1
|
Almeida TC, Seibert JB, Amparo TR, de Souza GHB, da Silva GN, Dos Santos DH. Modulation of Long Non-Coding RNAs by Different Classes of Secondary Metabolites from Plants: A Mini-Review on Antitumor Effects. Mini Rev Med Chem 2021; 22:1232-1255. [PMID: 34720079 DOI: 10.2174/1389557521666211101161548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/07/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
The broad pharmacological spectrum of plants is related to their secondary metabolism, which is responsible for the synthesis of different compounds that have multiple effects on cellular physiology. Among the biological effects presented by phytochemicals, their use for the prevention and treatment of cancer can be highlighted. This occurs due to several mechanisms of antitumor action demonstrated by these compounds, including regulation of the cell signaling pathways and inhibition of tumor growth. In this way, long non-coding RNAs (lncRNAs) appear to be promising targets for the treatment of cancer. Their deregulation has already been related to a variety of clinical-pathological parameters. However, the effects of secondary metabolites on lncRNAs are still restricted. For this reason, the present review aimed to gather data on phytochemicals with action on lncRNAs in order to confirm their possible antitumor potential. According to the literature, terpenoid and flavonoid are the main examples of secondary metabolites involved with lncRNAs activity. In addition, the lncRNAs H19, CASC2, HOTAIR, NKILA, CCAT1, MALAT1, AFAP1-AS1, MEG3, and CDKN2B-AS1 can be highlighted as important targets in the search for new anti-tumor agents since they act as modulating pathways related to cell proliferation, cell cycle, apoptosis, cell migration and invasion. Finally, challenges for the use of natural products as a commercial drug were also discussed. The low yield, selectivity index and undesirable pharmacokinetic parameters were emphasized as a difficulty for obtaining these compounds on a large scale and for improving the potency of its biological effect. However, the synthesis and/or development of formulations were suggested as a possible approach to solve these problems. All of these data together confirm the potential of secondary metabolites as a source of new anti-tumor agents acting on lncRNAs.
Collapse
Affiliation(s)
- Tamires Cunha Almeida
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto. Brazil
| | | | - Tatiane Roquete Amparo
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto. Brazil
| | | | - Glenda Nicioli da Silva
- Department of Clinical Analysis, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto. Brazil
| | | |
Collapse
|
2
|
Kojro G, Wroczyński P. Cloud Point Extraction in the Determination of Drugs in Biological Matrices. J Chromatogr Sci 2020; 58:151-162. [PMID: 31681960 DOI: 10.1093/chromsci/bmz064] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/23/2019] [Accepted: 07/07/2019] [Indexed: 11/15/2022]
Abstract
Cloud point extraction (CPE) is a simple, safe and environment-friendly technique used in the preparation of various samples. It was primarily developed for the assessment of environmental samples, especially analyzed for metals. Recently, this technique has been used in the extraction and determination of various chemical compounds (e.g., drugs, pesticides and vitamins), in various matrices (e.g., human plasma, human serum, milk and urine). In this review, we show that CPE is a reliable method of extraction and can be used in analytical laboratories in combination with other techniques that can be used in the determination of drugs and other chemicals in the human biological matrix. According to the literature, a combination of different methods provides good recovery and can be used in the simultaneous determination of many drugs in a single analysis. CPE can be optimized by changing its conditions (e.g., type of surfactant used, incubation temperature, pH and the addition of salts). In this review, we present the optimized CPE methods used in the determination of various pharmaceuticals and describe how the conditions affect the performance of extraction. This data might support future designing of the new CPE applications that are simple and more accurate. We compared CPE with other extraction methods and also showed the advantages and disadvantages of various extraction techniques along with a discussion on their environmental impact. According to the publications reviewed, it is obvious that CPE is an easy, safe, rapid and inexpensive method of extraction.
