1
|
Aravinth A, Dhanasundaram S, Perumal P, Kamaraj C, Khan SU, Ali A, Ragavendran C, Amutha V, Rajaram R, Santhanam P, Luna-Arias JP, Mashwani ZUR. Evaluation of Brown and red seaweeds-extracts as a novel larvicidal agent against the deadly human diseases-vectors, Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Exp Parasitol 2024; 256:108651. [PMID: 37944660 DOI: 10.1016/j.exppara.2023.108651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/29/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Infectious diseases such as malaria, dengue, and yellow fever are predominantly transmitted by insect vectors like Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus in tropical regions like India and Africa. In this study, we assessed the larvicidal activity of commonly found seaweeds, including Padina gymnospora, P. pavonica, Gracilaria crassa, Amphiroa fragilissima, and Spatoglossum marginatum, against these mosquito vectors. Our findings indicate that extracts from P. gymnospora Ethyl Acetate (PgEA), P. pavonica Hexane (PpH), and A. fragilissima Ethyl Acetate (AfEA) displayed the highest larval mortality rates for A. stephensi, with LC50 values of 10.51, 12.43, and 6.43 μg/mL, respectively. Additionally, the PgEA extract from P. gymnospora exhibited the highest mortality rate for A. aegypti, with an LC50 of 27.0 μg/mL, while the PgH extract from the same seaweed showed the highest mortality rate for C. quinquefasciatus, with an LC50 of 9.26 μg/mL. Phytochemical analysis of the seaweed extracts revealed the presence of 71 compounds in the solvent extracts. Fourier-transform infrared spectra of the selected seaweeds indicated the presence of functional groups such as alkanes, alcohols, and phenols. Gas chromatography-mass spectrometry analysis of the seaweeds identified major compounds, including hexadecanoic acid in PgEA, tetradecene (e)- in PpEA, octadecanoic acid in GcEA, and 7-hexadecene, (z)-, and trans-7-pentadecene in SmEA.
Collapse
Affiliation(s)
- Annamalai Aravinth
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Sundaramoorthy Dhanasundaram
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Pachiappan Perumal
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Safir Ullah Khan
- Department of Zoology, Wildlife & Fisheries, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan.
| | - Amir Ali
- Nanoscience and Nanotechnology Program Center for Research and Advanced Studies, National Polytechnic Institute, Mexico City, 07360, Mexico; Department of Zoology, Wildlife & Fisheries, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600 077, India
| | - Vadivel Amutha
- Department of Entomology, Bioscience Research Foundation, Kandamangalam, Kanchipuram, Tamil Nadu, 602 002, India
| | - Rajendran Rajaram
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| | - Perumal Santhanam
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Juan Pedro Luna-Arias
- Nanoscience and Nanotechnology Program Center for Research and Advanced Studies, National Polytechnic Institute, Mexico City, 07360, Mexico; Department of Zoology, Wildlife & Fisheries, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | | |
Collapse
|
2
|
Sodeifian G, Usefi MMB. Solubility, Extraction, and Nanoparticles Production in Supercritical Carbon Dioxide: A Mini‐Review. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202200020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gholamhossein Sodeifian
- University of Kashan Faculty of Engineering, Department of Chemical Engineering 87317-53153 Kashan Iran
- University of Kashan Laboratory of Supercritical Fluids and Nanotechnology 87317-53153 Kashan Iran
| | - Mohammad Mahdi Behvand Usefi
- University of Kashan Faculty of Engineering, Department of Chemical Engineering 87317-53153 Kashan Iran
- University of Kashan Laboratory of Supercritical Fluids and Nanotechnology 87317-53153 Kashan Iran
| |
Collapse
|
3
|
A comparison of conventional and novel phytonutrient extraction techniques from various sources and their potential applications. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Da Porto C, Natolino A, Scalet M. Improved Sustainability in Wine Industry Byproducts: A Scale-up and Economical Feasibility Study for High-Value Compounds Extraction Using Modified SC-CO 2. ACS OMEGA 2022; 7:33845-33857. [PMID: 36188327 PMCID: PMC9520560 DOI: 10.1021/acsomega.2c02631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/28/2022] [Indexed: 06/16/2023]
Abstract
The objective of the present work was to optimize the operating conditions (P, T cosolvent %) and to study the scale-up and the feasibility of the supercritical fluid extraction (SFE) process for polyphenols from grape pomace, the main solid byproduct of the wine industry. Pilot-scale equipment (1 L extraction vessel) was used to study the scale-up prediction for extraction vessels of 50, 100, 500, and 1000 L capacity. The adopted scale-up criteria consisted of maintaining and keeping constant the solvent mass-to-feed mass ratio and the bed geometry dimension. The results indicated an excellent predictive level obtained by Sovová's model and success of the adopted scale-up criteria. At industrial scale, yields were close to 2.3 gGAE/100 gDM, a value obtained using the pilot-scale equipment. High concentrations of high-added-value phenols such as cis-resveratrol glucoside, cis-coutaric acid, trans-p-coumaric acid, quercetin, and proanthocyanidins were found in the extract. An economic evaluation of the process indicated the feasibility of an industrial SFE plant with a capacity of 500 L for producing in 60 min an extract with an expected phenolics' concentration of approximately 133 gGAE/kg extract at an estimated 67€ /kgextract cost of manufacturing. Notably, all values are better than those currently reported in the literature.
