1
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2021-mid-2023). Electrophoresis 2024; 45:165-198. [PMID: 37670208 DOI: 10.1002/elps.202300152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
This review article brings a comprehensive survey of developments and applications of high-performance capillary and microchip electromigration methods (zone electrophoresis in a free solution or in sieving media, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, micropreparation, and physicochemical characterization of peptides in the period from 2021 up to ca. the middle of 2023. Progress in the study of electromigration properties of peptides and various aspects of their analysis, such as sample preparation, adsorption suppression, electroosmotic flow regulation, and detection, are presented. New developments in the particular capillary electromigration methods are demonstrated, and several types of their applications are reported. They cover qualitative and quantitative analysis of synthetic or isolated peptides and determination of peptides in complex biomatrices, peptide profiling of biofluids and tissues, and monitoring of chemical and enzymatic reactions and physicochemical changes of peptides. They include also amino acid and sequence analysis of peptides, peptide mapping of proteins, separation of stereoisomers of peptides, and their chiral analyses. In addition, micropreparative separations and physicochemical characterization of peptides and their interactions with other (bio)molecules by the above CE methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Deng L, Fu Q, Zhang Y, Shui F, Tang J, Wu J, Zeng J. Study of molecular interactions by nonequilibrium capillary electrophoresis of equilibrium mixtures: Originations, developments, and applications. Electrophoresis 2023; 44:1664-1673. [PMID: 37621032 DOI: 10.1002/elps.202300166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
Molecular interactions play a vital role in regulating various physiological and biochemical processes in vivo. Kinetic capillary electrophoresis (KCE) is an analytical platform that offers significant advantages in studying the thermodynamic and kinetic parameters of molecular interactions. It enables the simultaneous analysis of these parameters within an interaction pattern and facilitates the screening of binding ligands with predetermined kinetic parameters. Nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) was the first proposed KCE method, and it has found widespread use in studying molecular interactions involving proteins/aptamers, proteins/small molecules, and peptides/small molecules. The successful applications of NECEEM have demonstrated its promising potential for further development and broader application. However, there has been a dearth of recent reviews on NECEEM. To address this gap, our study provides a comprehensive description of NECEEM, encompassing its origins, development, and applications from 2015 to 2022. The primary focus of the applications section is on aptamer selection and screening of small-molecule ligands. Furthermore, we discuss important considerations in NECEEM experimental design, such as buffer suitability, detector selection, and protein adsorption. By offering this thorough review, we aim to contribute to the understanding, advancement, and wider utilization of NECEEM as a valuable tool for studying molecular interactions and facilitating the identification of potential ligands and targets.
Collapse
Affiliation(s)
- Li Deng
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Yujie Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Fan Shui
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Jia Tang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, P. R. China
- School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, P. R. China
| |
Collapse
|
3
|
Turoňová D, Krčmová LK, Vošmik M, Melichar B, Švec F. Using HPLC for the determination of platinum drugs in biological matrixes after derivatization with diethyldithiocarbamate. J Sep Sci 2023; 46:e2300392. [PMID: 37515359 DOI: 10.1002/jssc.202300392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Challenges and pitfalls in the application of diethyldithiocarbamate derivatization for LC analysis of cisplatin and oxaliplatin, as well as the suitability of this method for different biological matrices with implications for use in routine practice have been identified. The LC of platinum drugs presents a significant challenge. They are polar compounds with poor retention on reverse phase packings. Cisplatin also exhibits poor absorption in UV and ionization in mass spectrometry. Therefore, we developed and optimized a derivatization approach for the LC analysis of total platinum in plasma, plasma ultrafiltrate, peritoneal fluid, and urine. Derivatization in urine proved to be difficult due to the complexity of the matrix, and extended testing was required. Our results highlight the important issues affecting the efficiency, reliability, and suitability of platinum drug derivatization. Although precolumn derivatization is less selective than its postcolumn counterpart, the application of precolumn derivatization is a simple, rapid, and universal approach for the determination of platinum drugs by HPLC. One of its major advantages is that it allows a more affordable analysis using UV detection without the need for additional high-end instrumentation such as a MS detector.
Collapse
Affiliation(s)
- Dorota Turoňová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Milan Vošmik
- Department of Oncology and Radiotherapy, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology and Radiotherapy, University Hospital Hradec Králové, Hradec Králové, Czech Republic
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - František Švec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
4
|
Merlino A. Metallodrug binding to serum albumin: Lessons from biophysical and structural studies. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Sharmeen S, Kyei I, Hatch A, Hage DS. Analysis of drug interactions with serum proteins and related binding agents by affinity capillary electrophoresis: A review. Electrophoresis 2022; 43:2302-2323. [PMID: 36250426 PMCID: PMC10098505 DOI: 10.1002/elps.202200191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/17/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Biomolecules such as serum proteins can interact with drugs in the body and influence their pharmaceutical effects. Specific and precise methods that analyze these interactions are critical for drug development or monitoring and for diagnostic purposes. Affinity capillary electrophoresis (ACE) is one technique that can be used to examine the binding between drugs and serum proteins, or other agents found in serum or blood. This article will review the basic principles of ACE, along with related affinity-based capillary electrophoresis (CE) methods, and examine recent developments that have occurred in this field as related to the characterization of drug-protein interactions. An overview will be given of the various formats that can be used in ACE and CE for such work, including the relative advantages or weaknesses of each approach. Various applications of ACE and affinity-based CE methods for the analysis of drug interactions with serum proteins and other binding agents will also be presented. Applications of ACE and related techniques that will be discussed include drug interaction studies with serum agents, chiral drug separations employing serum proteins, and the use of CE in hybrid methods to characterize drug binding with serum proteins.