Collapse
Affiliation(s)
- Grzegorz Kojro
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
| | - Piotr Wroczyński
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
| |
Collapse
|
3
|
Marothu VK, K. P, G. M, K. L. Cloud point extraction as a sample enrichment technique for capillary electrophoresis–An overview. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1790386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Padmalatha K.
- Vijaya Institute of Pharmaceutical Sciences for Women, Vijayawada, India
| | - Madhavi G.
- Vijaya Institute of Pharmaceutical Sciences for Women, Vijayawada, India
| | - Lasya K.
- Vijaya Institute of Pharmaceutical Sciences for Women, Vijayawada, India
| |
Collapse
|
4
|
Su MX, Zhou WD, Lan J, Di B, Hang TJ. Rapid and sensitive analysis of multiple bioactive constituents in tripterygium glycosides tablets using liquid chromatography coupled with time-of-flight mass spectrometry. J Sep Sci 2015; 38:804-12. [PMID: 25546170 DOI: 10.1002/jssc.201400946] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/09/2014] [Accepted: 12/17/2014] [Indexed: 02/04/2023]
Abstract
A simultaneous determination method based on liquid chromatography coupled with time-of-flight mass spectrometry was developed for the analysis of 11 bioactive constituents in tripterygium glycosides tablets, an immune and inflammatory prescription used in China. The analysis was fully optimized on a 1.8 μm particle size C18 column with linear gradient elution, permitting good separation of the 11 analytes and two internal standards in 21 min. The quantitation of each target constituent was carried out using the narrow window extracted ion chromatograms with a ±l0 ppm extraction window, yielding good linearity (r(2) > 0.996) with a linear range of 10-1000 ng/mL. The limits of quantitation were low ranging from 0.25 to 5.02 ng/mL for the 11 analytes, and the precisions and repeatability were better than 1.6 and 5.3%, respectively. The acceptable recoveries obtained were in the range of 93.4-107.4%. This proposed method was successfully applied to quantify the 11 bioactive constituents in commercial samples produced by nine pharmaceutical manufacturers to profile the quality of these preparations. The overall results demonstrate that the contents of the 11 bioactive constituents in different samples were in great diversity, therefore, the quality, clinical safety, and efficacy of this drug needs further research and evaluation.
Collapse
Affiliation(s)
- Meng-xiang Su
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, P. R. China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, P. R. China
| | | | | | | | | |
Collapse
|
5
|
Kukusamude C, Srijaranai S, Kato M, Quirino JP. Cloud point sample clean-up and capillary zone electrophoresis with field enhanced sample injection and micelle to solvent stacking for the analysis of herbicides in milk. J Chromatogr A 2014; 1351:110-4. [DOI: 10.1016/j.chroma.2014.05.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
|
6
|
Wen Y, Li J, Ma J, Chen L. Recent advances in enrichment techniques for trace analysis in capillary electrophoresis. Electrophoresis 2012; 33:2933-52. [PMID: 23019127 DOI: 10.1002/elps.201200240] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/06/2012] [Accepted: 06/28/2012] [Indexed: 01/25/2023]
Abstract
CE is gaining great popularity as a well-established separation technique for many fields such as pharmaceutical research, clinical application, environmental monitoring, and food analysis, owing to its high resolving power, rapidity, and small amount of samples and reagents required. However, the sensitivity in CE analysis is still considered as being inferior to that in HPLC analysis. Diverse enrichment methods and techniques have been increasingly developed for overcoming this issue. In this review, we summarize the recent advances in enrichment techniques containing off-line preconcentration (sample preparation) and on-line concentration (sample stacking) to enhancing sensitivity in CE for trace analysis over the last 5 years. Some relatively new cleanup and preconcentration methods involving the use of dispersive liquid-liquid microextraction, supercritical fluid extraction, matrix solid-phase dispersion, etc., and the continued use and improvement of conventional SPE, have been comprehensively reviewed and proved effective preconcentration alternatives for liquid, semisolid, and solid samples. As for CE on-line stacking, we give an overview of field amplication, sweeping, pH regulation, and transient isotachophoresis, and the coupling of multiple modes. Moreover, some limitations and comparisons related to such methods/techniques are also discussed. Finally, the combined use of various enrichment techniques and some significant attempts are proposed to further promote analytical merits in CE.
