1
|
Chen W, Cao R, Su W, Zhang X, Xu Y, Wang P, Gan Z, Xie Y, Li H, Qin J. Simple and fast isolation of circulating exosomes with a chitosan modified shuttle flow microchip for breast cancer diagnosis. LAB ON A CHIP 2021; 21:1759-1770. [PMID: 33710183 DOI: 10.1039/d0lc01311k] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tumor-derived exosomes have been recognized as promising biomarkers for early-stage cancer diagnosis, tumor prognosis monitoring and individual medical treatment. However, it is a huge challenge to separate exosomes from trace biological samples in clinics for disease diagnosis. Herein, we propose a simple, quick, and label-free method for isolating circulating exosomes from serum of patients. The strategy synergistically integrates chitosan electrostatic-adsorption, micro-patterned substrates, and microfluidic shuttle flow control to enable the capture/release of circulating exosomes in a simple manner. Using this microchip, we can isolate exosomes from trace samples (10 μl) with relative purity over 90% and high RNA recovery ratio over 84% within 15 minutes, which is impossible for traditional ultracentrifugation methods. We then validate the application of the microchip using 24 serum samples from clinical breast cancer and breast fibroma patients. The isolated exosomes are subjected to miRNA sequencing and RT-PCR, followed by pathway prediction analysis. The results showed that exosomes were relevant to the invasion and metastasis of breast cancer cells and hsa-miR-18a-3p might have the potential to become a new biomarker for distinguishing breast cancer from breast fibroma (AUC = 0.83, P value = 0.019). This established method is simple, quick and easy to operate with integration. And it may pave a new way for clinical research on exosomes and tumor relevant diagnosis.
Collapse
Affiliation(s)
- Wenwen Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China. and University of Chinese Academy of Sciences, Beijing, China
| | - Rongkai Cao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China. and University of Chinese Academy of Sciences, Beijing, China
| | - Wentao Su
- Dalian Polytechnic University, Dalian, China
| | - Xu Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Yuhai Xu
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Peng Wang
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Zhongqiao Gan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China. and University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Xie
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China. and University of Chinese Academy of Sciences, Beijing, China
| | - Hongjing Li
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Jianhua Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China. and University of Chinese Academy of Sciences, Beijing, China and Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China and CAS Centre for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Zhang CR, Liang RP, Wu LL, Wei ZM, Zhu ZH, Qiu JD. Discrimination of single nucleotide polymorphisms by magnetic functionalized graphene oxide-based microchip system. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Gökaltun A, Kang YBA, Yarmush ML, Usta OB, Asatekin A. Simple Surface Modification of Poly(dimethylsiloxane) via Surface Segregating Smart Polymers for Biomicrofluidics. Sci Rep 2019; 9:7377. [PMID: 31089162 PMCID: PMC6517421 DOI: 10.1038/s41598-019-43625-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/09/2019] [Indexed: 12/17/2022] Open
Abstract
Poly(dimethylsiloxane) (PDMS) is likely the most popular material for microfluidic devices in lab-on-a-chip and other biomedical applications. However, the hydrophobicity of PDMS leads to non-specific adsorption of proteins and other molecules such as therapeutic drugs, limiting its broader use. Here, we introduce a simple method for preparing PDMS materials to improve hydrophilicity and decrease non-specific protein adsorption while retaining cellular biocompatibility, transparency, and good mechanical properties without the need for any post-cure surface treatment. This approach utilizes smart copolymers comprised of poly(ethylene glycol) (PEG) and PDMS segments (PDMS-PEG) that, when blended with PDMS during device manufacture, spontaneously segregate to surfaces in contact with aqueous solutions and reduce the hydrophobicity without any added manufacturing steps. PDMS-PEG-modified PDMS samples showed contact angles as low as 23.6° ± 1° and retained this hydrophilicity for at least twenty months. Their improved wettability was confirmed using capillary flow experiments. Modified devices exhibited considerably reduced non-specific adsorption of albumin, lysozyme, and immunoglobulin G. The modified PDMS was biocompatible, displaying no adverse effects when used in a simple liver-on-a-chip model using primary rat hepatocytes. This PDMS modification method can be further applied in analytical separations, biosensing, cell studies, and drug-related studies.
