutic drugs by targeting their delivery and increasing accumulation at the tumor site. MUC1 is a membrane-tethered glycoprotein that is aberrantly overexpressed in > 80% of PDA thus making it an attractive antigenic target. METHODS Poly lactic-co-glycolic acid nanoparticles (PLGA NPs) conjugated to a tumor specific MUC1 antibody, TAB004, was used as a nanocarrier for targeted delivery into human PDA cell lines in vitro and in PDA tumors in vivo. The PLGA NPs were loaded with fluorescent imaging agents, fluorescein diacetate (FDA) and Nile Red (NR) or isocyanine green (ICG) for in vitro and in vivo imaging respectively or with a chemotherapeutic drug, paclitaxel (PTX) for in vitro cytotoxicity assays. Confocal microscopy was used to visualize internalization of the nanocarrier in vitro in PDA cells with high and low MUC1 expression. The in vivo imaging system (IVIS) was used to visualize in vivo tumor targeting of the nanocarrier. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay was used to determine in vitro cell survival of cells treated with PTX-loaded nanocarrier. One-sided t-test comparing treatment groups at each concentration and two-way ANOVAs comparing internalization of antibody and PLGA nanoparticles. RESULTS In vitro, TAB004-conjugated ICG-nanocarriers were significantly better at internalizing in PDA cells than its non-conjugated counterpart. Similarly, TAB004-conjugated PTX-nanocarriers were significantly more cytotoxic in vitro against PDA cells than its non-conjugated counterpart. In vivo, TAB004-conjugated ICG-nanocarriers showed increased accumulation in the PDA tumor compared to the non-conjugated nanocarrier while sparing normal organs. CONCLUSIONS The study provides promising data for future development of a novel MUC1-targeted nanocarrier for direct delivery of imaging agents or drugs into the tumor microenvironment.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/chemistry
- Antineoplastic Agents, Immunological/pharmacokinetics
- Biomarkers, Tumor
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Survival
- Disease Models, Animal
- Drug Liberation
- Endocytosis
- Female
- Gene Expression
- Humans
- Mice
- Molecular Targeted Therapy
- Mucin-1/immunology
- Nanoparticles/chemistry
- Nanoparticles/ultrastructure
- Paclitaxel/administration & dosage
- Paclitaxel/chemistry
- Paclitaxel/pharmacokinetics
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Polyethylene Glycols/chemistry
- Polylactic Acid-Polyglycolic Acid Copolymer
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Shu-ta Wu
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Anthony J. Fowler
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Corey B. Garmon
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Adam B. Fessler
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Joshua D. Ogle
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Kajal R. Grover
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Bailey C. Allen
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Chandra D. Williams
- Department of Animal Laboratory Resources, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Ru Zhou
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Mahboubeh Yazdanifar
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Craig A. Ogle
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| |
Collapse
|
31
|
Wu ST, Williams CD, Grover PA, Moore LJ, Mukherjee P. Early detection of pancreatic cancer in mouse models using a novel antibody, TAB004. PLoS One 2018; 13:e0193260. [PMID: 29462213 PMCID: PMC5819830 DOI: 10.1371/journal.pone.0193260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/07/2018] [Indexed: 01/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is the fourth-leading cause of cancer death in the United States with a 5-year overall survival rate of 8% for all stages combined. But this decreases to 3% for the majority of patients that present with stage IV PDA at time of diagnosis. The lack of distinct early symptoms for PDA is one of the primary reasons for the late diagnosis. Common symptoms like weight loss, abdominal and back pains, and jaundice are often mistaken for symptoms of other issues and do not appear until the cancer has progressed to a late stage. Thus the development of novel imaging platforms for PDA is crucial for the early detection of the disease. MUC1 is a tumor-associated antigen (tMUC1) expressed on 80% of PDA. The goal of this study was to determine the targeting and detection capabilities of a tMUC1 specific antibody, TAB004. TAB004 antibody conjugated to a near infrared fluorescent probe was injected intraperitoneally into immune competent orthotopic and spontaneous models of PDA. Results show that fluorophore conjugated TAB004 specifically targets a) 1 week old small tumor in the pancreas in an orthotopic PDA model and b) very early pre-neoplastic lesions (PanIN lesions) that develop in the spontaneous PDA model before progression to adenocarcinoma. Thus, TAB004 is a promising antibody to deliver imaging agents directly to the pancreatic tumor microenvironment, significantly affecting early detection of PDA.