Collapse
Affiliation(s)
- Yingying Wen
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research-YIC, Chinese Academy of Sciences-CAS, Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, P. R. China
| | | | | | | |
Collapse
|
7
|
Ma H, Mu F, Fan S, Zhou X, Jia Q. Development of a cloud point extraction method for the determination of phenolic compounds in environmental water samples coupled with high-performance liquid chromatography. J Sep Sci 2012; 35:2484-90. [DOI: 10.1002/jssc.201200170] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/19/2012] [Accepted: 03/21/2012] [Indexed: 11/12/2022]
Affiliation(s)
- Huihui Ma
- College of Chemistry; Jilin University; Changchun; P. R. China
| | - Fengtian Mu
- College of Chemistry; Jilin University; Changchun; P. R. China
| | - Shujuan Fan
- College of Chemistry; Jilin University; Changchun; P. R. China
| | - Xiao Zhou
- Jilin Entry & Exit Inspection and Quarantine Bureau of China; Changchun; P. R. China
| | - Qiong Jia
- College of Chemistry; Jilin University; Changchun; P. R. China
| |
Collapse
|
8
|
Chen XJ, Zhao J, Wang YT, Huang LQ, Li SP. CE and CEC analysis of phytochemicals in herbal medicines. Electrophoresis 2011; 33:168-79. [DOI: 10.1002/elps.201100347] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/25/2011] [Accepted: 09/27/2011] [Indexed: 12/11/2022]
|
9
|
Zhong S, Tan SN, Ge L, Wang W, Chen J. Determination of bisphenol A and naphthols in river water samples by capillary zone electrophoresis after cloud point extraction. Talanta 2011; 85:488-92. [DOI: 10.1016/j.talanta.2011.04.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/29/2011] [Accepted: 04/05/2011] [Indexed: 11/24/2022]
|
10
|
El Deeb S, Iriban MA, Gust R. MEKC as a powerful growing analytical technique. Electrophoresis 2010; 32:166-83. [PMID: 21171121 DOI: 10.1002/elps.201000398] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/30/2010] [Accepted: 09/30/2010] [Indexed: 11/11/2022]
Abstract
This review summarizes the principle and the developments in MEKC in terms of separation power, sensitivity, and detection approaches more than 25 years after its appearance. Newly used surfactants are mentioned. Classical and new sample concentration techniques in MEKC are described. The different detection approaches in MEKC with advantages, limitations, and future prospects are also discussed. This review highlights the wider application of MEKC in different analytical fields. Various recent selected applications of this technique in different analytical fields are reported.
Collapse
Affiliation(s)
- Sami El Deeb
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | | |
Collapse
|
11
|
Silva M. Micellar electrokinetic chromatography: A practical overview of current methodological and instrumental advances. Electrophoresis 2010; 32:149-65. [DOI: 10.1002/elps.201000344] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 07/27/2010] [Accepted: 07/27/2010] [Indexed: 12/22/2022]
|
12
|
Supramolecular solvents in the extraction of organic compounds. A review. Anal Chim Acta 2010; 677:108-30. [DOI: 10.1016/j.aca.2010.07.027] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Revised: 07/14/2010] [Accepted: 07/16/2010] [Indexed: 11/17/2022]
|
13
|
Luo X, Jiang X, Tu X, Luo S, Yan L, Chen B. Determination of malachite green in fish water samples by cloud-point extraction coupled to cation-selective exhaustive injection and sweeping-MEKC. Electrophoresis 2010; 31:688-94. [DOI: 10.1002/elps.200900565] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|