Collapse
Affiliation(s)
- Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Isaac Kyei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Arden Hatch
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
6
|
Mlčochová H, Michalcová L, Glatz Z. Extending the application potential of capillary electrophoresis/frontal analysis for drug‐plasma protein studies by combining it with mass spectrometry detection. Electrophoresis 2022; 43:955-963. [DOI: 10.1002/elps.202100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Hana Mlčochová
- Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
| | - Lenka Michalcová
- Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
| |
Collapse
|
7
|
Binding of the anticancer Ti(IV) complex phenolaTi to serum proteins: Thermodynamic and kinetic aspects. J Inorg Biochem 2022; 232:111817. [DOI: 10.1016/j.jinorgbio.2022.111817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 11/20/2022]
|
8
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2019-mid 2021). Electrophoresis 2021; 43:82-108. [PMID: 34632606 DOI: 10.1002/elps.202100243] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
The review provides a comprehensive overview of developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, microscale isolation, and physicochemical characterization of peptides from 2019 up to approximately the middle of 2021. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis, such as sample preparation, sorption suppression, EOF control, and detection, are presented. New developments in the individual CE and CEC methods are demonstrated and several types of their applications are shown. They include qualitative and quantitative analysis, determination in complex biomatrices, monitoring of chemical and enzymatic reactions and physicochemical changes, amino acid, sequence, and chiral analyses, and peptide mapping of proteins. In addition, micropreparative separations and determination of significant physicochemical parameters of peptides by CE and CEC methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague 6, Czechia
| |
Collapse
|
9
|
Xiao X, Oswald JT, Wang T, Zhang W, Li W. Use of Anticancer Platinum Compounds in Combination Therapies and Challenges in Drug Delivery. Curr Med Chem 2020; 27:3055-3078. [PMID: 30394206 DOI: 10.2174/0929867325666181105115849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022]
Abstract
As one of the leading and most important metal-based drugs, platinum-based pharmaceuticals are widely used in the treatment of solid malignancies. Despite significant side effects and acquired drug resistance have limited their clinical applications, platinum has shown strong inhibitory effects for a wide assortment of tumors. Drug delivery systems using emerging technologies such as liposomes, dendrimers, polymers, nanotubes and other nanocompositions, all show promise for the safe delivery of platinum-based compounds. Due to the specificity of nano-formulations; unwanted side-effects and drug resistance can be largely averted. In addition, combinational therapy has been shown to be an effective way to improve the efficacy of platinum based anti-tumor drugs. This review first introduces drug delivery systems used for platinum and combinational therapeutic delivery. Then we highlight some of the recent advances in the field of drug delivery for combinational therapy; specifically progress in leveraging the cytotoxic nature of platinum-based drugs, the combinational effect of other drugs with platinum, while evaluating the drug targeting, side effect reducing and sitespecific nature of nanotechnology-based delivery platforms.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Pharmacy, Jilin Medical University, Jilin, 132013, China
| | - James Trevor Oswald
- School of Nanotechnology Engineering, University Of Waterloo, Waterloo, Canada
| | - Ting Wang
- Department of the Gastrointestinal Surgery, The first Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Weina Zhang
- Common Subjects Department, Shangqiu Medical College, Henan 476100, China
| | - Wenliang Li
- School of Pharmacy, Jilin Medical University, Jilin, 132013, China
| |
Collapse
|
10
|
Notaro A, Jakubaszek M, Koch S, Rubbiani R, Dömötör O, Enyedy ÉA, Dotou M, Bedioui F, Tharaud M, Goud B, Ferrari S, Alessio E, Gasser G. A Maltol‐Containing Ruthenium Polypyridyl Complex as a Potential Anticancer Agent. Chemistry 2020; 26:4997-5009. [DOI: 10.1002/chem.201904877] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/14/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Anna Notaro
- Chimie ParisTechPSL UniversityCNRSInstitute of Chemistry for Life and Health SciencesLaboratory for Inorganic Chemical Biology 75005 Paris France
| | - Marta Jakubaszek
- Chimie ParisTechPSL UniversityCNRSInstitute of Chemistry for Life and Health SciencesLaboratory for Inorganic Chemical Biology 75005 Paris France
- Institut CuriePSL University, CNRS UMR 144 75248 Paris France
| | - Severin Koch
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Riccardo Rubbiani
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Orsolya Dömötör
- Department of Inorganic and Analytical ChemistryInterdisciplinary Excellence CentreUniversity of Szeged Dóm tér 7. 6720 Szeged Hungary
| | - Éva A. Enyedy
- Department of Inorganic and Analytical ChemistryInterdisciplinary Excellence CentreUniversity of Szeged Dóm tér 7. 6720 Szeged Hungary
- MTA-SZTE Lendület Functional Metal Complexes Research GroupUniversity of Szeged Dóm tér 7 6720 Szeged Hungary
| | - Mazzarine Dotou
- Chimie ParisTechPSL UniversityCNRSInstitute of Chemistry for Life and Health SciencesLaboratory for Inorganic Chemical Biology 75005 Paris France
| | - Fethi Bedioui
- Chimie ParisTech, PSL University, CNRSInstitute of Chemistry for Life and Health SciencesTeam Synthèse Electrochimie, Imagerie et Systèmes, Analytiques pour le Diagnostic 75005 Paris France
| | - Mickaël Tharaud
- Université de ParisInstitut de physique du globe de Paris, CNRS 75005 Paris France
| | - Bruno Goud
- Institut CuriePSL University, CNRS UMR 144 75248 Paris France
| | - Stefano Ferrari
- Institute of Molecular Cancer ResearchUniversity of Zurich 8057 Zurich Switzerland
- Institute of Molecular GeneticsCzech Academy of Sciences Videnska 1083 14300 Prague Czech Republic
| | - Enzo Alessio
- Department of Chemical and Pharmaceutical SciencesUniversity of Trieste Via, L. Giorgieri 1 34127 Trieste Italy
| | - Gilles Gasser
- Chimie ParisTechPSL UniversityCNRSInstitute of Chemistry for Life and Health SciencesLaboratory for Inorganic Chemical Biology 75005 Paris France
| |
Collapse
|
11
|
Śliwa EI, Śliwińska-Hill U, Bażanów B, Siczek M, Kłak J, Smoleński P. Synthesis, Structural, and Cytotoxic Properties of New Water-Soluble Copper(II) Complexes based on 2,9-Dimethyl-1,10-Phenanthroline and Their One Derivative Containing 1,3,5-Triaza-7-Phosphaadamantane-7-Oxide. Molecules 2020; 25:molecules25030741. [PMID: 32046362 PMCID: PMC7037393 DOI: 10.3390/molecules25030741] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 11/16/2022] Open
Abstract
A series of water-soluble copper(II) complexes based on 2,9-dimethyl-1,10-phenanthroline (dmphen) and mixed-ligands, containing PTA=O (1,3,5-triaza-7-phosphaadamantane-7-oxide) have been synthesized and fully characterized. Two types of complexes have been obtained, monocationic [Cu(NO3)(O-PTA=O)(dmphen)][PF6] (1), [Cu(Cl)(dmphen)2][PF6] (2), and neutral [Cu(NO3)2(dmphen)] (3). The solid-state structures of all complexes have been determined by single-crystal X-ray diffraction. Magnetic studies for the complex 1–3 indicated a very weak antiferromagnetic interaction between copper(II) ions in crystal lattice. Complexes were successfully evaluated for their cytotoxic activities on the normal human dermal fibroblast (NHDF) cell line and the antitumor activity using the human lung carcinoma (A549), epithelioid cervix carcinoma (HeLa), colon (LoVo), and breast adenocarcinoma (MCF-7) cell lines. Complexes 1 and 3 revealed lower toxicity to NHDF than A549 and HeLa cells, meanwhile compound 2 appeared to be more toxic to NHDF cell line in comparison to all cancer lines. Additionally, interactions between the complexes and human apo-transferrin (apo-Tf) using fluorescence and circular dichroism (CD) spectroscopy were also investigated. All compounds interacted with apo-transferrin, causing same changes of the protein conformation. Electrostatic interactions dominate in the 1/2 – apo- Tf systems and hydrophobic and ionic interactions in the case of 3.