Collapse
|
5
|
Phan HT, Hong CTT, Huu TN, Nguyen Thi T. Extraction of custard apple (
Annona squamosal
L.) peel with supercritical
CO
2
and ethanol as co‐solvent. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huan Tai Phan
- Nong Lam University ‐ Ho Chi Minh City, Faculty of Chemical Engineering and Food Technology Ho Chi Minh city Vietnam
| | - Chau Tran Thi Hong
- Nong Lam University ‐ Ho Chi Minh City, Faculty of Chemical Engineering and Food Technology Ho Chi Minh city Vietnam
- Ho Chi Minh City University of Food Industry Ho Chi Minh city Vietnam
| | - Thien Nguyen Huu
- Nong Lam University ‐ Ho Chi Minh City, Faculty of Chemical Engineering and Food Technology Ho Chi Minh city Vietnam
| | - Trang Nguyen Thi
- Nong Lam University ‐ Ho Chi Minh City, Faculty of Chemical Engineering and Food Technology Ho Chi Minh city Vietnam
- Industrial University of Ho Chi Minh City Ho Chi Minh city Vietnam
| |
Collapse
|
6
|
Derbassi N, C Pedrosa M, Heleno S, Fernandes F, Dias MI, Calhelha RC, Rodrigues P, Carocho M, Ferreira ICFR, Barros L. Arbutus unedo leaf extracts as potential dairy preservatives: case study on quark cheese. Food Funct 2022; 13:5442-5454. [PMID: 35475440 DOI: 10.1039/d1fo04158d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The plant kingdom is an endless source of molecules that can be applied in almost all realms of society. The food industry has profited from the use of plants and their derived materials for many decades. Recently, the food industry has been looking into plants to find different ways of either preserving, coloring or sweetening foods. In this work, leaf extracts of Arbutus unedo L. obtained by dynamic maceration and ultrasound assisted extraction with prior optimization of their extraction conditions through the response-surface methodology, were incorporated in quark cheese as natural preservatives and analyzed over 8 days of shelf-life. Both extracts showed antioxidant activity with no toxicity towards primary cell lines at the maximum tested concentration, as well as antibacterial activity, especially against Gram-positive strains. After their incorporation in quark cheese, no significant changes were observed in the nutritional profile and physical traits of the quark cheeses, while the microbial load was highly reduced in the cheese, especially using the extracts obtained from dynamic maceration. Thus, leaf extracts of A. unedo can be promising candidates for use in the food industry as natural preservatives.
Collapse
Affiliation(s)
- Nabila Derbassi
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal. .,Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Mariana C Pedrosa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Sandrina Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Filipa Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Paula Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Marcio Carocho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
7
|
Moreno-García KL, Antunes-Ricardo M, Martínez-Ávila M, Milán-Carrillo J, Guajardo-Flores D. Evaluation of the antioxidant, anti-inflammatory and antihyperglycemic activities of black bean (Phaseolus vulgaris L.) by-product extracts obtained by supercritical CO2. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Supercritical CO 2-ethanol extraction of oil from green coffee beans: optimization conditions and bioactive compound identification. Journal of Food Science and Technology 2021; 58:4514-4523. [PMID: 34629515 DOI: 10.1007/s13197-020-04933-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
In this research, a supercritical CO2-ethanol extraction was optimized to obtain a green coffee oil rich in bioactive compounds. A face-centered central composite design was used to evaluate the effect of temperature (50-70 °C), extraction pressure (15.0-30.0 MPa), and cosolvent content (5-20%) on the extraction yield and total phenolic compound content of green coffee supercritical extract (GCSE). The experimental data were fitted to a second-order polynomial model. According to the statistical analyses, the lack of fit was not significant for either mathematical model. From the response surface plots, the extraction pressure and cosolvent content significantly impacted the extraction yield, while the total phenolic compound content was impacted by temperature and cosolvent content. The optimal conditions were a 20% cosolvent content, a pressure of 30 MPa, and a temperature of 62 °C, which predicted an extraction yield of 7.7% with a total phenol content of 5.4 mg gallic acid equivalent g GCSE-1. The bioactive compounds included 5-caffeoylquinic acid (11.53-17.91 mg g GCSE-1), caffeine (44.76-79.51 mg g GCSE-1), linoleic acid (41.47-41.58%), and palmitic acid (36.07-36.18%). Our results showed that GCSE has the outstanding chemical quality and antioxidant potential, suggesting that GCSE can be used as a functional ingredient.