Collapse
Affiliation(s)
- Aslıhan Gökaltun
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, 51 Blossom St., Boston, MA, 02114, USA
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA, 02474, USA
- Department of Chemical Engineering, Hacettepe University, 06532, Beytepe, Ankara, Turkey
| | - Young Bok Abraham Kang
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, 51 Blossom St., Boston, MA, 02114, USA
| | - Martin L Yarmush
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, 51 Blossom St., Boston, MA, 02114, USA
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ, 08854, USA
| | - O Berk Usta
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, 51 Blossom St., Boston, MA, 02114, USA.
| | - Ayse Asatekin
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA, 02474, USA.
| |
Collapse
|
4
|
Wu LL, Liang RP, Chen J, Qiu JD. Separation of chiral compounds using magnetic molecularly imprinted polymer nanoparticles as stationary phase by microchip capillary electrochromatography. Electrophoresis 2017; 39:356-362. [DOI: 10.1002/elps.201700334] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/19/2017] [Accepted: 10/16/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Lu-Lu Wu
- College of Chemistry and Institute for Advanced Study; Nanchang University; Nanchang P. R. China
| | - Ru-Ping Liang
- College of Chemistry and Institute for Advanced Study; Nanchang University; Nanchang P. R. China
| | - Juan Chen
- College of Chemistry and Institute for Advanced Study; Nanchang University; Nanchang P. R. China
| | - Jian-Ding Qiu
- College of Chemistry and Institute for Advanced Study; Nanchang University; Nanchang P. R. China
- Department of Materials and Chemical Engineering; Pingxiang University; Pingxiang P. R. China
| |
Collapse
|
5
|
Choi YH, Chung KH, Hong HB, Lee WS. Production of PDMS microparticles by emulsification of two phases and their potential biological application. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1375494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yo Han Choi
- Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea
| | - Kwang Hyo Chung
- Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea
| | - Hyo Bong Hong
- Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea
| | - Woon Seob Lee
- Memory Manufacturing Operation Center, Samsung Electronics, Suwon, Republic of Korea
| |
Collapse
|
6
|
Gokaltun A, Yarmush ML, Asatekin A, Usta OB. Recent advances in nonbiofouling PDMS surface modification strategies applicable to microfluidic technology. TECHNOLOGY 2017; 5:1-12. [PMID: 28695160 PMCID: PMC5501164 DOI: 10.1142/s2339547817300013] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In the last decade microfabrication processes including rapid prototyping techniques have advanced rapidly and achieved a fairly mature stage. These advances have encouraged and enabled the use of microfluidic devices by a wider range of users with applications in biological separations and cell and organoid cultures. Accordingly, a significant current challenge in the field is controlling biomolecular interactions at interfaces and the development of novel biomaterials to satisfy the unique needs of the biomedical applications. Poly(dimethylsiloxane) (PDMS) is one of the most widely used materials in the fabrication of microfluidic devices. The popularity of this material is the result of its low cost, simple fabrication allowing rapid prototyping, high optical transparency, and gas permeability. However, a major drawback of PDMS is its hydrophobicity and fast hydrophobic recovery after surface hydrophilization. This results in significant nonspecific adsorption of proteins as well as small hydrophobic molecules such as therapeutic drugs limiting the utility of PDMS in biomedical microfluidic circuitry. Accordingly, here, we focus on recent advances in surface molecular treatments to prevent fouling of PDMS surfaces towards improving its utility and expanding its use cases in biomedical applications.
Collapse
Affiliation(s)
- Aslihan Gokaltun
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02474, USA
- Department of Chemical Engineering, Hacettepe University, 06532, Beytepe, Ankara, Turkey
| | - Martin L Yarmush
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| | - Ayse Asatekin
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02474, USA
| | - O Berk Usta
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| |
Collapse
|
7
|
Chen J, Liang RP, Wu LL, Qiu JD. One-step preparation and application of mussel-inspired poly(norepinephrine)-coated polydimethylsiloxane microchip for separation of chiral compounds. Electrophoresis 2016; 37:1676-84. [PMID: 26970233 DOI: 10.1002/elps.201600054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 01/11/2023]
Abstract
In this paper, using the self-polymerization of norepinephrine (NE) and its favorable film-forming property, a simple and green preparation approach was developed to modify a PDMS channel for enantioseparation of chiral compounds. After the PDMS microchip was filled with NE solution, poly(norepinephrine) (PNE) film was gradually formed and deposited on the inner wall of microchannel as permanent coating via the oxidation of NE by the oxygen dissolved in the solution. Due to possessing plentiful catechol and amine functional groups, the PNE-coated PDMS microchip exhibited much better wettability, more stable and suppressed EOF, and less nonspecific adsorption. The water contact angle and EOF of PNE-coated PDMS substrate were measured to be 13° and 1.68 × 10(-4) cm(2) V(-1) s(-1) , compared to those of 108° and 2.24 × 10(-4) cm(2) V(-1) s(-1) from the untreated one, respectively. Different kinds of chiral compounds, such as amino acid enantiomer, drug enantiomer, and peptide enantiomer were efficiently separated utilizing a separation length of 37 mm coupled with in-column amperometric detection on the PNE-coated PDMS microchips. This facile mussel-inspired PNE-based microchip system exhibited strong recognition ability, high-performance, admirable reproducibility, and stability, which may have potential use in the complex biological analysis.