Collapse
Affiliation(s)
- Ewelina I. Śliwa
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (E.I.Ś.); (M.S.); (J.K.)
| | - Urszula Śliwińska-Hill
- Department of Analytical Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-566 Wrocław, Poland;
| | - Barbara Bażanów
- Department of Pathology, Wrocław University of Environmental and Life Sciences, ul. Norwida 31, 50-375 Wrocław, Poland;
| | - Miłosz Siczek
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (E.I.Ś.); (M.S.); (J.K.)
| | - Julia Kłak
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (E.I.Ś.); (M.S.); (J.K.)
| | - Piotr Smoleński
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (E.I.Ś.); (M.S.); (J.K.)
- Correspondence: ; Tel.: +48-713-757-225
| |
Collapse
|
12
|
Chen CKJ, Gui X, Kappen P, Renfrew AK, Hambley TW. The effect of charge on the uptake and resistance to reduction of platinum(IV) complexes in human serum and whole blood models. Metallomics 2020; 12:1599-1615. [PMID: 33084707 DOI: 10.1039/d0mt00157k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
cis- and trans-Platinum(iv) complexes with diaminetetracarboxylate coordination spheres possess the highly desirable property of exhibiting unusual resistance to reduction by blood serum components and endogenous reductants such as ascorbate. At the same time they are rapidly reduced in the intracellular environment of cancer cells. Consequently, they can potentially be tuned to remain intact in vivo until arrival at the tumour target where they are rapidly reduced to yield the active platinum(ii) species. However, in order to achieve this, uptake must be largely restricted to tumour cells and therefore uptake by healthy cells including red blood cells must be prevented. In this proof of concept study, we report on the effect of net charge as a means of controlling the uptake by red blood cells. Using 1H NMR spectroscopy we found that modifying the net charge of the complex does not influence the rate of reduction of the complexes by an excess of ascorbate. Using XANES spectroscopy we found that modifying the net charge of the platinum(iv) complexes decreased the extent of reduction in whole blood, although probably not to the degree needed for the optimal delivery to tumours. Therefore, it is likely to be necessary to adopt higher charges and/or additional strategies to keep platinum(iv) prodrugs out of blood cells.
Collapse
Affiliation(s)
| | - Xiao Gui
- School of Chemistry, The University of Sydney, NSW, Australia.
| | - Peter Kappen
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton 3168, Victoria, Australia
| | - Anna K Renfrew
- School of Chemistry, The University of Sydney, NSW, Australia.
| | | |
Collapse
|
13
|
Zhang C, Woolfork AG, Suh K, Ovbude S, Bi C, Elzoeiry M, Hage DS. Clinical and pharmaceutical applications of affinity ligands in capillary electrophoresis: A review. J Pharm Biomed Anal 2019; 177:112882. [PMID: 31542417 DOI: 10.1016/j.jpba.2019.112882] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 01/14/2023]
Abstract
Affinity capillary electrophoresis (ACE) is a separation technique that combines a biologically-related binding agent with the separating power and efficiency of capillary electrophoresis. This review will examine several classes of binding agents that have been used in ACE and applications that have been described for the resulting methods in clinical or pharmaceutical analysis. Binding agents that will be considered are antibodies, aptamers, lectins, serum proteins, carbohydrates, and enzymes. This review will also describe the various formats in which each type of binding agent has been used in CE, including both homogeneous and heterogeneous methods. Specific areas of applications that will be considered are CE-based immunoassays, glycoprotein/glycan separations, chiral separations, and biointeraction studies. The general principles and formats of ACE for each of these applications will be examined, along with the potential advantages or limitations of these methods.
Collapse
Affiliation(s)
- Chenhua Zhang
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304, USA
| | - Ashley G Woolfork
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304, USA
| | - Kyungah Suh
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304, USA
| | - Susan Ovbude
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304, USA
| | - Cong Bi
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304, USA
| | - Marawan Elzoeiry
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304, USA.