Collapse
|
9
|
Dutta S, Priyadarshini SR, Moses JA, Anandharamakrishnan C. Supercritical Fluid and Ultrasound‐assisted Green Extraction Technologies for Catechin Recovery. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sayantani Dutta
- Ministry of Food Processing Industries, Govt. of India Computational Modeling and Nanoscale Processing Unit Indian Institute of Food Processing Technology (IIFPT) 613 005 Thanjavur Tamil Nadu India
| | - S. R. Priyadarshini
- Ministry of Food Processing Industries, Govt. of India Computational Modeling and Nanoscale Processing Unit Indian Institute of Food Processing Technology (IIFPT) 613 005 Thanjavur Tamil Nadu India
| | - Jeyan A. Moses
- Ministry of Food Processing Industries, Govt. of India Computational Modeling and Nanoscale Processing Unit Indian Institute of Food Processing Technology (IIFPT) 613 005 Thanjavur Tamil Nadu India
| | - C. Anandharamakrishnan
- Ministry of Food Processing Industries, Govt. of India Computational Modeling and Nanoscale Processing Unit Indian Institute of Food Processing Technology (IIFPT) 613 005 Thanjavur Tamil Nadu India
| |
Collapse
|
10
|
Rifna EJ, Misra NN, Dwivedi M. Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review. Crit Rev Food Sci Nutr 2021; 63:719-752. [PMID: 34309440 DOI: 10.1080/10408398.2021.1952923] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fruits and vegetables are the most important commodities of trade value among horticultural produce. They are utilized as raw or processed, owing to the presence of health-promoting components. Significant quantities of waste are produced during fruits and vegetables processing that are majorly accounted by waste peels (∼90-92%). These wastes, however, are usually exceptionally abundant in bioactive molecules. Retrieving these valuable compounds is a core objective for the valorization of waste peel, besides making them a prevailing source of beneficial additives in food and pharmaceutical industry. The current review is focused on extraction of bioactive compounds derived from fruit and vegetable waste peels and highlights the supreme attractive conventional and non-conventional extraction techniques, such as microwave-assisted, ultrasound assisted, pulsed electric fields, pulsed ohmic heating, pressurized liquid extraction, supercritical fluid extraction, pressurized hot water, high hydrostatic pressure, dielectric barrier discharge plasma extraction, enzyme-assisted extraction and the application of "green" solvents say as well as their synergistic effects that have been applied to recover bioactive from waste peels. Superior yields achieved with non-conventional technologies were identified to be of chief interest, considering direct positive economic consequences. This review also emphasizes leveraging efficient, modern extraction technologies for valorizing abundantly available low-cost waste peel, to achieve economical substitutes, whilst safeguarding the environment and building a circular economy. It is supposed that the findings discussed though this review might be a valuable tool for fruit and vegetable processing industry to imply an economical and effectual sustainable extraction methods, converting waste peel by-product to a high added value functional product.
Collapse
Affiliation(s)
- E J Rifna
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - N N Misra
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Madhuresh Dwivedi
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
11
|
Pagano I, Campone L, Celano R, Piccinelli AL, Rastrelli L. Green non-conventional techniques for the extraction of polyphenols from agricultural food by-products: A review. J Chromatogr A 2021; 1651:462295. [PMID: 34118529 DOI: 10.1016/j.chroma.2021.462295] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022]
Abstract
Food processing industry is accompanied with the generation of a great production of wastes and by-products exceptionally rich in bioactive compounds (especially phenolics), with antioxidant activity. The recovery of these health molecules constitutes a key point for the valorization of by-products, with the possibility of creating new ingredients to be used for the formulation of food and cosmetic products. One of the main limitations to reuse by-products is linked to the high cost to obtain bioactive compounds, consequently in order to exploit these resources commercially valuable it is necessary to develop innovative, economic and environmentally friendly extraction strategies. These extraction methods should be able to reduce petroleum solvents, energy consumption and chemical wastes, protecting both environment and consumers and ensuring safe and high-quality final products. The purpose of this review is to summarize current knowledge and applications of the new extraction techniques such as supercritical fluid extraction, pressurized liquid extraction, ultrasound assisted extraction applied to polyphenols extraction from agricultural food by-products. Particular attention has been paid to theoretical background, highlighting mechanisms and safety precautions. Authors concluded that relevant results of these techniques represent an opportunity to industrial scale-up, improving the extraction yields, minimizing time, costs and environmental impact.