Collapse
Affiliation(s)
- Shu-ta Wu
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Chandra D. Williams
- Department of Animal Laboratory Resources, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Priyanka A. Grover
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Laura J. Moore
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
32
|
Grover P, Nath S, Nye MD, Zhou R, Ahmad M, Mukherjee P. SMAD4-independent activation of TGF-β signaling by MUC1 in a human pancreatic cancer cell line. Oncotarget 2018; 9:6897-6910. [PMID: 29467938 PMCID: PMC5805524 DOI: 10.18632/oncotarget.23966] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 12/18/2017] [Indexed: 12/18/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDA) has a mortality rate that nearly matches its incidence rate. Transforming Growth Factor Beta (TGF-β) is a cytokine with a dual role in tumor development switching from a tumor suppressor to a tumor promoter. There is limited knowledge of how TGF-β function switches during tumorigenesis. Mucin 1 (MUC1) is an aberrantly glycosylated, membrane-bound, glycoprotein that is overexpressed in >80% of PDA cases and is associated with poor prognosis. In PDA, MUC1 promotes tumor progression and metastasis via signaling through its cytoplasmic tail (MUC1-CT) and interacting with other oncogenic signaling molecules. We hypothesize that high levels of MUC1 in PDA may be partly responsible for the TGF-β functional switch during oncogenesis. We report that overexpression of MUC1 in BxPC3 human PDA cells (BxPC3.MUC1) enhances the induction of epithelial to mesenchymal transition leading to increased invasiveness in response to exogenous TGF-β1. Simultaneously, these cells resist TGF-β induced apoptosis by downregulating levels of cleaved caspases. We show that mutating the tyrosines in MUC1-CT to phenylalanine reverses the TGF-β induced invasiveness. This suggests that the tyrosine residues in MUC1-CT are required for TGF-β induced invasion. Some of these tyrosines are phosphorylated by the tyrosine kinase c-Src. Thus, treatment of BxPC3.MUC1 cells with a c-Src inhibitor (PP2) significantly reduces TGF-β induced invasiveness. Similar observations were confirmed in the Chinese hamster ovarian (CHO) cell line. Data strongly suggests that MUC1 may regulate TGF-β function in PDA cells and thus have potential clinical relevance in the use of TGF-β inhibitors in clinical trials.
Collapse
Affiliation(s)
- Priyanka Grover
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Sritama Nath
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Monica D. Nye
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Ru Zhou
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Mohammad Ahmad
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| |
Collapse
|
33
|
Roy LD, Dillon LM, Zhou R, Moore LJ, Livasy C, El-Khoury JM, Puri R, Mukherjee P. A tumor specific antibody to aid breast cancer screening in women with dense breast tissue. Genes Cancer 2017; 8:536-549. [PMID: 28680538 PMCID: PMC5489651 DOI: 10.18632/genesandcancer.134] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Screening for breast cancer has predominantly been done using mammography. Unfortunately, mammograms miss 50% cancers in women with dense breast tissue. Multi-modal screenings offer the best chance of enhancing breast cancer screening effectiveness. We evaluated the use of TAB004, an antibody that recognizes the tumor form of the glycoprotein MUC1 (tMUC1), to aid early detection of breast cancer. Our experimental approach was to follow tMUC1 from the tissue into circulation. We found that 95% of human breast cancer tissues across all subtypes stained positive for TAB004. In breast cancer cell lines, we showed that the amount of tMUC1 released from tumor cells is proportional to the cell's tMUC1 expression level. Finally, we showed that TAB004 can be used to assess circulating tMUC1 levels, which when monitored in the context of cancer immunoediting, can aid earlier diagnosis of breast cancer regardless of breast tissue density. In a blinded pilot study with banked serial samples, tMUC1 levels increased significantly up to 2 years before diagnosis. Inclusion of tMUC1 monitoring as part of a multi-modal screening strategy may lead to earlier stage diagnosis of women whose cancers are missed by mammography.
Collapse
Affiliation(s)
- Lopamudra Das Roy
- OncoTAb, Inc., Charlotte, NC, USA.,University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Lloye M Dillon
- OncoTAb, Inc., Charlotte, NC, USA.,University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Ru Zhou
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Laura J Moore
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Chad Livasy
- Carolinas Pathology Group, Carolinas Medical Center, Charlotte, NC, USA.,University of North Carolina at Chapel Hill, Charlotte, NC, USA
| | | | | | - Pinku Mukherjee
- OncoTAb, Inc., Charlotte, NC, USA.,University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
34
|
Gong YF, Zhou QB, Liao YD, Mai C, Chen TJ, Tang YQ, Chen RF. Optimized construction of MUC1-VNTR n DNA vaccine and its anti-pancreatic cancer efficacy. Oncol Lett 2017; 13:2198-2206. [PMID: 28454381 PMCID: PMC5403551 DOI: 10.3892/ol.2017.5717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/03/2016] [Indexed: 12/11/2022] Open
Abstract
Considering mucin 1-variable number tandem repeat (MUC1-VNTRn) as a novel target for pancreatic cancer immunotherapy, the present study aimed to screen and identify the pVAX1-MUC1-VNTRn DNA vaccine with the strongest immunogenicity. Following construction of a pVAX1-MUC1-VNTRn plasmid, immature dendritic cells (DCs) were subjected to transfection, and mature DCs were then co-cultured with autologous T-cells. The numbers of cytotoxic T lymphocytes (CTLs) secreting interferon (IFN)-γ were determined using an enzyme-linked immunospot assay, and CytoTox® was also used to examine the MUC1-VNTRn-specific Lethal effect of CTLs on Capan2 cells. Additional in vivo experiments in mice were performed to confirm the antitumor effect of the DNA vaccine candidate. The present study successfully constructed the pVAX1-MUC1-VNTRn plasmid, which expresses the target protein in eukaryotic cells. Additionally, upon uptake of the pVAX1-MUC1-VNTRn plasmid, the immature DCs differentiated