1
|
Wang W, Cao J, Yang J, Niu X, Liu X, Zhai Y, Qiang C, Niu Y, Li Z, Dong N, Wen B, Ouyang Z, Zhang Y, Li J, Zhao M, Zhao J. Antimicrobial Activity of Tannic Acid In Vitro and Its Protective Effect on Mice against Clostridioides difficile. Microbiol Spectr 2023; 11:e0261822. [PMID: 36537806 PMCID: PMC9927261 DOI: 10.1128/spectrum.02618-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/21/2022] [Indexed: 02/16/2023] Open
Abstract
Clostridioides difficile infection (CDI), recurrently reported as an urgent threat owing to its increased prevalence and mortality, has attracted significant attention. As the use of antibiotics to treat CDI has many limitations, such as high recurrence rate, the need to actively seek and develop other drugs that can effectively treat CDI with fewer side effects has become a key issue in CDI prevention and treatment. This study aimed to evaluate the inhibitory effect of Galla chinensis (GC) and its main component, tannic acid (TA), against C. difficile in vitro and its therapeutic effect on CDI in vivo. When GC and TA concentrations were 250 and 64 mg/L, respectively, the cumulative antibacterial rate against C. difficile reached 100%. The sub-MIC of TA significantly inhibited C. difficile sporulation, toxin production, and biofilm formation in vitro. Compared with the CDI control group, TA-treated mice lost less weight and presented a significantly improved survival rate. TA significantly reduced the number of spores in feces, decreased serum TcdA level, and increased serum interleukin 10 (IL-10). Based on the inhibitory effect of TA on C. difficile in vitro and its therapeutic effect on the CDI mouse model, we consider TA as a potentially effective drug for treating CDI. IMPORTANCE Clostridioides difficile is one of the major pathogens to cause antibiotic-associated diarrhea. Although antibiotic treatment is still the most commonly used and effective treatment for CDI, the destruction of indigenous intestinal microbiota by antibiotics is the main reason for the high CDI recurrence rate of about 20%, which is increasing every year. Moreover, the growing problem of drug resistance has also become a major hidden danger in antibiotic treatment. GC has been used to treat diarrhea in traditional Chinese medicine. In the present study, we evaluated the inhibitory effect of TA, the main component of GC, on dissemination and pathogenic physiological functions of C. difficile in vitro, as well as its therapeutic efficacy in a CDI model. Overall, TA is considered to be a potentially effective drug for CDI treatment.
Collapse
Affiliation(s)
- Weigang Wang
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Jing Cao
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Jing Yang
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Xiaoran Niu
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Xiaoxuan Liu
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Yu Zhai
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Cuixin Qiang
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Yanan Niu
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Zhirong Li
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Ning Dong
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Baojiang Wen
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Zirou Ouyang
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Yulian Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Jiayiren Li
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Min Zhao
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Jianhong Zhao
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Li F, Deng L, Xu Q, Yuan K, Song H. Extractive separation of 1,8-cineole and γ-terpinene with lactic acid-based deep eutectic solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Yu J, Liu X, Zhang L, Shao P, Wu W, Chen Z, Li J, Renard CM. An overview of carotenoid extractions using green solvents assisted by Z-isomerization. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
Tian J, Wang X, Shi Q, Xiang X, Su C, Xie Y, Jin S, Huang R, Song C. Isolation and Purification of Kudinosides from Kuding Tea by Semi-Preparative HPLC Combined with MCI-GEL Resin. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411015666191031153352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Kuding tea, a Traditional Chinese drink, has a history of thousands of years
in China. Triterpenoid saponins in Kuding tea are regarded as one of the major functional ingredients.
Objective:
The aim of this paper was to establish separation progress for the isolation and purification
of five triterpenoid saponins (kudinoside A, C, D, F, G) from Kuding tea.
Methods:
Nine types of resins, including seven macroporous resins and two MCI-GEL resins, were
firstly used for purifying triterpenoid saponins by the adsorption and desorption tests. Further dynamic
adsorption/desorption experiments were carried out to obtain the optimal parameters for the five
targeted saponins. Then the purification of five triterpenoid saponins (kudinoside A, C, D, F, G) was
completed by semi-preparative high-performance liquid chromatography (semi-pHPLC).
Results:
As of optimized results, the HP20SS MCI-GEL was selected as the optimal one. The data
also showed that 65.24 mg of refined extract including 7.04 mg kudinoside A, 3.52 mg kudinoside C,
4.04 mg kudinoside D, 4.13 mg kudinoside F, and 34.45 mg kudinoside G, could be isolated and purified
from 645.90 mg of crude extract in which the content of five saponins was 81.51% and the average
recovery reached 69.76%. The final contents of five saponins increased 6.91-fold as compared
to the crude extract.
Conclusion:
The established separation progress was highly efficient, making it a potential approach
for the large-scale production in the laboratory and providing several markers of triterpenoid saponins
for quality control of Kuding tea or its processing products.