| |
Collapse
|
14
|
Palmer JC, Green RA, Boscher F, Poole-Warren LA, Carter PM, Enke YL, Lovell NH, Lord MS. Development and performance of a biomimetic artificial perilymph for in vitro testing of medical devices. J Neural Eng 2019; 16:026006. [DOI: 10.1088/1741-2552/aaf482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Zhang H, Liu Y, Zhang K, Ji J, Liu J, Liu B. Single Molecule Fluorescent Colocalization of Split Aptamers for Ultrasensitive Detection of Biomolecules. Anal Chem 2018; 90:9315-9321. [PMID: 30003776 DOI: 10.1021/acs.analchem.8b01916] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Single-molecule fluorescence imaging is a promising strategy for biomolecule detection. However, the accuracy of single-molecule method is often compromised by the false-positive events at the ultralow sample levels that are caused by the nonspecific adsorption of the fluorescent labeled probe and other fluorescent impurities on the imaging surface. Here, we demonstrate an ultrasensitive single molecule detection assay based on dual-color fluorescent colocalization of spilt aptamers that was implemented to the measurement of adenosine triphosphate (ATP). The ATP aptamer was split into two fragments and labeled with green and red dye molecules, respectively. When the two probes of split aptamers were brought together by the target ATP molecule, the two colors of fluorescence of two probes were simultaneously detected through two channels and projected to the correlated locations in the two halves of image. The colocalizaiton imaging of two split apatamer probes greatly excluded the false detection of biomolecules that was usually caused by the fluorescent noise of single nonbound aptamer probes and impurities, and further improved the accuracy of measurement. The assay showed excellent selectivity and high sensitivity for ATP detection with linear range of 1 pM to 5 nM and a detection limit of 100 fM. This versatile protocol of single molecule colocalization of split apatamer can be widely applied to the ultrasensitive and highly accurate detection of many types of biomolecules in basic research and biomedical applications.
Collapse
Affiliation(s)
- Hongding Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences , Fudan University , Shanghai 200433 , People's Republic of China
| | - Yujie Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences , Fudan University , Shanghai 200433 , People's Republic of China
| | - Kun Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences , Fudan University , Shanghai 200433 , People's Republic of China
| | - Ji Ji
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences , Fudan University , Shanghai 200433 , People's Republic of China
| | - Jianwei Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences , Fudan University , Shanghai 200433 , People's Republic of China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences , Fudan University , Shanghai 200433 , People's Republic of China
| |
Collapse
|
16
|
|
17
|
Wang J, Guo Z, Fu Y, Wu Z, Huang C, Zheng C, Shar PA, Wang Z, Xiao W, Wang Y. Weak-binding molecules are not drugs?-toward a systematic strategy for finding effective weak-binding drugs. Brief Bioinform 2017; 18:321-332. [PMID: 26962012 DOI: 10.1093/bib/bbw018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Indexed: 12/16/2022] Open
Abstract
Designing maximally selective ligands that act on individual drug targets with high binding affinity has been the central dogma of drug discovery and development for the past two decades. However, many low-affinity drugs that aim for several targets at the same time are found more effective than the high-affinity binders when faced with complex disease conditions, such as cancers, Alzheimer's disease and cardiovascular diseases. The aim of this study was to appreciate the importance and reveal the features of weak-binding drugs and propose an integrated strategy for discovering them. Weak-binding drugs can be characterized by their high dissociation rates and transient interactions with their targets. In addition, network topologies and dynamics parameters involved in the targets of weak-binding drugs also influence the effects of the drugs. Here, we first performed a dynamics analysis for 33 elementary subgraphs to determine the desirable topology and dynamics parameters among targets. Then, by applying the elementary subgraphs to the mitogen-activated protein kinase (MAPK) pathway, several optimal target combinations were obtained. Combining drug-target interaction prediction with molecular dynamics simulation, we got two potential weak-binding drug candidates, luteolin and tanshinone IIA, acting on these targets. Further, the binding affinity of these two compounds to their targets and the anti-inflammatory effects of them were validated through in vitro experiments. In conclusion, weak-binding drugs have real opportunities for maximum efficiency and may show reduced adverse reactions, which can offer a bright and promising future for new drug discovery.
Collapse
Affiliation(s)
- Jinan Wang
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Zihu Guo
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Yingxue Fu
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ziyin Wu
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Chao Huang
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Chunli Zheng
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Piar Ali Shar
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China; Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi, China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, PR China
| | - Wei Xiao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, China
| | - Yonghua Wang
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| |
Collapse
|
18
|
Qian C, Kovalchik KA, MacLennan MS, Huang X, Chen DD. Mobility-based correction for accurate determination of binding constants by capillary electrophoresis-frontal analysis. Electrophoresis 2017; 38:1572-1581. [DOI: 10.1002/elps.201600450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Cheng Qian
- Department of Chemistry; University of British Columbia; Vancouver BC Canada
| | - Kevin A. Kovalchik
- Department of Chemistry; University of British Columbia; Vancouver BC Canada
| | | | - Xiaohua Huang
- College of Chemistry and Material Sciences; Nanjing Normal University; Nanjing Jiangsu P. R. China
| | - David D.Y. Chen
- Department of Chemistry; University of British Columbia; Vancouver BC Canada
- College of Chemistry and Material Sciences; Nanjing Normal University; Nanjing Jiangsu P. R. China
| |
Collapse
|
19
|
Xu Y, Hong T, Chen X, Ji Y. Affinity capillary electrophoresis and fluorescence spectroscopy for studying enantioselective interactions between omeprazole enantiomer and human serum albumin. Electrophoresis 2017; 38:1366-1373. [DOI: 10.1002/elps.201600375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Yujing Xu
- Department of Analytical Chemistry; P.R. China Pharmaceutical University; Nanjing P.R. China
- Key Laboratory of Drug Quality Control and Pharmacovigilance; Ministry of Education; Nanjing P.R. China
| | - Tingting Hong
- Department of Analytical Chemistry; P.R. China Pharmaceutical University; Nanjing P.R. China
- Key Laboratory of Drug Quality Control and Pharmacovigilance; Ministry of Education; Nanjing P.R. China
| | - Xueping Chen
- Department of Analytical Chemistry; P.R. China Pharmaceutical University; Nanjing P.R. China
- Key Laboratory of Drug Quality Control and Pharmacovigilance; Ministry of Education; Nanjing P.R. China
| | - Yibing Ji
- Department of Analytical Chemistry; P.R. China Pharmaceutical University; Nanjing P.R. China
- Key Laboratory of Drug Quality Control and Pharmacovigilance; Ministry of Education; Nanjing P.R. China
| |
Collapse
|
20
|
Guichard N, Guillarme D, Bonnabry P, Fleury-Souverain S. Antineoplastic drugs and their analysis: a state of the art review. Analyst 2017; 142:2273-2321. [DOI: 10.1039/c7an00367f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We provide an overview of the analytical methods available for the quantification of antineoplastic drugs in pharmaceutical formulations, biological and environmental samples.