into mature DCs. The levels of the DC surface molecules cluster of differentiation (CD) 80, CD86, human leukocyte antigen-antigen D related, interleukin (IL)-12, IL-17 and IFN-γ were significantly higher, while the levels of IL-10 and IL-14 were lower, in mature DCs of the stimulated groups compared with the immature DCs of the non-stimulated groups (all P<0.01). In addition, the MUC1-VNTR6 and MUC1-VNTR9 groups, in which DCs were capable of activating autologous T-cells, showed increased IFN-γ-producing T-cells compared with the other groups (strong MUC1-VNTR1, weak VNTR1, VNTR3, VNTR4 and MUC1-cDNA groups; all P<0.001). In addition, the Lethal effect of CTLs on Capan2 cells in these two groups was stronger compared with the other groups (all P<0.001). Furthermore, the induced protective and therapeutic immune responses in mouse experiments showed that the pVAX1-MUC1-VNTR6DNA vaccine likely possessed the strongest immunogenicity, and its ability to inhibit panc02-MUC1 tumor growth was superior to other DNA vaccines (P<0.01). The present study provides compelling evidence that pVAX1-MUC1-VNTRn has the potential to express the target protein in eukaryotic cells, and thatpVAX1-MUC1-VNTR6 was characterized by the strongest Lethal effect in both in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Yuan-Feng Gong
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Quan-Bo Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ya-Di Liao
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Cong Mai
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Tie-Jun Chen
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Yun-Qiang Tang
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Ru-Fu Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
35
|
Dréau D, Moore LJ, Alvarez-Berrios MP, Tarannum M, Mukherjee P, Vivero-Escoto JL. Mucin-1-Antibody-Conjugated Mesoporous Silica Nanoparticles for Selective Breast Cancer Detection in a Mucin-1 Transgenic Murine Mouse Model. J Biomed Nanotechnol 2016; 12:2172-2184. [PMID: 28522938 PMCID: PMC5431076 DOI: 10.1166/jbn.2016.2318] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucin-1 (MUC1), a transmembrane glycoprotein is aberrantly expressed on ~90% of breast cancer and is an excellent target for nanoparticulate targeted imaging. In this study, the development of a dye-doped NIR emitting mesoporous silica nanoparticles platform conjugated to tumor-specific MUC1 antibody (ab-tMUC1-NIR-MSN) for in vivo optical detection of breast adenocarcinoma tissue is reported. The structural properties, the in vitro and in vivo performance of this nanoparticle-based probe were evaluated. In vitro studies showed that the MSN-based optical imaging nanoprobe is non-cytotoxic and targets efficiently mammary cancer cells overexpressing human tMUC1 protein. In vivo experiments with female C57BL/6 mice indicated that this platform accumulates mainly in the liver and did not induce short-term toxicity. In addition, we demonstrated that the ab-tMUC1-NIR-MSN nanoprobe specifically detects mammary gland tumors overexpressing human tMUC1 in a human MUC1 transgenic mouse model.
Collapse
Affiliation(s)
- Didier Dréau
- Department of Biological Sciences, The University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte NC 28223, USA
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte NC 28223, USA
| | - Laura Jeffords Moore
- Department of Biological Sciences, The University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte NC 28223, USA
| | - Merlis P. Alvarez-Berrios
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte NC 28223, USA; 9201 University City Blvd, Charlotte NC 28223, USA
| | - Mubin Tarannum
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte NC 28223, USA; 9201 University City Blvd, Charlotte NC 28223, USA
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte NC 28223, USA
| | - Pinku Mukherjee
- Department of Biological Sciences, The University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte NC 28223, USA
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte NC 28223, USA
| | - Juan L. Vivero-Escoto
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte NC 28223, USA; 9201 University City Blvd, Charlotte NC 28223, USA
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte NC 28223, USA
| |
Collapse
|
36
|
Moore LJ, Roy LD, Zhou R, Grover P, Wu ST, Curry JM, Dillon LM, Puri PM, Yazdanifar M, Puri R, Mukherjee P, Dréau D. Antibody-Guided In Vivo Imaging for Early Detection of Mammary Gland Tumors. Transl Oncol 2016; 9:295-305. [PMID: 27567952 PMCID: PMC5006816 DOI: 10.1016/j.tranon.2016.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND: Earlier detection of transformed cells using target-specific imaging techniques holds great promise. We have developed TAB 004, a monoclonal antibody highly specific to a protein sequence accessible in the tumor form of MUC1 (tMUC1). We present data assessing both the specificity and sensitivity of TAB 004 in vitro and in genetically engineered mice in vivo. METHODS: Polyoma Middle T Antigen mice were crossed to the human MUC1.Tg mice to generate MMT mice. In MMT mice, mammary gland hyperplasia is observed between 6 and 10 weeks of age that progresses to ductal carcinoma in situ by 12 to 14 weeks and adenocarcinoma by 18 to 24 weeks. Approximately 40% of these mice develop metastasis to the lung and other organs with a tumor evolution that closely mimics human breast cancer progression. Tumor progression was monitored in MMT mice (from ages 8 to 22 weeks) by in vivo imaging following retro-orbital injections of the TAB 004 conjugated to indocyanine green (TAB-ICG). At euthanasia, mammary gland tumors and normal epithelial tissues were collected for further analyses. RESULTS: In vivo imaging following TAB-ICG injection permitted significantly earlier detection of tumors compared with physical examination. Furthermore, TAB-ICG administration in MMT mice enabled the detection of lung metastases while sparing recognition of normal epithelia. CONCLUSIONS: The data highlight the specificity and the sensitivity of the TAB 004 antibody in differentiating normal versus tumor form of MUC1 and its utility as a targeted imaging agent for early detection, tumor monitoring response, as well as potential clinical use for targeted drug delivery.