Collapse
Affiliation(s)
- Imma Pagano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, (SA) 84084, Italy
| | - Luca Campone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, Milano 20126, Italy.
| | - Rita Celano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, (SA) 84084, Italy
| | - Anna Lisa Piccinelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, (SA) 84084, Italy
| | - Luca Rastrelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, (SA) 84084, Italy
| |
Collapse
|
12
|
Arumugham T, K R, Hasan SW, Show PL, Rinklebe J, Banat F. Supercritical carbon dioxide extraction of plant phytochemicals for biological and environmental applications - A review. CHEMOSPHERE 2021; 271:129525. [PMID: 33445028 DOI: 10.1016/j.chemosphere.2020.129525] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/17/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Recently, supercritical fluid CO2 extraction (SFE) has emerged as a promising and pervasive technology over conventional extraction techniques for various applications, especially for bioactive compounds extraction and environmental pollutants removal. In this context, temperature and pressure regulate the solvent density and thereby effects the yield, selectivity, and biological/therapeutic properties of the extracted components. However, the nature of plant matrices primarily determines the extraction mechanism based on either density or vapor pressure. The present review aims to cover the recent research and developments of SFE technique in the extraction of bioactive plant phytochemicals with high antioxidant, antibacterial, antimalarial, and anti-inflammatory activities, influencing parameters, process conditions, the investigations for improving the yield and selectivity. In another portion of this review focuses on the ecotoxicology and toxic metal recovery applications. Nonpolar properties of Sc-CO2 create strong solvent strength via distinct intermolecular interaction forces with micro-pollutants and toxic metal complexes. This results in efficient removal of these contaminants and makes SFE technology as a superior alternative for conventional solvent-based treatment methods. Moreover, a compelling assessment on the therapeutic, functional, and solvent properties of SFE is rarely focused, and hence this review would add significant value to the SFE based research studies. Furthermore, we mention the limitations and potential of future perspectives related to SFE applications.
Collapse
Affiliation(s)
- Thanigaivelan Arumugham
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| | - Rambabu K
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| | - Pau Loke Show
- Department of Chemical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Selangor Darul Ehsan, Malaysia.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, 05006, Republic of Korea.
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
13
|
Uwineza PA, Waśkiewicz A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020; 25:molecules25173847. [PMID: 32847101 PMCID: PMC7504334 DOI: 10.3390/molecules25173847] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 11/16/2022] Open
Abstract
In this review, recent advances in greener technology for extracting natural bioactive components from plant origin sources are discussed. Bioactive compounds of plant origin have been defined as natural chemical compounds present in small amounts in plants. Researchers have shown interest in extracting bioactive compounds because of their human health benefits and characteristics of being eco-friendly and generally recognized as safe. Various new extraction methods and conventional extraction methods have been developed, however, until now, no unique approach has been presented as a benchmark for extracting natural bioactive compounds from plants. The selectivity and productivity of traditional and modern extraction techniques generally depend on selecting the critical input parameters, knowing the nature of plant-based samples, the structure of bioactive compounds, and good scientific skills. This work aims to discuss the recent advances in supercritical fluid extraction techniques, especially supercritical carbon dioxide, along with the fundamental principles for extracting bioactive compounds from natural plant materials such as herbs, spices, aromatic and medicinal plants.
Collapse
|
14
|
Wenzel J, Wang L, Horcasitas S, Warburton A, Constine S, Kjellson A, Cussans K, Ammerman M, Samaniego CS. Influence of supercritical fluid extraction parameters in preparation of black chokeberry extracts on total phenolic content and cellular viability. Food Sci Nutr 2020; 8:3626-3637. [PMID: 32724625 PMCID: PMC7382163 DOI: 10.1002/fsn3.1645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 04/10/2020] [Accepted: 04/26/2020] [Indexed: 12/02/2022] Open
Abstract
Black chokeberries (Aronia melanocarpa), deciduous shrubs of the Rosaceae family, are native to northeastern North America. Chokeberry fruits are cultivated to make jellies, juices, and wines. Black chokeberry pulp is rich in phenolics and other antioxidants and exhibits potential for health and food packaging benefits. Chokeberries' in vitro antioxidant activity is among the highest values of all berries, though chokeberry extraction techniques frequently employ environmentally unfavorable solvents or are time-inefficient. Batch extraction of antioxidants from chokeberry pomace using supercritical carbon dioxide with an ethanol modifier was used to examine the effects of plant loading, pressure, temperature, and percent ethanol by weight. Effects on total phenolic content (TPC) and the optimal conditions for extractions within these ranges are reported. Multivariate analyses reveal the following relationships of extraction conditions upon TPC: Temperature is directly proportional, percent ethanol by weight is inversely proportional, and chokeberry loads can be increased to enhance antioxidant activity, though not through a linear relationship. In studies involving 0.5 g plant load, the conditions 24.9MPa, 68°C, 90wt-% CO2, and 10wt-% ethanol generated the highest TPC value, 3.42 ± 0.20 mg gallic acid equivalents/gram chokeberry. Chokeberry extracts displayed antiproliferative effects on the SKBr3 breast cancer line and the 52KO MEF line, although TPC was not predictive of cellular responses. HPLC-MS data suggest cyanidin hexose and cyanidin pentose compounds as well as quercetin deoxyhexose-hexose as components of the more favorable extraction product that reflected a significant decrease in viability for the extract in comparison with ethanol control in the SKBr3 breast cancer line.