Collapse
Affiliation(s)
- Nicolas Guichard
- Pharmacy
- Geneva University Hospitals (HUG)
- Geneva
- Switzerland
- School of Pharmaceutical Sciences
| | - Davy Guillarme
- School of Pharmaceutical Sciences
- University of Geneva
- University of Lausanne
- Geneva
- Switzerland
| | - Pascal Bonnabry
- Pharmacy
- Geneva University Hospitals (HUG)
- Geneva
- Switzerland
- School of Pharmaceutical Sciences
| | | |
Collapse
|
21
|
Michalcová L, Glatz Z. Study on the interactions of sulfonylurea antidiabetic drugs with normal and glycated human serum albumin by capillary electrophoresis-frontal analysis. J Sep Sci 2016; 39:3631-7. [PMID: 27449705 DOI: 10.1002/jssc.201600713] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 01/11/2023]
Abstract
Diabetes is one of the most widespread diseases characterized by a deficiency in the production of insulin or its ineffectiveness. As a result, the increased concentrations of glucose in the blood lead not only to damage to many of the body's systems but also cause the nonenzymatic glycation of plasma proteins affecting their drug binding. Since the binding ability influences its pharmacokinetics and pharmacodynamics, this is a very important issue in the development of new drugs and personalized medicine. In this study, capillary electrophoresis-frontal analysis was used to evaluate the affinities between human serum albumin or its glycated form and the first generation of sulfonylurea antidiabetics, since their inadequate concentration may induce hypoglycaemia or on the contrary hyperglycaemia. The binding constants decrease in the sequence acetohexamide > tolbutamide > chlorpropamide > carbutamide both for normal and glycated human serum albumins, with glycated giving lower values. These results provide a more quantitative picture of how these drugs bind with normal and modified human serum albumin and indicate capillary electrophoresis-frontal analysis to be another tool for examining the changes arising from modifications of albumin, or any other protein, with all its benefits like short analysis time, small sample requirement, and automation.
Collapse
Affiliation(s)
- Lenka Michalcová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
22
|
Duan HB, Cao JT, Yang JJ, Wang H, Liu YM. Simultaneous determination of four local anesthetics by CE with ECL and study on interaction between procainamide and human serum albumin. Talanta 2016; 154:341-5. [DOI: 10.1016/j.talanta.2016.03.093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 01/18/2023]
|
23
|
Duan HB, Cao JT, Wang H, Liu YM. Sensitive CE-ECL method with AuNPs-enhanced signal for the detection of β-blockers and the study of drug–protein interactions. RSC Adv 2016. [DOI: 10.1039/c6ra07003e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A sensitive capillary electrophoresis (CE) system coupled with electrochemiluminescence (ECL) of tris(2,2′-bipyridyl) ruthenium (ii) is described for the detection of propranolol (Pro) and acebutolol (Ace).
Collapse
Affiliation(s)
- Hong-Bing Duan
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Key Laboratory of Simulation and Control for Dabie Mountains Population Ecology
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Key Laboratory of Simulation and Control for Dabie Mountains Population Ecology
| | - Hui Wang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Key Laboratory of Simulation and Control for Dabie Mountains Population Ecology
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Key Laboratory of Simulation and Control for Dabie Mountains Population Ecology
| |
Collapse
|
24
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2013-middle 2015). Electrophoresis 2015; 37:162-88. [DOI: 10.1002/elps.201500329] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, v.v.i; The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
25
|
Štěpánová S, Kašička V. Capillary electrophoretic methods applied to the investigation of peptide complexes. J Sep Sci 2015; 38:2708-21. [DOI: 10.1002/jssc.201500399] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/01/2015] [Accepted: 05/01/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Prague Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
26
|
Trudu F, Amato F, Vaňhara P, Pivetta T, Peña-Méndez E, Havel J. Coordination compounds in cancer: Past, present and perspectives. J Appl Biomed 2015. [DOI: 10.1016/j.jab.2015.03.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
27
|
Michalcová L, Glatz Z. Comparison of various capillary electrophoretic approaches for the study of drug-protein interaction with emphasis on minimal consumption of protein sample and possibility of automation. J Sep Sci 2014; 38:325-31. [PMID: 25363623 DOI: 10.1002/jssc.201400914] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/24/2014] [Accepted: 10/24/2014] [Indexed: 11/08/2022]
Abstract
The binding ability of a drug to plasma proteins influences the pharmacokinetics of a drug. As a result, it is a very important issue in new drug development. In this study, affinity capillary electrophoresis, capillary electrophoresis with frontal analysis, and Hummel Dreyer methods with internal and external calibration were used to study the affinity between bovine serum albumin and salicylic acid. The binding constant was measured by all these approaches including the equilibrium dialysis, which is considered to be a reference method. The comparison of results and other considerations showed the best electrophoretic approach to be capillary electrophoresis-frontal analysis, which is characterized by the high sample throughput with the possibility of automation, very small quantities of biomacromolecules, simplicity, and a short analysis time. The mechanism of complex formation was then examined by capillary electrophoresis with frontal analysis. The binding parameters were determined and the corresponding thermodynamic parameters such as Gibbs free energy ΔG(0), enthalpy ΔH(0), and entropy changes ΔS(0) at various temperatures were calculated. The results showed that the binding of bovine serum albumin and salicylic acid was spontaneous, and that hydrogen bonding and van der Waals forces played a major role in the formation of the complex.
