1
|
Spot 42 sRNA regulates arabinose-inducible araBAD promoter activity by repressing synthesis of the high-affinity low-capacity arabinose transporter. J Bacteriol 2016; 199:e00691-16. [PMID: 27849174 DOI: 10.1128/jb.00691-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The L-arabinose-inducible araBAD promoter (PBAD) allows tightly controlled and tunable expression of genes of interest in a broad range of bacterial species. It has been successfully used to study bacterial sRNA regulation, where PBAD drives expression of target mRNA translational fusions. Here we report that in Escherichia coli, Spot 42 sRNA can regulate PBAD promoter activity by affecting arabinose uptake. We demonstrate that Spot 42 sRNA represses araF, a gene encoding the AraF subunit of the high-affinity low-capacity arabinose transporter AraFGH, through direct base pairing interactions. We further show that endogenous Spot 42 sRNA is sufficient to repress araF expression under various growth conditions. Finally, we demonstrate this posttranscriptional repression has a biological consequence, decreasing the induction of PBAD at low levels of arabinose. This problem can be circumvented using strategies reported previously for avoiding all-or-none induction behavior, that is through constitutive expression of the low-affinity high-capacity arabinose transporter AraE or induction with higher concentration of inducers. This work adds araF to the set of Spot 42-regulated genes, in agreement with previous studies suggesting that Spot 42, itself negatively regulated by cAMP-CRP complex, reinforces the catabolite repression network. IMPORTANCE The bacterial arabinose inducible system is widely used for titratable control of gene expression. We demonstrate here that a post-transcriptional mechanism mediated by the Spot 42 sRNA contributes to the functionality of the PBAD system at subsaturating inducer concentrations by affecting inducer uptake. Our finding extends the inputs into the known transcriptional control for the PBAD system, and has implications for improving its usage for tunable gene expression.
Collapse
|
2
|
Arts IS, Gennaris A, Collet JF. Reducing systems protecting the bacterial cell envelope from oxidative damage. FEBS Lett 2015; 589:1559-68. [DOI: 10.1016/j.febslet.2015.04.057] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/29/2015] [Indexed: 02/07/2023]
|
3
|
The transport and mediation mechanisms of the common sugars in Escherichia coli. Biotechnol Adv 2014; 32:905-19. [DOI: 10.1016/j.biotechadv.2014.04.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 03/23/2014] [Accepted: 04/18/2014] [Indexed: 11/17/2022]
|
4
|
Construction of recombinant attenuated Salmonella enterica serovar typhimurium vaccine vector strains for safety in newborn and infant mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:354-62. [PMID: 20053874 DOI: 10.1128/cvi.00412-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recombinant bacterial vaccines must be safe, efficacious, and well tolerated, especially when administered to newborns and infants to prevent diseases of early childhood. Many means of attenuation have been shown to render vaccine strains susceptible to host defenses or unable to colonize lymphoid tissue effectively, thus decreasing their immunogenicity. We have constructed recombinant attenuated Salmonella vaccine strains that display high levels of attenuation while retaining the ability to induce high levels of immunogenicity and are well tolerated in high doses when administered to infant mice as young as 24 h old. The strains contain three means of regulated delayed attenuation, as well as a constellation of additional mutations that aid in enhancing safety, regulate antigen expression, and reduce disease symptoms commonly associated with Salmonella infection. The vaccine strains are well tolerated when orally administered to infant mice 24 h old at doses as high as 3.5 x 10(8) CFU.
Collapse
|
5
|
Salmonella enterica serovar typhimurium strains with regulated delayed attenuation in vivo. Infect Immun 2008; 77:1071-82. [PMID: 19103774 DOI: 10.1128/iai.00693-08] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant bacterial vaccines must be fully attenuated for animal or human hosts to avoid inducing disease symptoms while exhibiting a high degree of immunogenicity. Unfortunately, many well-studied means for attenuating Salmonella render strains more susceptible to host defense stresses encountered following oral vaccination than wild-type virulent strains and/or impair their ability to effectively colonize the gut-associated and internal lymphoid tissues. This thus impairs the ability of recombinant vaccines to serve as factories to produce recombinant antigens to induce the desired protective immunity. To address these problems, we designed strains that display features of wild-type virulent strains of Salmonella at the time of immunization to enable strains first to effectively colonize lymphoid tissues and then to exhibit a regulated delayed attenuation in vivo to preclude inducing disease symptoms. We recently described one means to achieve this based on a reversible smooth-rough synthesis of lipopolysaccharide O antigen. We report here a second means to achieve regulated delayed attenuation in vivo that is based on the substitution of a tightly regulated araC P(BAD) cassette for the promoters of the fur, crp, phoPQ, and rpoS genes such that expression of these genes is dependent on arabinose provided during growth. Thus, following colonization of lymphoid tissues, the Fur, Crp, PhoPQ, and/or RpoS proteins cease to be synthesized due to the absence of arabinose such that attenuation is gradually manifest in vivo to preclude induction of diseases symptoms. Means for achieving regulated delayed attenuation can be combined with other mutations, which together may yield safe efficacious recombinant attenuated Salmonella vaccines.