Collapse
Affiliation(s)
- Jonathan Wenzel
- Department of Chemistry, Biochemistry, Chemical Engineering and Applied BiologyKettering UniversityFlintMIUSA
| | - Lihua Wang
- Department of Chemistry, Biochemistry, Chemical Engineering and Applied BiologyKettering UniversityFlintMIUSA
| | - Sebastian Horcasitas
- Department of Chemistry, Biochemistry, Chemical Engineering and Applied BiologyKettering UniversityFlintMIUSA
| | - Alyssa Warburton
- Department of Chemistry, Biochemistry, Chemical Engineering and Applied BiologyKettering UniversityFlintMIUSA
| | - Scott Constine
- Department of Chemistry, Biochemistry, Chemical Engineering and Applied BiologyKettering UniversityFlintMIUSA
| | - Anna Kjellson
- Department of Chemistry, Biochemistry, Chemical Engineering and Applied BiologyKettering UniversityFlintMIUSA
| | - Kirsten Cussans
- Department of Chemistry, Biochemistry, Chemical Engineering and Applied BiologyKettering UniversityFlintMIUSA
| | - Michelle Ammerman
- Department of Chemistry, Biochemistry, Chemical Engineering and Applied BiologyKettering UniversityFlintMIUSA
| | - Cheryl S. Samaniego
- Department of Chemistry, Biochemistry, Chemical Engineering and Applied BiologyKettering UniversityFlintMIUSA
| |
Collapse
|
15
|
Supercritical fluid extraction of Arbutus unedo distillate residues – Impact of process conditions on antiproliferative response of extracts. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Kim SY, Hyeonbin O, Lee P, Kim YS. The quality characteristics, antioxidant activity, and sensory evaluation of reduced-fat yogurt and nonfat yogurt supplemented with basil seed gum as a fat substitute. J Dairy Sci 2020; 103:1324-1336. [DOI: 10.3168/jds.2019-17117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/10/2019] [Indexed: 11/19/2022]
|
17
|
Wenzel JE, Moorman V, Wang L, Spencer‐Williams I, Hall M, Samaniego CS, Ammerman ML. In-situ extraction and impregnation of black walnut husk into polyethylene film using supercritical carbon dioxide with an ethanol modifier. Food Sci Nutr 2020; 8:612-619. [PMID: 31993184 PMCID: PMC6977517 DOI: 10.1002/fsn3.1348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/14/2019] [Indexed: 01/02/2023] Open
Abstract
Walnuts are commonly cultivated for their kernel, which is a rich source of antioxidant phenolic compounds. The husk likewise contains antioxidant and antimicrobial compounds, but is typically discarded without further processing. Antioxidant compounds are useful in creating active packaging films, but typically decompose at melt extrusion temperatures in polymer processing. Due to carbon dioxide's low critical point and ability to swell polymer films, supercritical carbon dioxide may be used to impregnate phenolic compounds into polymers. For this study, a novel technique is used to simultaneously produce walnut husk extracts and impregnate the extract into polymer films in the same batch extractor using supercritical carbon dioxide with a 15 wt-% ethanol modifier at 60°C at 19.4 MPa. The effect of varying the loading of walnut husk in the extractor upon impregnation mass was evaluated with the impregnation mass of the film increasing with walnut husk loading. It was determined by FTIR, as well as the reduction of the protein cytochrome c, that antioxidant compounds may be extracted from walnut husks and impregnated into low-density polyethylene film (LDPE) by this technique.