Collapse
Affiliation(s)
- Lenka Michalcová
- Department of Biochemistry, Faculty of Science and CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | |
Collapse
|
28
|
Ultrasonic microdialysis coupled with capillary electrophoresis electrochemiluminescence study the interaction between trimetazidine dihydrochloride and human serum albumin. Anal Chim Acta 2014; 851:37-42. [DOI: 10.1016/j.aca.2014.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/01/2014] [Accepted: 08/06/2014] [Indexed: 11/19/2022]
|
29
|
Ossipov K, Scaffidi-Domianello YY, Seregina IF, Galanski MS, Keppler BK, Timerbaev AR, Bolshov MA. Inductively coupled plasma mass spectrometry for metallodrug development: albumin binding and serum distribution of cytotoxic cis- and trans-isomeric platinum(II) complexes. J Inorg Biochem 2014; 137:40-5. [PMID: 24803025 DOI: 10.1016/j.jinorgbio.2014.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/11/2014] [Accepted: 04/11/2014] [Indexed: 01/31/2023]
Abstract
Binding to plasma proteins is one of the major metabolic pathways of metallodrugs. In the case of platinum-based anticancer drugs, it is the interaction with serum albumin that affects most strongly their in vivo behavior. Since both the configuration, i.e. cis-trans-isomerism, and the nature of leaving groups have an effect on the reactivity of Pt(II) coordination compounds toward biomolecules, a set of cis- and trans-configured complexes with halide leaving groups (Cl(-), Br(-), and I(-)) and 2-propanone oxime as carrier ligands was chosen for this study. Binding experiments were performed both with albumin and human serum and the Pt content in ultrafiltrates was quantified using inductively coupled plasma mass spectrometry. In order to shed light on the binding mechanism, the albumin binding constant (KHSA) and the octanol-water partition coefficient (P) were experimentally determined and relationships between log KHSA and log P were explored. The correlation was found significant only for cis-configured platinum complexes (R(2)=0.997 and standard deviation=0.02), indicating a certain contribution of the nonspecific binding which is largely dominated by the lipophilicity of compounds. In contrast, for trans-complexes a specific molecular recognition element plays a significant role. The participation of albumin in drug distribution in blood serum was assessed using an equilibrium distribution model and by comparing the percentage binding in the albumin and serum-protein fractions. Irrespective of the compound polarity, albumin contributes from 85 to 100% to the overall binding in serum.
Collapse
Affiliation(s)
- Konstantin Ossipov
- Division of Analytical Chemistry, Chemistry Department, Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia
| | | | - Irina F Seregina
- Division of Analytical Chemistry, Chemistry Department, Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia
| | - Mathea S Galanski
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Andrei R Timerbaev
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria; Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygin Str. 19, 119991 Moscow, Russia.
| | - Mikhail A Bolshov
- Division of Analytical Chemistry, Chemistry Department, Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia; Institute for Spectroscopy, Russian Academy of Sciences, Fizicheskaya 5, 142190 Troitsk (Moscow Region), Russia
| |
Collapse
|
30
|
Zeng HJ, Yang R, Zhang Y, Li JJ, Qu LB. Capillary electrophoresis coupled with electrochemiluminescence for determination of atomoxetine hydrochloride and the study on its interactions with three proteins. LUMINESCENCE 2014; 30:124-30. [DOI: 10.1002/bio.2700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/27/2014] [Accepted: 04/04/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Hua-jin Zeng
- School of Pharmaceutical Sciences; Zhengzhou University; Zhengzhou 450001 China
| | - Ran Yang
- Department of Chemistry; Zhengzhou University; Zhengzhou 450001 China
| | - Ying Zhang
- Department of Chemistry; Zhengzhou University; Zhengzhou 450001 China
| | - Jian-jun Li
- Department of Chemistry; Zhengzhou University; Zhengzhou 450001 China
| | - Ling-bo Qu
- Department of Chemistry; Zhengzhou University; Zhengzhou 450001 China
- College of Chemistry and Chemical Engineering; Henan University of Technology; Zhengzhou 450001 China
| |
Collapse
|
31
|
Zhao L, Chen D. Characterization of interactions between methoxatin disodium salt and human serum albumin by pressure-assisted capillary electrophoresis/frontal analysis and circular dichroism spectroscopy. Biomed Chromatogr 2014; 29:123-8. [DOI: 10.1002/bmc.3248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 04/01/2014] [Accepted: 04/17/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Lijuan Zhao
- Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai 201203 People's Republic of China
| | - Dongying Chen
- Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai 201203 People's Republic of China
| |
Collapse
|
32
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2011-2013). Electrophoresis 2013; 35:69-95. [PMID: 24255019 DOI: 10.1002/elps.201300331] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 01/15/2023]
Abstract
The review presents a comprehensive survey of recent developments and applications of capillary and microchip electroseparation methods (zone electrophoresis, ITP, IEF, affinity electrophoresis, EKC, and electrochromatography) for analysis, isolation, purification, and physicochemical and biochemical characterization of peptides. Advances in the investigation of electromigration properties of peptides, in the methodology of their analysis, including sample preseparation, preconcentration and derivatization, adsorption suppression and EOF control, as well as in detection of peptides, are presented. New developments in particular CE and CEC modes are reported and several types of their applications to peptide analysis are described: conventional qualitative and quantitative analysis, determination in complex (bio)matrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid, sequence and chiral analysis, and peptide mapping of proteins. Some micropreparative peptide separations are shown and capabilities of CE and CEC techniques to provide relevant physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
33
|
Metallomics for drug development: serum protein binding and analysis of an anticancer tris(8-quinolinolato)gallium(III) drug using inductively coupled plasma mass spectrometry. Anal Chim Acta 2013; 785:22-6. [PMID: 23764439 DOI: 10.1016/j.aca.2013.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 11/23/2022]
Abstract
The application of an inductively coupled plasma mass spectrometry (ICP-MS) assay for quantifying in vitro binding of a gallium-based anticancer drug, tris(8-quinolinolato)gallium(III), to serum albumin and transferrin and in human serum is described. The distribution of the drug between the protein-rich and protein-free fractions was assessed via ICP-MS measurement of total gallium in ultrafiltrates. Comparative kinetic studies revealed that the drug exhibits a different reactivity toward individual proteins. While the maximum possible binding to albumin (~10%) occurs practically immediately, interaction with transferrin has a step-like character and the equilibrium state (with more than 50% binding) is reached for about 48 h. Drug transformation into the bound form in serum, also very fast, results in almost quantitative binding (~95%). The relative affinity of protein-drug binding was characterized in terms of the association constants ranging from 10(3) to 10(4)M(-1). In order to further promote clinical testing of the gallium drug, the ICP-MS method was applied for direct quantification of gallium in human serum spiked with the drug. The detection limit for gallium was found to be as low as 20 ng L(-1). The repeatability was better than 8% (as RSD) and the achieved recoveries were in the range 99-103%.