Collapse
|
6
|
Abstract
Escherichia coli and Salmonella enterica serovar Typhimurium exhibit a remarkable versatility in the usage of different sugars as the sole source of carbon and energy, reflecting their ability to make use of the digested meals of mammalia and of the ample offerings in the wild. Degradation of sugars starts with their energy-dependent uptake through the cytoplasmic membrane and is carried on further by specific enzymes in the cytoplasm, destined finally for degradation in central metabolic pathways. As variant as the different sugars are, the biochemical strategies to act on them are few. They include phosphorylation, keto-enol isomerization, oxido/reductions, and aldol cleavage. The catabolic repertoire for using carbohydrate sources is largely the same in E. coli and in serovar Typhimurium. Nonetheless, significant differences are found, even among the strains and substrains of each species. We have grouped the sugars to be discussed according to their first step in metabolism, which is their active transport, and follow their path to glycolysis, catalyzed by the sugar-specific enzymes. We will first discuss the phosphotransferase system (PTS) sugars, then the sugars transported by ATP-binding cassette (ABC) transporters, followed by those that are taken up via proton motive force (PMF)-dependent transporters. We have focused on the catabolism and pathway regulation of hexose and pentose monosaccharides as well as the corresponding sugar alcohols but have also included disaccharides and simple glycosides while excluding polysaccharide catabolism, except for maltodextrins.
Collapse
Affiliation(s)
- Christoph Mayer
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
7
|
Abstract
A kinetic model is presented based on the simplest plausible mechanism for bacterial binding protein-dependent transport. The transport phenotypes of the 18 variant arabinose-binding proteins analyzed by Kehres and Hogg (1992, Protein Sci. 1, 1652-1660) (wild type and 17 mutants) are interpreted to mean that in wild-type arabinose uptake the forward transport rate (k(for)) greatly exceeds the dissociation rate (kund) of a binding protein docked with the AraG:AraH membrane complex, and that k(for) dominance is preserved in all of the binding protein surface mutants. The assumptions and predictions of the model are consistent with existing data from other periplasmic transport systems.
Collapse
Affiliation(s)
- D G Kehres
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
8
|
Kehres DG, Hogg RW. Escherichia coli K12 arabinose-binding protein mutants with altered transport properties. Protein Sci 1992; 1:1652-60. [PMID: 1304895 PMCID: PMC2142127 DOI: 10.1002/pro.5560011213] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The arabinose-binding protein (ABP) of Escherichia coli binds L-arabinose in the periplasm and delivers it to a cytoplasmic membrane complex consisting of the AraG and AraH proteins, for uptake into the cell. To study the interaction between the soluble and membrane components of this periplasmic transport system, regions of the ABP surface containing the opening of the arabinose-binding cleft were subjected to site-directed mutagenesis. Thirty-eight ABP variants containing one to three amino acid substitutions were recovered. ABP variants were expressed with wild-type AraG and AraH from a plasmid, in a strain lacking the chromosomal araFGH operon, and the whole cell uptake parameters, Ven (maximum initial velocity of arabinose entry) and K(en) (concentration of arabinose yielding half-maximal entry) were determined. Twenty-four mutants had normal Ven values, 3 mutants had Ven and K(en) values twice wild type, and 11 mutants had Ven and K(en) values 20-50% of wild type. Binding proteins that had altered uptake properties were each expressed, processed, and localized to the periplasm at levels equivalent to wild type. The mutant binding proteins behaved the same as wild type during purification, and each had a Kd (dissociation constant for bound arabinose) comparable to that of wild-type ABP. Mutations that resulted in altered uptake identified nine amino acids surrounding the arabinose-binding cleft, all of which are charged in the wild-type protein, and all of whose side chains project outward from the cleft. The evidence suggests that this surface of the binding protein and these nine charged loci play a major role in ABP interactions with the membrane complex.
Collapse
Affiliation(s)
- D G Kehres
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | |
Collapse
|
9
|
Abstract
Expression plasmids containing various portions of araFGH operon sequences were assayed for their ability to facilitate the high-affinity L-arabinose transport process in a strain lacking the chromosomal copy of this operon. Accumulation studies demonstrated that the specific induction of all three operon coding sequences was necessary to restore high-affinity L-arabinose transport. Kinetic analysis of this genetically reconstituted transport system indicated that it functions with essentially wild-type parameters. Therefore, L-arabinose-binding protein-mediated transport appears to require only two inducible membrane-associated components (araG and araH) in addition to the binding protein (araF).