Collapse
Affiliation(s)
- Juan Chen
- Department of Chemistry, Nanchang University, Nanchang, P. R. China
| | - Ru-Ping Liang
- Department of Chemistry, Nanchang University, Nanchang, P. R. China
| | - Lu-Lu Wu
- Department of Chemistry, Nanchang University, Nanchang, P. R. China
| | - Jian-Ding Qiu
- Department of Chemistry, Nanchang University, Nanchang, P. R. China
| |
Collapse
|
8
|
Microfluidic chip-capillary electrophoresis device for the determination of urinary metabolites and proteins. Bioanalysis 2016; 7:907-22. [PMID: 25932524 DOI: 10.4155/bio.15.26] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Microfluidic chip-CE (MC-CE) devices have caught recent attention for diagnostic applications in urine. This is due to the successes reported in handling real urine samples by integrating microfluidic chips (MC) with analyte enrichment and sample cleanup to CE with high separation efficiency and sensitive analyte detection. Here, we review the determination of urinary metabolites and proteins by MC-CE devices within the past 7 years. The application scope for MC-CE integrated devices was found to exceed the use of either technique alone, showing comparable performance to laser-induced fluorescence detection using less sensitive UV detectors, offering the flexibility to handle difficult urine samples with on-chip dilution and online standard addition and delivering enhanced performance as compared with commercial microfluidic chip electrophoresis chips.
Collapse
|
9
|
Zuchowska A, Kwiatkowski P, Jastrzebska E, Chudy M, Dybko A, Brzozka Z. Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins. Electrophoresis 2015; 37:536-44. [PMID: 26311334 DOI: 10.1002/elps.201500250] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/15/2015] [Accepted: 07/24/2015] [Indexed: 01/09/2023]
Abstract
PDMS is a very popular material used for fabrication of Lab-on-a-Chip systems for biological applications. Although PDMS has numerous advantages, it is a highly hydrophobic material, which inhibits adhesion and proliferation of the cells. PDMS surface modifications are used to enrich growth of the cells. However, due to the fact that each cell type has specific adhesion, it is necessary to optimize the parameters of these modifications. In this paper, we present an investigation of normal (MRC-5) and carcinoma (A549) human lung cell adhesion and proliferation on modified PDMS surfaces. We have chosen these cell types because often they are used as models for basic cancer research. To the best of our knowledge, this is the first presentation of this type of investigation. The combination of a gas-phase processing (oxygen plasma or ultraviolet irradiation) and wet chemical methods based on proteins' adsorption was used in our experiments. Different proteins such as poly-l-lysine, fibronectin, laminin, gelatin, and collagen were incubated with the activated PDMS samples. To compare with other works, here, we also examined how ratio of prepolymer to curing agent (5:1, 10:1, and 20:1) influences PDMS hydrophilicity during further modifications. The highest adhesion of the tested cells was observed for the usage of collagen, regardless of PDMS ratio. However, the MRC-5 cell line demonstrated better adhesion than A549 cells. This is probably due to the difference in their morphology and type (normal/cancer).