Collapse
Affiliation(s)
- Laura Jeffords Moore
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 USA
| | - Lopamudra Das Roy
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 USA; OncoTAb, Inc., 243 Bioinformatics, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Ru Zhou
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 USA
| | - Priyanka Grover
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 USA
| | - Shu-Ta Wu
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 USA
| | - Jennifer M Curry
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 USA
| | - Lloye M Dillon
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 USA; OncoTAb, Inc., 243 Bioinformatics, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Priya M Puri
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 USA
| | - Mahboubeh Yazdanifar
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 USA
| | - Rahul Puri
- OncoTAb, Inc., 243 Bioinformatics, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 USA; OncoTAb, Inc., 243 Bioinformatics, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Didier Dréau
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 USA.
| |
Collapse
|
37
|
Sousa AM, Grandgenett PM, David L, Almeida R, Hollingsworth MA, Santos-Silva F. Reflections on MUC1 glycoprotein: the hidden potential of isoforms in carcinogenesis. APMIS 2016; 124:913-924. [PMID: 27538373 DOI: 10.1111/apm.12587] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/03/2016] [Indexed: 12/13/2022]
Abstract
Mucin 1 (MUC1) has been described as the renaissance molecule due to the large set of functions it displays in both normal and neoplastic cells. This membrane-tethered glycoprotein is overexpressed and aberrantly glycosylated in most epithelial cancers, being involved in several processes related with malignant phenotype acquisition. With a highly polymorphic structure, both in the polypeptide and glycan counterparts, MUC1 variability has been associated with susceptibility to several diseases, including cancer. Biochemical features and biological functions have been characterized upon the full-length MUC1 protein, remaining to clarify the real impact on cell dynamics of the plethora of MUC1 isoforms. This review aims to encompass a detailed characterization of MUC1 role in carcinogenesis, highlighting recent findings in cell differentiation and uncovering new evidences of MUC1 isoforms involvement in malignant phenotype.
Collapse
Affiliation(s)
- Andreia M Sousa
- i3S-Institute of Research and Innovation in Health, University of Porto, Porto, Portugal. .,IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Disease, Omaha, NE, USA
| | - Leonor David
- i3S-Institute of Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Raquel Almeida
- i3S-Institute of Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences of the University of Porto, Porto, Portugal
| | | | - Filipe Santos-Silva
- i3S-Institute of Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
38
|
Sousa AM, Rei M, Freitas R, Ricardo S, Caffrey T, David L, Almeida R, Hollingsworth MA, Santos-Silva F. Effect of MUC1/β-catenin interaction on the tumorigenic capacity of pancreatic CD133 + cells. Oncol Lett 2016; 12:1811-1817. [PMID: 27602113 PMCID: PMC4998183 DOI: 10.3892/ol.2016.4888] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/13/2016] [Indexed: 01/08/2023] Open
Abstract
Despite the fact that the biological function of cluster of differentiation (CD)133 remains unclear, this glycoprotein is currently used in the identification and isolation of tumor-initiating cells from certain malignant tumors, including pancreatic cancer. In the present study, the involvement of mucin 1 (MUC1) in the signaling pathways of a highly tumorigenic CD133+ cellular subpopulation sorted from the pancreatic cancer cell line HPAF-II was evaluated. The expression of MUC1-cytoplasmic domain (MUC1-CD) and oncogenic signaling transducers (epidermal growth factor receptor, protein kinase C delta, glycogen synthase kinase 3 beta and growth factor receptor-bound protein 2), as well as the association between MUC1 and β-catenin, were characterized in HPAF-II CD133+ and CD133low cell subpopulations and in tumor xenografts generated from these cells. Compared with HPAF CD133low cells, HPAF-II CD133+ cancer cells exhibited increased tumorigenic potential in immunocompromised mice, which was associated with overexpression of MUC1 and with the accordingly altered expression profile of MUC1-associated signaling partners. Additionally, MUC1-CD/β-catenin interactions were increased both in the HPAF-II CD133+ cell subpopulation and derived tumor xenografts compared with HPAF CD133low cells. These results suggest that, in comparison with HPAF CD133low cells, CD133+ cells exhibit higher expression of MUC1, which contributes to their tumorigenic phenotype through increased interaction between MUC1-CD and β-catenin, which in turn modulates oncogenic signaling cascades.