Collapse
|
18
|
Evaluation of Several Microalgal Extracts as Bioactive Metabolites as Potential Pharmaceutical Compounds. IFMBE PROCEEDINGS 2020. [DOI: 10.1007/978-3-030-17971-7_41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Screening of antioxidant and cytotoxic activities of several microalgal extracts with pharmaceutical potential. HEALTH AND TECHNOLOGY 2019. [DOI: 10.1007/s12553-019-00388-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Sevimli-Gur C, Yesil-Celiktas O. Cytotoxicity screening of supercritical fluid extracted seaweeds and phenylpropanoids. Mol Biol Rep 2019; 46:3691-3699. [PMID: 31004301 DOI: 10.1007/s11033-019-04812-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/10/2019] [Indexed: 12/21/2022]
Abstract
Detached leaves of Posidonia oceanica and Zostera marina creating nuisance at the shores were extracted by means of supercritical CO2 enriched with a co-solvent, compared with that of soxhlet extraction. The extracts and their active compounds which are phenylpropanoids (chicoric, p-coumaric, rosmarinic, benzoic, ferulic and caffeic acids) were screened for cytotoxicity in cancer cell lines including human breast adenocarcinoma (MCF-7, MDA-MB-231, SK-BR-3), human colon adenocarcinoma (HT-29), human cervix adenocarcinoma (HeLa), human prostate adenocarcinoma (PC-3), Mus musculus neuroblastoma (Neuro 2A) cell lines and African green monkey kidney (VERO) as healthy cell line. Supercritical CO2 extracts proved to be more active than soxhlet counterparts. Particularly, Zostera marina extract obtained by supercritical CO2 at 250 bar, 80 °C, 20% co-solvent and a total flow rate of 15 g/min revealed the best IC50 values of 25, 20, 8 μg/ml in neuroblastoma, colon and cervix cancer cell lines. Among the major compounds tested, p-coumaric acid exhibited the highest cytotoxic against colon and cervix cell lines by with IC50 values of 25, 11 μg/ml. As for the effects on healthy cells, the extract was not cytotoxic indicating a selective cytotoxicity. Obtained supercritical CO2 extracts can be utilized as a supplement for preventive purposes.
Collapse
Affiliation(s)
- Canan Sevimli-Gur
- Department of Biology, Biotechnology Discipline, Science and Art Faculty, Kocaeli University, 41380, Izmit, Kocaeli, Turkey
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
21
|
Tenuta MC, Tundis R, Xiao J, Loizzo MR, Dugay A, Deguin B. Arbutus species (Ericaceae) as source of valuable bioactive products. Crit Rev Food Sci Nutr 2018; 59:864-881. [PMID: 30582347 DOI: 10.1080/10408398.2018.1551777] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In addition to nutrients, plant foods contain compounds that may provide additional health benefits improving the quality of life. Species from Arbutus genus (Ericaceae) represent a promising source of healthy phytochemicals. Bioactive compounds including such as anthocyanins, iridoids, phenols, triterpenes, sterols, and fatty acids are reported from Arbutus species. Some Arbutus species revealed promising biological activities including antioxidant, anti-inflammatory, anti-proliferative, anti-diabetic, and antimicrobial activities, and deserve for that reason further consideration for new drug discovery. However, only few species are investigated scientifically for their chemical profile and biological activities. The aim of this article is to summarize the current knowledge of the components and biological properties of Arbutus species common in Mediterranean area, as well as the future prospects on their applications as potentially valuable products.
Collapse
Affiliation(s)
- Maria Concetta Tenuta
- a Department of Pharmacy Health and Nutritional Sciences , University of Calabria , Arcavacata Rende , Italy.,b Faculté de Pharmacie de Paris, UMR CNRS 8638, Laboratoire de Pharmacognosie , Université Paris Descartes , Paris , France
| | - Rosa Tundis
- a Department of Pharmacy Health and Nutritional Sciences , University of Calabria , Arcavacata Rende , Italy
| | - Jianbo Xiao
- c Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine , University of Macau Avenida da Universidade , Macau , China
| | - Monica Rosa Loizzo
- a Department of Pharmacy Health and Nutritional Sciences , University of Calabria , Arcavacata Rende , Italy
| | - Annabelle Dugay
- b Faculté de Pharmacie de Paris, UMR CNRS 8638, Laboratoire de Pharmacognosie , Université Paris Descartes , Paris , France
| | - Brigitte Deguin
- b Faculté de Pharmacie de Paris, UMR CNRS 8638, Laboratoire de Pharmacognosie , Université Paris Descartes , Paris , France
| |
Collapse
|
22
|
Penkhrue W, Kanpiengjai A, Khanongnuch C, Masaki K, Pathom-Aree W, Punyodom W, Lumyong S. Effective enhancement of polylactic acid-degrading enzyme production by Amycolatopsis sp. strain SCM_MK2-4 using statistical and one-factor-at-a-time approaches. Prep Biochem Biotechnol 2017; 47:730-738. [PMID: 28414263 DOI: 10.1080/10826068.2017.1315597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Watsana Penkhrue
- Department of Biology, Faculty of Science, Chiang Mai University, Muang District, Chiang Mai, Thailand
| | - Apinun Kanpiengjai
- Division of Biotechnology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Muang District, Chiang Mai, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Muang District, Chiang Mai, Thailand