Collapse
Affiliation(s)
- Ji Tian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Xuanyuan Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Qingxin Shi
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Xingliang Xiang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Chao Su
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Yun Xie
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Shuna Jin
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection; and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongzeng Huang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Chengwu Song
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
5
|
Ionic liquid associated with ultrasonic-assisted extraction: A new approach to obtain carotenoids from orange peel. Food Res Int 2019; 126:108653. [PMID: 31732025 DOI: 10.1016/j.foodres.2019.108653] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 11/23/2022]
Abstract
The aim of this study was to develop a new method for carotenoid extraction from orange peel, using ionic liquid (IL) to replace conventional organic solvents, assisted by ultrasound. Four different IL were tested: 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]), 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), and 1-hexyl-3-methylimidazolium chloride ([HMIM][Cl]). Response surface methodology was applied in order to optimize the carotenoid extraction conditions, and Amberlite XAD-7HP resin was used to separate the carotenoids from the IL, allowing their recovery. Determination of carotenoids was carried out by high-performance liquid chromatography coupled to photodiode array and mass spectrometry detectors (HPLC-DAD-MSn). Thermal stability at different temperatures (60 °C and 90 °C) and peroxyl radical scavenging activity of the carotenoid extracts obtained with acetone and IL were evaluated. [BMIM][Cl] was the most effective IL, leading to a total carotenoid content of 32.08 ± 2.05 μg/g, while 7.88 ± 0.59 μg/g of dry matter was obtained by acetone extraction. IL and carotenoid recoveries using XAD-7HP resin were in the range of 59.5-63.8% and 52.2-58.7%, respectively. A carotenoid extract was successfully obtained with IL, finally isolated just by using ethanol, besides being more stable and presenting higher antioxidant activity than that obtained with acetone.
Collapse
|
6
|
Renard CM. Extraction of bioactives from fruit and vegetables: State of the art and perspectives. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.063] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Zhou Y, Gao X, Fu Q, Guo P, Xu X, Zhang T, Ge Y, Zhang B, Wang M, Zeng A, Luo Z, Chang C. Enrichment of total steroidal saponins from the extracts of Trillium tschonoskii Maxim by macroporous resin and the simultaneous determination of eight steroidal saponins in the final product by HPLC. J Sep Sci 2018; 40:1115-1124. [PMID: 28044421 DOI: 10.1002/jssc.201600884] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/01/2016] [Accepted: 12/10/2016] [Indexed: 12/25/2022]
Abstract
An effective and simple method was established for the separation and enrichment of steroidal saponins from Trillium tschonoskii Maxim. The adsorption and desorption properties of seven macroporous resins were investigated. Among the tested resins, AB-8 resin showed the best adsorption and desorption capacities. The adsorption of steroidal saponins on AB-8 at 25°C was quite consistent with both the Freundlich isotherm model and the pseudo-second-order kinetics model. By optimizing the dynamic adsorption and desorption parameters, the content of steroidal saponins increased from 5.20% in the crude extracts to 51.93% in the final product, with a recovery yield of 86.67%. Furthermore, by scale-up separation, the concentration and recovery of total steroidal saponins were 43.8 and 85.5%, respectively, which suggested that AB-8 resin had great industrial and pharmaceutical potential because of its high efficiency and cost-effectiveness. In addition, a high-performance liquid chromatography method for the simultaneous determination of eight steroidal saponins was established for the first time, which was employed to qualitatively and quantitatively analyze the final product. Based on the methodological validation results, the high-performance liquid chromatography method can be widely applied to the quality control of steroidal saponins from Trillium tschonoskii Maxim due to its excellent accuracy, stability, and repeatability.
Collapse
Affiliation(s)
- Yulan Zhou
- Department of Pharmacutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Xin Gao
- Department of Pharmacognosy, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Qiang Fu
- Department of Pharmacutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Pengqi Guo
- Department of Pharmacutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Xinya Xu
- Department of Pharmacutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Ting Zhang
- Department of Pharmacutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Yanhui Ge
- Department of Pharmacutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Bilin Zhang
- Department of Pharmacutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Mingchan Wang
- Department of Pharmacutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Aiguo Zeng
- Department of Pharmacutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Zhimin Luo
- Department of Pharmacutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Chun Chang
- Department of Pharmacutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
8
|
Smeriglio A, Barreca D, Bellocco E, Trombetta D. Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. Br J Pharmacol 2017; 174:1244-1262. [PMID: 27646690 PMCID: PMC5429339 DOI: 10.1111/bph.13630] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/07/2016] [Accepted: 09/14/2016] [Indexed: 12/14/2022] Open
Abstract