Collapse
Affiliation(s)
- Andreia Mota Sousa
- Institute of Research and Innovation in Health, University of Porto, Porto 4200-135, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-135, Portugal
| | - Margarida Rei
- Institute of Research and Innovation in Health, University of Porto, Porto 4200-135, Portugal
| | - Rita Freitas
- Institute of Research and Innovation in Health, University of Porto, Porto 4200-135, Portugal
| | - Sara Ricardo
- Institute of Research and Innovation in Health, University of Porto, Porto 4200-135, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-135, Portugal; Faculty of Medicine of the University of Porto, Porto 4200-319, Portugal
| | - Thomas Caffrey
- Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Leonor David
- Institute of Research and Innovation in Health, University of Porto, Porto 4200-135, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-135, Portugal; Faculty of Medicine of the University of Porto, Porto 4200-319, Portugal
| | - Raquel Almeida
- Institute of Research and Innovation in Health, University of Porto, Porto 4200-135, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-135, Portugal; Faculty of Medicine of the University of Porto, Porto 4200-319, Portugal; Faculty of Sciences of the University of Porto, Porto 4169-007, Portugal
| | - Michael Anthony Hollingsworth
- Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Filipe Santos-Silva
- Institute of Research and Innovation in Health, University of Porto, Porto 4200-135, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-135, Portugal; Faculty of Medicine of the University of Porto, Porto 4200-319, Portugal
| |
Collapse
|
39
|
A novel association of neuropilin-1 and MUC1 in pancreatic ductal adenocarcinoma: role in induction of VEGF signaling and angiogenesis. Oncogene 2016; 35:5608-5618. [PMID: 26804176 PMCID: PMC4960005 DOI: 10.1038/onc.2015.516] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 11/03/2015] [Accepted: 11/27/2015] [Indexed: 12/28/2022]
Abstract
We report that MUC1, a transmembrane glycoprotein that is overexpressed in >80% of pancreatic ductal adenocarcinoma (PDA) induced a pro-angiogenic tumor microenvironment by increasing the levels of neuropilin-1 (NRP1, a co-receptor of VEGF) and its ligand, VEGF. Expression of tumor-associated MUC1 (tMUC1) positively correlated with NRP1 levels in human and mouse PDA. Further, tMUC1hi PDA cells secreted high levels of VEGF and expressed high levels of VEGF receptor 2 and its phosphorylated forms as compared to tMUC1low/null PDA. This enabled the tMUC1hi/NRP1hi PDA cells to a) induce endothelial cell tube formation, b) generate long ectopic blood vessels and c) enhance distant metastasis in a zebrafish xenograft model. Concurrently, the proteins associated with epithelial to mesenchymal transition, N-cadherin and Vimentin, were highly induced in these tMUC1/NRP1hi PDA cells. Hence, blocking signaling via the NRP1-VEGF axis significantly reduced tube formation, new vessel generation, and metastasis induced by tMUC1hi PDA cells. Finally, we show that blocking the interaction between VEGF165 and NRP1 with a NRP1 antagonist significantly reduced VEGFR signaling and PDA tumor growth in vivo. Taken together, our data suggests a novel molecular mechanism by which tMUC1 may modulate NRP1-dependent VEGFR signaling in PDA cells.
Collapse
|
40
|
Yazdanifar M, Zhou R, Mukherjee P. Emerging immunotherapeutics in adenocarcinomas: A focus on CAR-T cells. CURRENT TRENDS IN IMMUNOLOGY 2016; 17:95-115. [PMID: 28659689 PMCID: PMC5484157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
More than 80% of all cancers arise from epithelial cells referred to as carcinomas. Adenocarcinomas are the most common type of carcinomas arising from the specialized epithelial cells that line the ducts of our major organs. Despite many advances in cancer therapies, metastatic and treatment-refractory cancers remain the 2nd leading cause of death. Immunotherapy has offered potential opportunities with specific targeting of tumor cells and inducing remission in many cancer patients. Numerous therapies using antibodies as antagonists or checkpoint inhibitors/immune modulators, peptide or cell vaccines, cytokines, and adoptive T cell therapies have been developed. The most innovative immunotherapy approach so far has been the use of engineered T cell, also referred to as chimeric antigen receptor T cells (CAR-T cells). CAR-T cells are genetically modified naïve T cells that express a chimeric molecule which comprises of the antigen-recognition domains (scFv) of an anti-tumor antibody and one, two, or three intracellular signaling domains of the T cell receptor (TCR). When these engineered T cells recognize and bind to the tumor antigen target via the scFv fragment, a signal is sent to the intracellular TCR domains of the CAR, leading to activation of the T cells to become cytolytic against the tumor cells. CAR-T cell therapy has shown tremendous success for certain hematopoietic malignancies, but this success has not been extrapolated to adenocarcinomas. This is due to multiple factors associated with adenocarcinoma that are different from hematopoietic tumors. Although many advances have been made in targeting multiple cancers by CAR-T cells, clinical trials have shown adverse effects and toxicity related to this treatment. New strategies are yet to be devised to manage side effects associated with CAR-T cell therapies. In this review, we report some of the promising immunotherapeutic strategies being developed for treatment of most common adenocarcinomas with particular emphasis on the future generation of CAR-T cell therapy.
Collapse
Affiliation(s)
| | | | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| |
Collapse
|
41
|
Ferreira JA, Peixoto A, Neves M, Gaiteiro C, Reis CA, Assaraf YG, Santos LL. Mechanisms of cisplatin resistance and targeting of cancer stem cells: Adding glycosylation to the equation. Drug Resist Updat 2016; 24:34-54. [DOI: 10.1016/j.drup.2015.11.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/09/2015] [Accepted: 11/18/2015] [Indexed: 02/06/2023]
|
42
|
Chen C, Wu CQ, Chen TW, Tang MY, Zhang XM. Molecular Imaging with MRI: Potential Application in Pancreatic Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:624074. [PMID: 26579537 PMCID: PMC4633535 DOI: 10.1155/2015/624074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/02/2015] [Accepted: 10/04/2015] [Indexed: 12/11/2022]
Abstract
Despite the variety of approaches that have been improved to achieve a good understanding of pancreatic cancer (PC), the prognosis of PC remains poor, and the survival rates are dismal. The lack of early detection and effective interventions is the main reason. Therefore, considerable ongoing efforts aimed at identifying early PC are currently being pursued using a variety of methods. In recent years, the development of molecular imaging has made the specific targeting of PC in the early stage possible. Molecular imaging seeks to directly visualize, characterize, and measure biological processes at the molecular and cellular levels. Among different imaging technologies, the magnetic resonance (MR) molecular imaging has potential in this regard because it facilitates noninvasive, target-specific imaging of PC. This topic is reviewed in terms of the contrast agents for MR molecular imaging, the biomarkers related to PC, targeted molecular probes for MRI, and the application of MRI in the diagnosis of PC.