| | - Chartchai Khanongnuch
- Division of Biotechnology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Muang District, Chiang Mai, Thailand
| | - Kazuo Masaki
- National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Muang District, Chiang Mai, Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Muang District, Chiang Mai, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Muang District, Chiang Mai, Thailand
| |
Collapse
|
23
|
Santos ÊR, Oliveira HN, Oliveira EJ, Azevedo SH, Jesus AA, Medeiros AM, Dariva C, Sousa EM. Supercritical fluid extraction of Rumex Acetosa L. roots: Yield, composition, kinetics, bioactive evaluation and comparison with conventional techniques. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2016.11.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Ameer K, Shahbaz HM, Kwon JH. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr Rev Food Sci Food Saf 2017; 16:295-315. [PMID: 33371540 DOI: 10.1111/1541-4337.12253] [Citation(s) in RCA: 321] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 02/01/2023]
Abstract
Polyphenols as phytochemicals have gained significant importance owing to several associated health benefits with regard to lifestyle diseases and oxidative stress. To date, the development of a single standard method for efficient and rapid extraction of polyphenols from plant matrices has remained a challenge due to the inherent limitations of various conventional extraction methods. The exploitation of polyphenols as bioactive compounds at various commercial levels has motivated scientists to explore more eco-friendly, efficient, and cost-effective extraction techniques, based on a green extraction approach. The current review aims to provide updated technical information about extraction mechanisms, their advantages and disadvantages, and factors affecting efficiencies, and also presents a comparative overview of applications of the following modern green extraction techniques-supercritical fluid extraction, ultrasound-assisted extraction, microwave-assisted extraction, pressurized liquid extraction, and pressurized hot water extraction-as alternatives to conventional extraction methods for polyphenol extraction. These techniques are proving to be promising for the extraction of thermolabile phenolic compounds due to their advantages over conventional, time-consuming, and laborious extraction techniques, such as reduced solvent use and time and energy consumption and higher recovery rates with lower operational costs. The growing interest in plant-derived polyphenols prompts continual search for green and economically feasible modern extraction techniques. Modern green extraction techniques represent promising approaches by virtue of overcoming current limitations to the exploitation of polyphenols as bioactive compounds to explore their wide-reaching applications on an industrial scale and in emerging global markets. Future research is needed in order to remove the technical barriers to scale-up the processes for industrial needs by increasing our understanding and improving the design of modern extraction operations.
Collapse
Affiliation(s)
- Kashif Ameer
- School of Food Science & Biotechnology, Kyungpook Natl. Univ., Daegu, 41566, South Korea
| | - Hafiz Muhammad Shahbaz
- the Dept. of Biotechnology, Yonsei Univ., 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Joong-Ho Kwon
- School of Food Science & Biotechnology, Kyungpook Natl. Univ., Daegu, 41566, South Korea
| |
Collapse
|
25
|
Wenzel J, Storer Samaniego C, Wang L, Burrows L, Tucker E, Dwarshuis N, Ammerman M, Zand A. Antioxidant potential of Juglans nigra, black walnut, husks extracted using supercritical carbon dioxide with an ethanol modifier. Food Sci Nutr 2016; 5:223-232. [PMID: 28265357 PMCID: PMC5332255 DOI: 10.1002/fsn3.385] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 04/18/2016] [Accepted: 04/21/2016] [Indexed: 11/29/2022] Open
Abstract
The black walnut, Junglas nigra, is indigenous to eastern North America, and abscission of its fruit occurs around October. The fruit consists of a husk, a hard shell, and kernel. The husk is commonly discarded in processing, though it contains phenolic compounds that exhibit antioxidant and antimicrobial properties. For this study, black walnut husks were extracted using supercritical carbon dioxide with an ethanol modifier. The effects of temperature, ethanol concentration, and drying of walnut husks prior to extraction upon antioxidant potential were evaluated using a factorial design of experiments. The solvent density was held constant at 0.75 g/mL. The optimal extraction conditions were found to be 68°C and 20 wt‐% ethanol in supercritical carbon dioxide. At these conditions, the antioxidant potential as measured by the ferric reducing ability of plasma (FRAP) assay was 0.027 mmol trolox equivalent/g (mmol TE/g) for dried walnut husk and 0.054 mmol TE/g for walnut husks that were not dried. Antioxidant potential was also evaluated using the total phenolic content (TPC) and 1,1‐diphenyl‐2‐picryl‐hydrazyl (DPPH) assays and the FRAP assay was found to linearly correlate to the TPC assay.