Collapse
|
34
|
Dvořák M, Svobodová J, Beneš M, Gaš B. Applicability and limitations of affinity capillary electrophoresis and vacancy affinity capillary electrophoresis methods for determination of complexation constants. Electrophoresis 2013; 34:761-7. [DOI: 10.1002/elps.201200581] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Dvořák
- Faculty of Science, Department of Physical and Macromolecular Chemistry; Charles University in Prague; Prague; Czech Republic
| | - Jana Svobodová
- Faculty of Science, Department of Physical and Macromolecular Chemistry; Charles University in Prague; Prague; Czech Republic
| | - Martin Beneš
- Faculty of Science, Department of Physical and Macromolecular Chemistry; Charles University in Prague; Prague; Czech Republic
| | - Bohuslav Gaš
- Faculty of Science, Department of Physical and Macromolecular Chemistry; Charles University in Prague; Prague; Czech Republic
| |
Collapse
|
35
|
Dömötör O, Hartinger CG, Bytzek AK, Kiss T, Keppler BK, Enyedy EA. Characterization of the binding sites of the anticancer ruthenium(III) complexes KP1019 and KP1339 on human serum albumin via competition studies. J Biol Inorg Chem 2012; 18:9-17. [DOI: 10.1007/s00775-012-0944-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/23/2012] [Indexed: 12/26/2022]
|
36
|
Bytzek AK, Hartinger CG. Capillary electrophoretic methods in the development of metal-based therapeutics and diagnostics: new methodology and applications. Electrophoresis 2012; 33:622-34. [PMID: 22451055 DOI: 10.1002/elps.201100402] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In recent years, capillary electrophoresis (CE) has matured to a standard method in medicinal inorganic chemistry. More and more steps of the drug discovery process are followed by CE. However, not only the number of applications has steadily increased but also the variety of used methodology has significantly broadened and, as compared to a few years ago, a wider scope of separation modes and hyphenated systems has been used. Herein, a summary of the newly utilized CE methods and their applications in metallodrug research in the timeframe 2006-2011 is presented, following related reviews from 2003 and 2007 (Electrophoresis, 2003, 24, 2023-2037; Electrophoresis 2007, 28, 3436-3446). Areas covered include impurity profiling, quality control of pharmaceutical formulations, lipophilicity estimation, interactions between metallodrugs and proteins or nucleotides, and characterization and also quantification of metabolites in biological matrices and real-world samples.
Collapse
Affiliation(s)
- Anna K Bytzek
- Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
| | | |
Collapse
|
37
|
Hruška V, Beneš M, Svobodová J, Zusková I, Gaš B. Simulation of the effects of complex- formation equilibria in electrophoresis: I. Mathematical model. Electrophoresis 2012; 33:938-47. [DOI: 10.1002/elps.201100529] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Martin Beneš
- Faculty of Science, Department of Physical and Macromolecular Chemistry; Charles University in Prague; Prague; Czech Republic
| | - Jana Svobodová
- Faculty of Science, Department of Physical and Macromolecular Chemistry; Charles University in Prague; Prague; Czech Republic
| | - Iva Zusková
- Faculty of Science, Department of Physical and Macromolecular Chemistry; Charles University in Prague; Prague; Czech Republic
| | - Bohuslav Gaš
- Faculty of Science, Department of Physical and Macromolecular Chemistry; Charles University in Prague; Prague; Czech Republic
| |
Collapse
|
38
|
Analysis of anticancer drugs: a review. Talanta 2011; 85:2265-89. [PMID: 21962644 DOI: 10.1016/j.talanta.2011.08.034] [Citation(s) in RCA: 325] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/15/2011] [Accepted: 08/16/2011] [Indexed: 01/05/2023]
Abstract
In the last decades, the number of patients receiving chemotherapy has considerably increased. Given the toxicity of cytotoxic agents to humans (not only for patients but also for healthcare professionals), the development of reliable analytical methods to analyse these compounds became necessary. From the discovery of new substances to patient administration, all pharmaceutical fields are concerned with the analysis of cytotoxic drugs. In this review, the use of methods to analyse cytotoxic agents in various matrices, such as pharmaceutical formulations and biological and environmental samples, is discussed. Thus, an overview of reported analytical methods for the determination of the most commonly used anticancer drugs is given.
Collapse
|
39
|
Proteomic approaches in understanding action mechanisms of metal-based anticancer drugs. Met Based Drugs 2011; 2008:716329. [PMID: 18670610 PMCID: PMC2486358 DOI: 10.1155/2008/716329] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 04/20/2008] [Accepted: 06/17/2008] [Indexed: 12/13/2022] Open
Abstract
Medicinal inorganic chemistry has been stimulating largely by the success of the anticancer drug, cisplatin. Various metal complexes are currently used as therapeutic agents (e.g., Pt, Au, and Ru) in the treatment of malignant diseases, including several types of cancers. Understanding the mechanism of action of these metal-based drugs is for the design of more effective drugs. Proteomic approaches combined with other biochemical methods can provide comprehensive understanding of responses that are involved in metal-based anticancer drugs-induced cell death, including insights into cytotoxic effects of metal-based anticancer drugs, correlation of protein alterations to drug targets, and prediction of drug resistance and toxicity. This information, when coupled with clinical data, can provide rational basses for the future design and modification of present used metal-based anticancer drugs.