Collapse
Affiliation(s)
- Chen Chen
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, Sichuan 637000, China
| | - Chang Qiang Wu
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, Sichuan 637000, China
| | - Tian Wu Chen
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, Sichuan 637000, China
| | - Meng Yue Tang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, Sichuan 637000, China
| | - Xiao Ming Zhang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, Sichuan 637000, China
| |
Collapse
|
43
|
Exploring the role and diversity of mucins in health and disease with special insight into non-communicable diseases. Glycoconj J 2015; 32:575-613. [PMID: 26239922 DOI: 10.1007/s10719-015-9606-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022]
Abstract
Mucins are major glycoprotein components of the mucus that coats the surfaces of cells lining the respiratory, digestive, gastrointestinal and urogenital tracts. They function to protect epithelial cells from infection, dehydration and physical or chemical injury, as well as to aid the passage of materials through a tract i.e., lubrication. They are also implicated in the pathogenesis of benign and malignant diseases of secretory epithelial cells. In Human there are two types of mucins, membrane-bound and secreted that are originated from mucous producing goblet cells localized in the epithelial cell layer or in mucous producing glands and encoded by MUC gene. Mucins belong to a heterogeneous family of high molecular weight proteins composed of a long peptidic chain with a large number of tandem repeats that form the so-called mucin domain. The molecular weight is generally high, ranging between 0.2 and 10 million Dalton and all mucins contain one or more domains which are highly glycosylated. The size and number of repeats vary between mucins and the genetic polymorphism represents number of repeats (VNTR polymorphisms), which means the size of individual mucins can differ substantially between individuals which can be used as markers. In human it is only MUC1 and MUC7 that have mucin domains with less than 40% serine and threonine which in turn could reduce number of PTS domains. Mucins can be considered as powerful two-edged sword, as its normal function protects from unwanted substances and organisms at an arm's length while, malfunction of mucus may be an important factor in human diseases. In this review we have unearthed the current status of different mucin proteins in understanding its role and function in various non-communicable diseases in human with special reference to its organ specific locations. The findings described in this review may be of direct relevance to the major research area in biomedicine with reference to mucin and mucin associated diseases.
Collapse
|
44
|
Abstract
OBJECTIVE Eighty percent of pancreatic ductal adenocarcinomas (PDAs) overexpress mucin 1 (MUC1), a transmembrane mucin glycoprotein. MUC1(high) PDA patients also express high levels of cyclooxygenase 2 (COX-2) and show poor prognosis. The cytoplasmic tail of MUC1 (MUC1-CT) partakes in oncogenic signaling, resulting in accelerated cancer progression. Our aim was to understand the regulation of Cox-2 expression by MUC1. METHODS Levels of COX-2 and MUC1 were determined in MUC1(-/-), MUC1(low), and MUC1(high) PDA cells and tumors using reverse transcriptase-polymerase chain reaction, Western blot, and immunohistochemistry. Proliferative and invasive potential was assessed using MTT and Boyden chamber assays. Chromatin immunoprecipitation was performed to evaluate binding of MUC1-CT to the promoter of COX-2 gene. RESULTS Significantly higher levels of COX-2 mRNA and protein were detected in MUC1(high) versus MUC1(low/null) cells, which were recapitulated in vivo. In addition, deletion of MUC1 gene and transient knockdown of MUC1 led to decreased COX-2 level. Also, MUC1-CT associated with the COX-2 promoter at ∼1000 base pairs upstream of the transcription start site, the same gene locus where nuclear factor κB p65 associates with the COX-2 promoter. CONCLUSIONS Data supports a novel regulation of COX-2 gene by MUC1 in PDA, the intervention of which may lead to a better therapeutic targeting in PDA patients.
Collapse
|
45
|
Chen J, Guo XZ, Li HY, Wang D, Shao XD. Comparison of cytotoxic T lymphocyte responses against pancreatic cancer induced by dendritic cells transfected with total tumor RNA and fusion hybrided with tumor cell. Exp Biol Med (Maywood) 2015; 240:1310-8. [PMID: 25736302 DOI: 10.1177/1535370215571884] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/21/2014] [Indexed: 12/28/2022] Open
Abstract
Pancreatic cancer (PC) is a deadly human malignancy. Dendritic cell (DC)-based immunotherapy with whole tumor antigens demonstrates potential efficiency in cancer treatment. Tumor RNA and tumor fusion hybrid cells are sources of whole tumor antigens for preparing DC tumor vaccines. However, the efficacy of these sources in eliciting immune responses against PC has not yet to be directly compared. In the present study, patient-derived PC cells and DCs were fused (DC-tumor hybrids) and primary cultured PC cell-derived total RNA was electroporated into autologous DCs (DC-tumor RNA). The antitumor immune responses induced by DC-tumor hybrids and DC-tumor RNA were compared directly. The results showed that both RNA and hybrid methodologies could induce tumor-specific cytotoxic T lymphocyte (CTL) responses, but pulsing DCs with total tumor RNA could induce a higher frequency of activated CTLs and T-helper cells than fusing DCs with autologous tumor cells. In addition, DC-tumor RNA triggered stronger autologous tumor cell lysis than DC-tumor hybrids. It could be concluded that DCs pulsed with whole tumor RNA are superior to those fused with tumor cells in priming anti-PC CTL responses. Electroporation with total tumor RNA may be more suitable for DC-based PC vaccination.