Collapse
Affiliation(s)
- Agnieszka Zuchowska
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Piotr Kwiatkowski
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Elzbieta Jastrzebska
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Michal Chudy
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Artur Dybko
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Zbigniew Brzozka
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
10
|
Wang XN, Liang RP, Meng XY, Qiu JD. One-step synthesis of mussel-inspired molecularly imprinted magnetic polymer as stationary phase for chip-based open tubular capillary electrochromatography enantioseparation. J Chromatogr A 2014; 1362:301-8. [DOI: 10.1016/j.chroma.2014.08.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/08/2014] [Accepted: 08/13/2014] [Indexed: 11/26/2022]
|
11
|
Liang RP, Wang XN, Wang L, Qiu JD. Enantiomeric separation by microchip electrophoresis using bovine serum albumin conjugated magnetic core-shell Fe3 O4 @Au nanocomposites as stationary phase. Electrophoresis 2014; 35:2824-32. [PMID: 25042461 DOI: 10.1002/elps.201400264] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/06/2014] [Accepted: 07/10/2014] [Indexed: 11/07/2022]
Abstract
In this work, a novel enantioselective MCE was developed employing BSA-conjugated Fe3 O4 @Au nanoparticles (Fe3 O4 @Au NPs) as stationary phase. Fe3 O4 @Au NPs with high magnetic responsively, excellent solubility, and high dispersibility in water were prepared through a sonochemical synthesis strategy. BSA was then immobilized onto the Fe3 O4 @Au NPs surfaces through the well-developed interaction between Au NPs and amine groups of BSA to form Fe3 O4 @Au NPs-BSA conjugates, which were then locally packed into PDMS microchannels with the help of magnets. The resultant Fe3 O4 @Au NPs-BSA conjugates not only have the magnetism of Fe3 O4 NPs that make them easily manipulated by an external magnetic field, but also have the larger surface and excellent biocompatibility of Au shell, which can incorporate much more biomolecules and well maintain their biological activity. In addition, the successful BSA decorations endowed Fe3 O4 @Au NPs-BSA conjugates with pH-tunable water solubility related to the pI of BSA (pI 4.7) and led to enhanced stability against high ionic strength. Compared with the native PDMS microchannel, the modified surfaces exhibited more stable and suppressed electroosmotic mobility, and less nonspecific adsorption toward analytes. Successful separation of chiral amino acids (tryptophan and threonine) and ofloxacin enantiomers demonstrate that the constructed MCE columns own ideal enantioselectivity. The results are expected to open up a new possibility for high-throughput screening of enantiomers with protein targets as well as a new application of magnetic NPs.
Collapse
Affiliation(s)
- Ru-Ping Liang
- Department of Chemistry, Nanchang University, Nanchang, P.R. China
| | | | | | | |
Collapse
|
12
|
Construction of graphene oxide magnetic nanocomposites-based on-chip enzymatic microreactor for ultrasensitive pesticide detection. J Chromatogr A 2013; 1315:28-35. [DOI: 10.1016/j.chroma.2013.09.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/12/2013] [Accepted: 09/12/2013] [Indexed: 11/22/2022]
|
13
|
Liang RP, Liu CM, Meng XY, Wang JW, Qiu JD. A novel open-tubular capillary electrochromatography using β-cyclodextrin functionalized graphene oxide-magnetic nanocomposites as tunable stationary phase. J Chromatogr A 2012; 1266:95-102. [DOI: 10.1016/j.chroma.2012.09.101] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/25/2012] [Accepted: 09/28/2012] [Indexed: 01/27/2023]
|
14
|
Talik P, Krzek J, Ekiert RJ. Analytical Techniques Used for Determination of Methylxanthines and their Analogues—Recent Advances. SEPARATION AND PURIFICATION REVIEWS 2012. [DOI: 10.1080/15422119.2011.569047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Dimov N, Muñoz L, Carot-Sans G, Verhoeven MLPM, Bula WP, Kocer G, Guerrero A, Gardeniers HJGE. Pheromone synthesis in a biomicroreactor coated with anti-adsorption polyelectrolyte multilayer. BIOMICROFLUIDICS 2011; 5:34102-3410212. [PMID: 22662033 PMCID: PMC3364821 DOI: 10.1063/1.3608138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/13/2011] [Indexed: 06/01/2023]
Abstract
To prepare a biosynthetic module in an infochemical communication project, we designed a silicon/glass microreactor with anti-adsorption polyelectrolyte multilayer coating and immobilized alcohol acetyl transferase (atf), one of the key biosynthetic enzymes of the pheromone of Spodoptera littoralis, on agarose beads inside. The system reproduces the last step of the biosynthesis in which the precursor diene alcohol (Z,E)-9,11-tetradecadienol is transformed into the major component (Z,E)-9,11-tetradecadienyl acetate. The scope of this study was to analyze and implement a multilayer, anti-adsorption coating based on layer-by-layer deposition of polyethylenimine/dextransulfate sodium salt (PEI/DSS). The multilayers were composed of two PEI with molecular weights 750 and 1.2 kDa at pH 9.2 or 6.0. Growth, morphology, and stability of the layers were analyzed by ellipsometry and atomic force microscopy (AFM). The anti-adsorption functionality of the multilayer inside the microreactor was validated. The activity of His(6)-(atf) was measured by gas chromatography coupled to mass spectrometer (GC-MS).