Collapse
Affiliation(s)
- B F Horazdovsky
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | | |
Collapse
|
10
|
Abstract
Various portions of the "high-affinity" L-arabinose transport operon were cloned into the plasmid expression vector pKK223-3 and the operon-encoded protein products were identified. The results indicate that three proteins are encoded by this operon. The first is a 33,000 Mr protein that is the product of the promoter-proximal L-arabinose binding protein coding sequence, araF. A 52,000 Mr protein is encoded by sequence 3' to araF and has been assigned to the araG locus. The sequence 3' to araG encodes a 31,000 Mr protein that has been assigned to the araH locus. Both the araG and araH gene products are localized in the membrane fraction of the cell, implying a role in the membrane-associated complex of the high-affinity L-arabinose transport system. Nuclease S1 protection studies indicate that two operon message populations are present in the cell, a full-length operon transcript and a seven- to tenfold more abundant binding protein-specific message. The relative abundance of these two message populations correlates with the differential expression of the binding protein and the membrane-associated proteins of the transport system.
Collapse
Affiliation(s)
- B F Horazdovsky
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106
| | | |
Collapse
|
11
|
Lee JH, Russo RJ, Heffernan L, Wilcox G. Regulation of L-arabinose transport in Salmonella typhimurium LT2. MOLECULAR & GENERAL GENETICS : MGG 1982; 185:136-41. [PMID: 6283309 DOI: 10.1007/bf00333803] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The inducible L-arabinose transport system was characterized in Salmonella typhimurium LT2. Only one L-arabinose transport system with a Km of 2 X 10(-4) M was identified. The results suggested that araE may be the only gene which codes for L-arabinose transport activity under the conditions tested. An araE-lac fusion strain was used to study the induction of the araE gene. No araE expression was detected when the L-arabinose concentration was lower than 1 mM. The expression of araE reached a maximum in the presence of 50 mM L-arabinose, and was significantly reduced in the presence of 50 mM L-arabinose, and was significantly reduced in the presence of D-glucose. Expression of the araBAD and araE genes was coordinately regulated. The concentration of L-arabinose that allowed maximum araBAD gene expression was 50-fold lower in an araE+ strain compared to an araE strain.
Collapse
|
12
|
Mao B, Pear M, McCammon J, Quiocho F. Hinge-bending in L-arabinose-binding protein. The “Venus's-flytrap” model. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(19)68161-5] [Citation(s) in RCA: 206] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
|
14
|
Daruwalla KR, Paxton AT, Henderson PJ. Energization of the transport systems for arabinose and comparison with galactose transport in Escherichia coli. Biochem J 1981; 200:611-27. [PMID: 6282256 PMCID: PMC1163584 DOI: 10.1042/bj2000611] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. Strains of Escherichia coli were obtained containing either the AraE or the AraF transport system for arabinose. AraE+,AraF- strains effected energized accumulation and displayed an arabinose-evoked alkaline pH change indicative of arabinose-H+ symport. In contrast, AraE-,AraF+ strains accumulated arabinose but did not display H+ symport. 2. The ability of different sugars and their derivatives to elicit sugar-H+ symport in AraE+ strains was examined. Only L-arabinose and D-fucose were good substrates, and arabinose was the only inducer. 3. Membrane vesicles prepared from an AraE+,AraF+ strain accumulated the sugar, energized most efficiently by the respiratory substrates ascorbate + phenazine methosulphate. Addition of arabinose or fucose to an anaerobic suspension of membrane vesicles caused an alkaline pH change indicative or sugar-H+ symport on the membrane-bound transport system. 4. Kinetic studies and the effects of arsenate and uncoupling agents in intact cells and membrane vesicles gave further evidence that AraE is a low-affinity membrane-bound sugar-H+ symport system and that AraF is a binding-protein-dependent high-affinity system that does not require a transmembrane protonmotive force for energization. 5. The interpretation of these results is that arabinose transport into E. coli is energized by an electrochemical gradient of protons (AraE system) or by phosphate bond energy (AraF system). 6. In batch cultures the rates of growth and carbon cell yields on arabinose were lower in AraE-,AraF+ strains than in AraE+,AraF- or AraE+,AraF+ strains. The AraF system was more susceptible to catabolite repression than was the AraE system. 7. The properties of the two transport systems for arabinose are compared with those of the genetically and biochemically distinct transport systems for galactose, GalP and MglP. It appears that AraE is analogous to GalP, and AraF to MglP.
Collapse
|
15
|
Clark AF, Hogg RW. High-affinity arabinose transport mutants of Escherichia coli: isolation and gene location. J Bacteriol 1981; 147:920-4. [PMID: 7024251 PMCID: PMC216128 DOI: 10.1128/jb.147.3.920-924.1981] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The gene araF, the product of which is the L-arabinose-binding protein--a component of the high-affinity L-arabinose transport system, was located on the Escherichia coli linkage map at 45 min. We established this location using bacteriophage P2 eductates and bacteriophage P1 cotransduction frequencies with the adjacent genetic loci, his (histidine biosynthesis) and mgl (methylgalactoside transport). In addition, we isolated a number of mutants that phenotypically exhibited altered high-affinity L-arabinose transport capacities. At least two of these mutations were located in the araF gene, as binding protein purified from these strains exhibited altered in vitro arabinose-binding properties.
Collapse
|
16
|
|
17
|
|