Collapse
Affiliation(s)
- Jiang Chen
- Department of Gastroenterology, Shenyang General Hospital of PLA, Shenyang City 110016, Liaoning, P.R. China
| | - Xiao-Zhong Guo
- Department of Gastroenterology, Shenyang General Hospital of PLA, Shenyang City 110016, Liaoning, P.R. China
| | - Hong-Yu Li
- Department of Gastroenterology, Shenyang General Hospital of PLA, Shenyang City 110016, Liaoning, P.R. China
| | - Di Wang
- Department of Gastroenterology, Shenyang General Hospital of PLA, Shenyang City 110016, Liaoning, P.R. China
| | - Xiao-Dong Shao
- Department of Gastroenterology, Shenyang General Hospital of PLA, Shenyang City 110016, Liaoning, P.R. China
| |
Collapse
|
46
|
Chen Z, Gulzar ZG, St. Hill CA, Walcheck B, Brooks JD. Increased expression of GCNT1 is associated with altered O-glycosylation of PSA, PAP, and MUC1 in human prostate cancers. Prostate 2014; 74:1059-67. [PMID: 24854630 PMCID: PMC5862140 DOI: 10.1002/pros.22826] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/24/2014] [Indexed: 11/06/2022]
Abstract
BACKGROUND Protein glycosylation is a common posttranslational modification and glycan structural changes have been observed in several malignancies including prostate cancer. We hypothesized that altered glycosylation could be related to differences in gene expression levels of glycoprotein synthetic enzymes between normal and malignant prostate tissues. METHODS We interrogated prostate cancer gene expression data for reproducible changes in expression of glycoprotein synthetic enzymes. Over-expression of GCNT1 was validated in prostate samples using RT-PCR. ELISA was used to measure core 2 O-linked glycan sialyl Lewis X (sLe(x) ) of prostate specific antigen (PSA), Mucin1 (MUC1), and prostatic acidic phosphatase (PAP) proteins. RESULTS A key glycosyltransferase, GCNT1, was consistently over-expressed in several prostate cancer gene expression datasets. RT-PCR confirmed increased transcript levels in cancer samples compared to normal prostate tissue in fresh-frozen prostate tissue samples. ELISA using PSA, PAP, and MUC1 capture antibodies and a specific core 2 O-linked sLe(x) detection antibody demonstrated elevation of this glycan structure in cancer compared to normal tissues for MUC1 (P = 0.01), PSA (P = 0.03) and near significant differences in PAP sLe(x) levels (P = 0.06). MUC1, PSA and PAP protein levels alone were not significantly different between paired normal and malignant prostate samples. CONCLUSIONS GCNT1 is over-expressed in prostate cancer and is associated with higher levels of core 2 O-sLe(x) in PSA, PAP and MUC1 proteins. Alterations of O-linked glycosylation could be important in prostate cancer biology and could provide a new avenue for development of prostate cancer specific glycoprotein biomarkers.
Collapse
Affiliation(s)
- Zuxiong Chen
- Department of Urology, Stanford University, Stanford, California
| | | | - Catherine A. St. Hill
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Bruce Walcheck
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - James D. Brooks
- Department of Urology, Stanford University, Stanford, California
- Correspondence to: James D. Brooks, Department of Urology, Room S287, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5118.