Collapse
|
40
|
Nussbaumer S, Fleury-Souverain S, Schappler J, Rudaz S, Veuthey JL, Bonnabry P. Quality control of pharmaceutical formulations containing cisplatin, carboplatin, and oxaliplatin by micellar and microemulsion electrokinetic chromatography (MEKC, MEEKC). J Pharm Biomed Anal 2011; 55:253-8. [DOI: 10.1016/j.jpba.2011.01.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/20/2011] [Accepted: 01/20/2011] [Indexed: 11/24/2022]
|
41
|
Timerbaev AR, Foteeva LS, Pawlak K, Jarosz M. Metall(prote)omic studies by capillary electrophoresis using separation capillary as an in-line reactor. Metallomics 2011; 3:761-4. [DOI: 10.1039/c1mt00007a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
Deng B, Lu H, Li L, Shi A, Kang Y, Xu Q. Determination of the number of binding sites and binding constant between diltiazem hydrochloride and human serum albumin by ultrasonic microdialysis coupled with online capillary electrophoresis electrochemiluminescence. J Chromatogr A 2010; 1217:4753-6. [DOI: 10.1016/j.chroma.2010.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 05/04/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022]
|
43
|
|
44
|
Foteeva LS, Timerbaev AR. Application of capillary electrophoresis to the analysis of metal-containing pharmaceuticals. JOURNAL OF ANALYTICAL CHEMISTRY 2009. [DOI: 10.1134/s1061934809120028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Esteban-Fernández D, Moreno-Gordaliza E, Cañas B, Palacios MA, Gómez-Gómez MM. Analytical methodologies for metallomics studies of antitumor Pt-containing drugs. Metallomics 2009; 2:19-38. [PMID: 21072372 DOI: 10.1039/b911438f] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pt-containing drugs are nowadays essential components in cancer chemotherapy. However, drug resistance and side effects limit the efficiency of the treatments. In order to improve the response to Pt-based drugs, different administration strategies or new Pt-compounds have been developed with little success. The reason for this failure could be that the mechanism of action of these drugs is not completely understood. In this way, metallomics studies may contribute to clarify the interactions of Pt-containing drugs within the organism. This review is mainly focused on the role of Analytical Chemistry on the study of the interactions between Pt-based drugs and biomolecules. A summary of the analytical techniques and the most common sample treatment procedures currently used in metallomics studies of these drugs is presented. Both are of paramount importance to study these complex samples preserving the drug-biomolecule interaction. Separation and detection techniques must be carefully selected in order to achieve the intended goals. The use of multidimensional hyphenated techniques is usually necessary for a better understanding of the Pt-based drugs interactions in the organism. An overview of Pt-drugs biological interactions is presented, considering the different sample matrices and the drugs course through the organism. Samples analysed in the included studies are blood, urine, cell cytosol, DNA as well as the drugs themselves and their derivatives. However, most of these works are based on in vitro experiments or incubations of standards, leading in some cases to contradictory results depending on the experimental conditions used. Though in vivo experiments represent a great challenge due to the high complexity and the low concentrations of the Pt-adducts in real samples, these studies must be undertaken to get a deeper understanding of the real interactions concerning Pt-containing drugs.
Collapse
Affiliation(s)
- Diego Esteban-Fernández
- Department of Chemistry, Humboldt-Universitaet zu Berlin, Brook-Taylor Strasse 2, Berlin, Germany
| | | | | | | | | |
Collapse
|
46
|
Lemma T, Pawliszyn J. Human serum albumin interaction with oxaliplatin studied by capillary isoelectric focusing with the whole column imaging detection and spectroscopic method. J Pharm Biomed Anal 2009; 50:570-5. [DOI: 10.1016/j.jpba.2008.10.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 10/18/2008] [Accepted: 10/20/2008] [Indexed: 11/16/2022]
|
47
|
Sun H, He P. Characterization of interaction between doxycycline and human serum albumin by capillary electrophoresis‐frontal analysis. Electrophoresis 2009; 30:1991-7. [DOI: 10.1002/elps.200800470] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Hartinger CG, Jakupec MA, Zorbas-Seifried S, Groessl M, Egger A, Berger W, Zorbas H, Dyson PJ, Keppler BK. KP1019, a new redox-active anticancer agent--preclinical development and results of a clinical phase I study in tumor patients. Chem Biodivers 2008; 5:2140-2155. [PMID: 18972504 DOI: 10.1002/cbdv.200890195] [Citation(s) in RCA: 659] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The promising drug candidate indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019) is the second Ru-based anticancer agent to enter clinical trials. In this review, which is an update of a paper from 2006 (Hartinger et al., J. Inorg. Biochem. 2006, 100, 891-904), the experimental evidence for the proposed mode of action of this coordination compound is discussed, including transport into the cell via the transferrin cycle and activation by reduction. The results of the early clinical development of KP1019 are summarized in which five out of six evaluated patients experienced disease stabilization with no severe side effects.
Collapse
Affiliation(s)
- Christian G Hartinger
- University of Vienna, Institute of Inorganic Chemistry, Waehringer Strasse 42, A-1090 Vienna.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Berger I, Hanif M, Nazarov AA, Hartinger CG, John RO, Kuznetsov ML, Groessl M, Schmitt F, Zava O, Biba F, Arion VB, Galanski M, Jakupec MA, Juillerat-Jeanneret L, Dyson PJ, Keppler BK. In vitro anticancer activity and biologically relevant metabolization of organometallic ruthenium complexes with carbohydrate-based ligands. Chemistry 2008; 14:9046-9057. [PMID: 18688905 DOI: 10.1002/chem.200801032] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The synthesis and in vitro anticancer activity of dihalogenido(eta6-p-cymene)(3,5,6-bicyclophosphite-alpha-D-glucofuranoside)ruthenium(II) complexes are described. The compounds were characterized by NMR spectroscopy and ESI mass spectrometry, and the molecular structures of dichlorido-, dibromido- and diiodido(eta6-p-cymene)(3,5,6-bicyclophosphite-1,2-O-isopropylidene-alpha-D-glucofuranoside)ruthenium(II) were determined by X-ray diffraction analysis. The complexes were shown to undergo aquation of the first halido ligand in aqueous solution, followed by hydrolysis of a P--O bond of the phosphite ligand, and finally formation of dinuclear species. The hydrolysis mechanism was confirmed by DFT calculations. The aquation of the complexes was markedly suppressed in 100 mM NaCl solution, and notably only very slow hydrolysis of the P--O bond was observed. The complexes showed affinity towards albumin and transferrin and monoadduct formation with 9-ethylguanine. In vitro studies revealed that the 3,5,6-bicyclophosphite-1,2-O-cyclohexylidene-alpha-D-glucofuranoside complex is the most cytotoxic compound in human cancer cell lines (IC50 values from 30 to 300 microM depending on the cell line).
Collapse
Affiliation(s)
- Isabella Berger
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Will J, Wolters D, Sheldrick W. Characterisation of Cisplatin Binding Sites in Human Serum Proteins Using Hyphenated Multidimensional Liquid Chromatography and ESI Tandem Mass Spectrometry. ChemMedChem 2008; 3:1696-707. [DOI: 10.1002/cmdc.200800151] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|