Tannins are a heterogeneous group of high MW, water-soluble, polyphenolic compounds, naturally present in cereals, leguminous seeds and, predominantly, in many fruits and vegetables, where they provide protection against a wide range of biotic and abiotic stressors. Tannins exert several pharmacological effects, including antioxidant and free radical scavenging activity as well as antimicrobial, anti-cancer, anti-nutritional and cardio-protective properties. They also seem to exert beneficial effects on metabolic disorders and prevent the onset of several oxidative stress-related diseases. Although the bioavailability and pharmacokinetic data for these phytochemicals are still sparse, gut absorption of these compounds seems to be inversely correlated with the degree of polymerization. Further studies are mandatory to better clarify how these molecules and their metabolites are able to cross the intestinal barrier in order to exert their biological properties. This review summarizes the current literature on tannins, focusing on the main, recently proposed mechanisms of action that underlie their pharmacological and disease-prevention properties, as well as their bioavailability, safety and toxicology. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Ersilia Bellocco
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| |
Collapse
|
9
|
Qiang Y, Wang WF, Dhodary B, Yang JL. Zeolitic imidazolate framework 8 (ZIF-8) reinforced macroporous resin D101 for selective solid-phase extraction of 1-naphthol and 2-naphthol from phenol compounds. Electrophoresis 2017; 38:1685-1692. [PMID: 28387953 DOI: 10.1002/elps.201600569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/17/2017] [Accepted: 03/27/2017] [Indexed: 11/07/2022]
Abstract
Macroporous resin has been attracting intensive attention due to its critical role in separation and purification of natural products. Herein, a zeolitic imidazolate framework 8 reinforced macroporous resin D101 was prepared via a room temperature growth method and used for dispersive SPE of 1-naphthol and 2-naphthol. The parameters affecting the adsorption and desorption efficiency such as the sample pH, adsorbent amount, extraction time, desorption solvent, and desorption time were investigated. The as-prepared adsorbent showed selectivity for 1-naphthol and 2-naphthol compared to other phenols. Under the optimum dispersive SPE conditions, the detection of 1-naphthol and 2-naphthol coupled with a CZE method was conducted and the LODs for 1-naphthol and 2-naphthol were 1.37 and 1.43 ng/mL, respectively. Moreover, the results of urine sample analysis showed the spiked recoveries to be in the range of 96.2-106.9%. This study indicated that D101@ZIF-8 (where ZIF is zeolitic imidazolate framework) is a promising selective adsorbent for the analysis of 1-naphthol and 2-naphthol in urine samples.
Collapse
Affiliation(s)
- Yin Qiang
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Wei-Feng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, P. R. China
| | - Basanta Dhodary
- Konstanz Research School of Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, P. R. China
| |
Collapse
|
10
|
Smeriglio A, Barreca D, Bellocco E, Trombetta D. Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. Br J Pharmacol 2016. [DOI: 10.1111/bph.13630 pmid: 27646690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Messina Italy
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Messina Italy
| | - Ersilia Bellocco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Messina Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Messina Italy
| |
Collapse
|
11
|
Zou D, Chen T, Chen C, Li H, Liu Y, Li Y. An Efficient Protocol for Preparation of Gallic Acid fromTerminalia bellirica(Gaertn.) Roxb by Combination of Macroporous Resin and Preparative High-Performance Liquid Chromatography. J Chromatogr Sci 2016; 54:1220-4. [DOI: 10.1093/chromsci/bmw054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 01/16/2023]
|
12
|
Passos H, Freire MG, Coutinho JAP. Ionic liquid solutions as extractive solvents for value-added compounds from biomass. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2014; 16:4786-4815. [PMID: 25516718 PMCID: PMC4265387 DOI: 10.1039/c4gc00236a] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In the past few years, the number of studies regarding the application of ionic liquids (ILs) as alternative solvents to extract value-added compounds from biomass has been growing. Based on an extended compilation and analysis of the data hitherto reported, the main objective of this review is to provide an overview on the use of ILs and their mixtures with molecular solvents for the extraction of value-added compounds present in natural sources. The ILs (or IL solutions) investigated as solvents for the extraction of natural compounds, such as alkaloids, flavonoids, terpenoids, lipids, among others, are outlined. The extraction techniques employed, namely solid-liquid extraction, and microwave-assisted and ultrasound-assisted extractions, are emphasized and discussed in terms of extraction yields and purification factors. Furthermore, the evaluation of the IL chemical structure and the optimization of the process conditions (IL concentration, temperature, biomass-solvent ratio, etc.) are critically addressed. Major conclusions on the role of the ILs towards the extraction mechanisms and improved extraction yields are additionally provided. The isolation and recovery procedures of the value-added compounds are ascertained as well as some scattered strategies already reported for the IL solvent recovery and reusability. Finally, a critical analysis on the economic impact versus the extraction performance of IL-based methodologies was also carried out and is here presented and discussed.
Collapse
Affiliation(s)
- Helena Passos
- Departamento de Química, CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Mara G. Freire
- Departamento de Química, CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - João A. P. Coutinho
- Departamento de Química, CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
13
|
Abstract
Phenolic compounds sourced from agro-based feedstock, viz. cashew nut shell liquid, lignin, tannin, palm oil, and coconut shell tar, have come up as sustainable alternatives to petro-based feedstock. This review explores their utility as green polymer feedstock with citation of ~ 600 references.
Collapse
Affiliation(s)
- Bimlesh Lochab
- Department of Chemistry
- School of Natural Sciences
- Shiv Nadar University
- Greater Noida, India
| | - Swapnil Shukla
- Department of Chemistry
- School of Natural Sciences
- Shiv Nadar University
- Greater Noida, India
| | - Indra K. Varma
- Centre for Polymer Science and Engineering
- IIT, Delhi
- New Delhi, India
| |
Collapse
|