| |
Collapse
|
47
|
Nath S, Mukherjee P. MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med 2014; 20:332-42. [PMID: 24667139 DOI: 10.1016/j.molmed.2014.02.007] [Citation(s) in RCA: 566] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/16/2014] [Accepted: 02/24/2014] [Indexed: 12/15/2022]
Abstract
The transmembrane glycoprotein Mucin 1 (MUC1) is aberrantly glycosylated and overexpressed in a variety of epithelial cancers, and plays a crucial role in progression of the disease. Tumor-associated MUC1 differs from the MUC1 expressed in normal cells with regard to its biochemical features, cellular distribution, and function. In cancer cells, MUC1 participates in intracellular signal transduction pathways and regulates the expression of its target genes at both the transcriptional and post-transcriptional levels. This review highlights the structural and functional differences that exist between normal and tumor-associated MUC1. We also discuss the recent advances made in the use of MUC1 as a biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Sritama Nath
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Pinku Mukherjee
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
48
|
Kidiyoor A, Schettini J, Besmer DM, Rego SL, Nath S, Curry JM, Roy LD, Dréau D, Mukherjee P. Pancreatic Cancer Cells Isolated from Muc1-Null Tumors Favor the Generation of a Mature Less Suppressive MDSC Population. Front Immunol 2014; 5:67. [PMID: 24605110 PMCID: PMC3932420 DOI: 10.3389/fimmu.2014.00067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 02/07/2014] [Indexed: 01/07/2023] Open
Abstract
Mucin 1 (MUC1) is a transmembrane mucin glycoprotein that is over-expressed and aberrantly glycosylated in >80% of human pancreatic ductal adenocarcinoma (PDA) and is associated with poor prognosis. To understand the role of MUC1 in PDA, we have recently developed two mouse models of spontaneous PDA, one that expresses full-length human MUC1 transgene (KCM mice) and one that is null for MUC1 (KCKO mice). We have previously reported that KCM mice express high levels of myeloid derived suppressor cells (MDSCs) in their tumors and develop highly aggressive PDA. To further understand the underlying mechanism for high MDSC levels in KCM-tumors, we generated primary cell lines from KCM and KCKO-tumors. In this study, we report that MDSCs derived using KCM cells express significantly higher levels of arginase 1 and inducible nitric oxide synthase (markers associated with immune suppression) and lower levels of CD115 (a marker associated with maturation of myeloid cells) as compared to KCKO-derived MDSCs. Functionally, KCM-derived MDSCs secrete significantly higher levels of urea and nitric oxide (NO) when co-cultured with normal splenic cells as compared to KCKO-derived MDSCs. Data indicates that KCM-derived MDSCs remain immature and are more suppressive as compared to KCKO-derived MDSCs. This was further corroborated in vivo where MDSCs isolated from KCM-tumor-bearing mice retained their immature state and were highly suppressive as compared to MDSCs derived from KCKO-tumor-bearing mice. Finally, we show that KCM cells secrete significantly higher levels of prostaglandin E2 (PGE2), a COX-2 metabolite and a known driver of suppressive MDSCs as compared to KCKO cells. Thus, inhibiting PGE2 with a specific COX-2 inhibitor reverses the immunosuppressive and immature phenotype of KCM-derived MDSCs. This is the first report that clearly suggests a functional role of pancreatic tumor-associated MUC1 in the development of functional MDSCs.
Collapse
Affiliation(s)
- Amritha Kidiyoor
- Department of Biology, University of North Carolina at Charlotte , Charlotte, NC , USA
| | - Jorge Schettini
- Department of Biology, University of North Carolina at Charlotte , Charlotte, NC , USA
| | - Dahlia Marie Besmer
- Department of Biology, University of North Carolina at Charlotte , Charlotte, NC , USA
| | - Stephen Lee Rego
- Department of Biology, University of North Carolina at Charlotte , Charlotte, NC , USA
| | - Sritama Nath
- Department of Biology, University of North Carolina at Charlotte , Charlotte, NC , USA
| | - Jennifer Marie Curry
- Department of Biology, University of North Carolina at Charlotte , Charlotte, NC , USA
| | - Lopamudra Das Roy
- Department of Biology, University of North Carolina at Charlotte , Charlotte, NC , USA
| | - Didier Dréau
- Department of Biology, University of North Carolina at Charlotte , Charlotte, NC , USA
| | - Pinku Mukherjee
- Department of Biology, University of North Carolina at Charlotte , Charlotte, NC , USA
| |
Collapse
|
49
|
Vaz AP, Ponnusamy MP, Seshacharyulu P, Batra SK. A concise review on the current understanding of pancreatic cancer stem cells. JOURNAL OF CANCER STEM CELL RESEARCH 2014; 2:e1004. [PMID: 26451384 PMCID: PMC4594952 DOI: 10.14343/jcscr.2014.2e1004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several evidences suggest that a small population of cells known as cancer stem cells (CSCs) or tumor initiating stemlike cells within a tumor is capable of tumor initiation, maintenance and propagation. Recent publications have supported the existence of CSCs in pancreatic tumors. The pancreatic stem/progenitor cells, which express self-renewal markers, are identified to be present in the peribiliary gland. Based on the CSC hypothesis, mutations can lead to the transformation of stem/progenitor cells or differentiated cells into CSCs. The pancreatic CSCs express a wide array of markers such as CD44, CD24, ESA, CD133, c-MET, CXCR4, PD2/Paf1 and ALDH1. The CSCs are isolated based on surface markers or by other methods such as ALDEFLOUR assay or Hoechst 33342 dye exclusion assay. The isolated cells are further characterized by in vitro and in vivo tumorigenic assays. The most important characteristics of CSCs are its ability to self-renew and impart drug resistance towards chemotherapy. Moreover, these distinct cells display alteration of signaling pathways pertaining to CSCs such as Notch, Wnt and Shh to maintain the self-renewal process. Failure of cancer treatment could be attributed to the therapy resistance exhibited by the CSCs. Metastasis and drug resistance in pancreatic cancer is associated with epithelial to mesenchymal transition (EMT). Furthermore, mucins, the high molecular weight proteins are found to be associated with pancreatic CSCs and EMT. Understanding the underlying molecular pathways that aid in the metastatic and drug resistant nature of these distinct cells will aid in targeting these cells. Overall, this review focuses on the various aspects of pancreatic adult/stem progenitors, CSC hypothesis, its markers, pathways, niche, EMT and novel therapeutic drugs used for the elimination of pancreatic CSCs.
Collapse
Affiliation(s)
- Arokia Priyanka Vaz
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
50
|
|