Collapse
Affiliation(s)
- Jonathan Wenzel
- Kettering University 1700 University Ave Flint Michigan 48504
| | | | - Lihua Wang
- Kettering University 1700 University Ave Flint Michigan 48504
| | - Laron Burrows
- Kettering University 1700 University Ave Flint Michigan 48504
| | - Evan Tucker
- Kettering University 1700 University Ave Flint Michigan 48504
| | | | | | - Ali Zand
- Kettering University 1700 University Ave Flint Michigan 48504
| |
Collapse
|
26
|
Talmaciu AI, Volf I, Popa VI. A Comparative Analysis of the ‘Green’ Techniques Applied for Polyphenols Extraction from Bioresources. Chem Biodivers 2015; 12:1635-51. [DOI: 10.1002/cbdv.201400415] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Indexed: 01/23/2023]
|
27
|
Investigating anthocyanin contents and in vitro tumor suppression properties of blueberry extracts prepared by various processes. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2577-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Şen A, de Melo MM, Silvestre AJ, Pereira H, Silva CM. Prospective pathway for a green and enhanced friedelin production through supercritical fluid extraction of Quercus cerris cork. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2014.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Yildiz-Ozturk E, Tag O, Yesil-Celiktas O. Subcritical water extraction of steviol glycosides from Stevia rebaudiana leaves and characterization of the raffinate phase. J Supercrit Fluids 2014. [DOI: 10.1016/j.supflu.2014.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
30
|
Arbutus unedo L.: chemical and biological properties. Molecules 2014; 19:15799-823. [PMID: 25271425 PMCID: PMC6271735 DOI: 10.3390/molecules191015799] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 11/17/2022] Open
Abstract
Arbutus unedo L. (strawberry tree) has a circum-Mediterranean distribution, being found in western, central and southern Europe, north-eastern Africa (excluding Egypt and Libya) and the Canary Islands and western Asia. Fruits of the strawberry tree are generally used for preparing alcoholic drinks (wines, liqueurs and brandies), jams, jellies and marmalades, and less frequently eaten as fresh fruit, despite their pleasing appearance. An overview of the chemical composition of different parts of the plant, strawberry tree honey and strawberry tree brandy will be presented. The biological properties of the different parts of A. unedo and strawberry tree honey will be also overviewed.
Collapse
|
31
|
de Melo M, Silvestre A, Silva C. Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. J Supercrit Fluids 2014. [DOI: 10.1016/j.supflu.2014.04.007] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Supercritical fluid extraction of Prunus persica leaves and utilization possibilities as a source of phenolic compounds. J Supercrit Fluids 2014. [DOI: 10.1016/j.supflu.2014.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Yildiz E, Karabulut D, Yesil-Celiktas O. A bioactivity based comparison of Echinacea purpurea extracts obtained by various processes. J Supercrit Fluids 2014. [DOI: 10.1016/j.supflu.2014.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Mathematical modeling and mass transfer considerations in supercritical fluid extraction of Posidonia oceanica residues. J Supercrit Fluids 2013. [DOI: 10.1016/j.supflu.2013.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Sevimli-Gur C, Cetin B, Akay S, Gulce-Iz S, Yesil-Celiktas O. Extracts from black carrot tissue culture as potent anticancer agents. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2013; 68:293-298. [PMID: 23828497 DOI: 10.1007/s11130-013-0371-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Black carrots contain anthocyanins possessing enhanced physiological activities. Explants of young black carrot shoots were cultured in Murashige and Skoog (MS) medium for callus initiation and were transferred to new MS medium supplemented with four different combinations of 2,4-dichlorophenoxyacetic acid and kinetin. Subsequently, the lyophilized calli and black carrot harvested from fields were subjected to ultrasound extraction with ethanol at a ratio of 1:15 (w:v). Obtained extracts were applied to various human cancer cell lines including MCF-7 SK-BR-3 and MDA-MB-231 (human breast adenocarcinomas), HT-29 (human colon adenocarcinoma), PC-3 (human prostate adenocarcinoma), Neuro 2A (Musmusculus neuroblastoma) cancer cell lines and VERO (African green monkey kidney) normal cell line by MTT assay. The highest cytotoxic activity was achieved against Neuro-2A cell lines exhibiting viability of 38-46% at 6.25 μg/ml concentration for all calli and natural extracts. However, a significantly high IC50 value of 170.13 μg/ml was attained in normal cell line VERO indicating that its natural counterpart is an ideal candidate for treatment of brain cancer without causing negative effects to normal healthy cells.
Collapse
Affiliation(s)
- Canan Sevimli-Gur
- Department of Biology, Science and Art Faculty, Kocaeli University, Kocaeli, Turkey
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Santos SA, Villaverde JJ, Silva CM, Neto CP, Silvestre AJ. Supercritical fluid extraction of phenolic compounds from Eucalyptus globulus Labill bark. J Supercrit Fluids 2012. [DOI: 10.1016/j.supflu.2012.07.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|