Collapse
|
16
|
Lin CC, Tseng CC, Chuang TK, Lee DS, Lee GB. Urine analysis in microfluidic devices. Analyst 2011; 136:2669-88. [PMID: 21617803 DOI: 10.1039/c1an15029d] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microfluidics has attracted considerable attention since its early development in the 1980s and has experienced rapid growth in the past three decades due to advantages associated with miniaturization, integration and automation. Urine analysis is a common, fast and inexpensive clinical diagnostic tool in health care. In this article, we will be reviewing recent works starting from 2005 to the present for urine analysis using microfluidic devices or systems and to provide in-depth commentary about these techniques. Moreover, commercial strips that are often treated as chips and their readers for urine analysis will also be briefly discussed. We start with an introduction to the physiological significance of various components or measurement standards in urine analysis, followed by a brief introduction to enabling microfluidic technologies. Then, microfluidic devices or systems for sample pretreatments and for sensing urinary macromolecules, micromolecules, as well as multiplexed analysis are reviewed, in this sequence. Moreover, a microfluidic chip for urinary proteome profiling is also discussed, followed by a section discussing commercial products. Finally, the authors' perspectives on microfluidic-based urine analysis are provided. These advancements in microfluidic techniques for urine analysis may improve current routine clinical practices, particularly for point-of-care (POC) applications.
Collapse
Affiliation(s)
- Chun-Che Lin
- Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
17
|
Kim SH, Cui Y, Lee MJ, Nam SW, Oh D, Kang SH, Kim YS, Park S. Simple fabrication of hydrophilic nanochannels using the chemical bonding between activated ultrathin PDMS layer and cover glass by oxygen plasma. LAB ON A CHIP 2011; 11:348-53. [PMID: 20957251 DOI: 10.1039/c0lc00015a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This study describes a simple and low cost method for fabricating enclosed transparent hydrophilic nanochannels by coating low-viscosity PDMS (monoglycidyl ether-terminated polydimethylsiloxane) as an adhesion layer onto the surface of the nanotrenches that are molded with a urethane-based UV-curable polymer, Norland Optical Adhesive (NOA 63). In detail, the nanotrenches made of NOA 63 were replicated from a Si master mold and coated with 6 nm thick layer of PDMS. These nanotrenches underwent an oxygen plasma treatment and finally were bound to a cover glass by chemical bonding between silanol and hydroxyl groups. Hydrophobic recovery that is observed in the bulk PDMS was not observed in the thin film of PDMS on the mold and the PDMS-coated nanochannel maintained its surface hydrophilicity for at least one month. The potentials of the nanochannels for bioapplications were demonstrated by stretching λ-DNA (48,502 bp) in the channels. Therefore, this fabrication approach provides a practical solution for the simple fabrication of the nanochannels for bioapplications.
Collapse
Affiliation(s)
- So Hyun Kim
- Department of Chemistry and Nano Science (BK21), Ewha Womans University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhou J, Voelcker NH, Ellis AV. Simple surface modification of poly(dimethylsiloxane) for DNA hybridization. BIOMICROFLUIDICS 2010; 4:46504. [PMID: 21264061 PMCID: PMC3025499 DOI: 10.1063/1.3523055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Accepted: 11/03/2010] [Indexed: 05/30/2023]
Abstract
Here, we present a simple chemical modification of poly(dimethylsiloxane) (PDMS) by curing a mixture of 2 wt% undecylenic acid (UDA) in PDMS prepolymer on a gold-coated glass slide. This gold slide had been previously pretreated with a self-assembled hydrophilic monolayer of 3-mercaptopropionic acid (MPA). During curing of the UDA∕PDMS prepolymer, the hydrophilic UDA carboxyl moieties diffuses toward the hydrophilic MPA carboxyl moieties on the gold surface. This diffusion of the UDA within the PDMS prepolymer to the surface is a direct result of surface energy minimization. Once completely cured, the PDMS is peeled off the gold substrate, thereby exposing the interfacial carboxyl groups. These groups are then available for subsequent attachment of 5(')-amino terminated DNA oligonucleotides via amide linkages. Our results show that the covalently tethered oligonucleotides can successfully capture fluorescein-labeled complementary oligonucleotides via hybridization, which are visualized using fluorescence microscopy.
Collapse
Affiliation(s)
- Jinwen Zhou
- Centre for NanoScale Science and Nanotechnology, School of Chemical and Physical Sciences, Flinders University, Adelaide SA 5001, Australia
| | | | | |
Collapse
|
19
|
Pavinatto FJ, Caseli L, Oliveira ON. Chitosan in Nanostructured Thin Films. Biomacromolecules 2010; 11:1897-908. [DOI: 10.1021/bm1004838] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Felippe J. Pavinatto
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil, and Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema, SP, Brasil
| | - Luciano Caseli
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil, and Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema, SP, Brasil
| | - Osvaldo N. Oliveira
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil, and Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema, SP, Brasil
| |
Collapse
|
20
|
Zhou J, Ellis AV, Voelcker NH. Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 2010; 31:2-16. [DOI: 10.1002/elps.200900475] [Citation(s) in RCA: 599] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|