1
|
Jordaens S, Zwaenepoel K, Tjalma W, Deben C, Beyers K, Vankerckhoven V, Pauwels P, Vorsters A. Urine biomarkers in cancer detection: A systematic review of preanalytical parameters and applied methods. Int J Cancer 2023; 152:2186-2205. [PMID: 36647333 DOI: 10.1002/ijc.34434] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023]
Abstract
The aim of this review was to explore the status of urine sampling as a liquid biopsy for noninvasive cancer research by reviewing used preanalytical parameters and protocols. We searched two main health sciences databases, PubMed and Web of Science. From all eligible publications (2010-2022), information was extracted regarding: (a) study population characteristics, (b) cancer type, (c) urine preanalytics, (d) analyte class, (e) isolation method, (f) detection method, (g) comparator used, (h) biomarker type, (i) conclusion and (j) sensitivity and specificity. The search query identified 7835 records, of which 924 unique publications remained after screening the title, abstract and full text. Our analysis demonstrated that many publications did not report information about the preanalytical parameters of their urine samples, even though several other studies have shown the importance of standardization of sample handling. Interestingly, it was noted that urine is used for many cancer types and not just cancers originating from the urogenital tract. Many different types of relevant analytes have been shown to be found in urine. Additionally, future considerations and recommendations are discussed: (a) the heterogeneous nature of urine, (b) the need for standardized practice protocols and (c) the road toward the clinic. Urine is an emerging liquid biopsy with broad applicability in different analytes and several cancer types. However, standard practice protocols for sample handling and processing would help to elaborate the clinical utility of urine in cancer research, detection and disease monitoring.
Collapse
Affiliation(s)
- Stephanie Jordaens
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,Novosanis NV, Wijnegem, Belgium
| | - Karen Zwaenepoel
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Wiebren Tjalma
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,Multidisciplinary Breast Clinic, Gynecological Oncology Unit, Department of Obstetrics and Gynecology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Christophe Deben
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | | | - Vanessa Vankerckhoven
- Novosanis NV, Wijnegem, Belgium.,Center for Evaluation of Vaccination (CEV), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Alex Vorsters
- Center for Evaluation of Vaccination (CEV), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
2
|
Song Q, Wang B, Lv Y. Molecularly imprinted monoliths: Recent advances in the selective recognition of biomacromolecules related biomarkers. J Sep Sci 2021; 45:1469-1481. [PMID: 34897964 DOI: 10.1002/jssc.202100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/11/2021] [Accepted: 12/05/2021] [Indexed: 11/11/2022]
Abstract
Biomarkers are significant indicators to assist the early diagnosis of diseases and assess the therapeutic response. However, due to the low-abundance of biomarkers in complex biological fluids, it is highly desirable to explore efficient techniques to attain their selective recognition and capture before the detection. Molecularly imprinted monoliths integrate the high selectivity of imprinted polymers and the rapid convective mass transport of monoliths, and as a result are promising candidates to achieve the specific enrichment of biomarkers from complex samples. This review summarizes the various imprinting approaches for the preparation of molecularly imprinted monoliths. The state-of-art advances as an effective platform for applications in the selective capture of biomacromolecules related biomarkers were also outlined. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qingmei Song
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bingwu Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yongqin Lv
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
3
|
Simplified miniaturized analytical set-up based on molecularly imprinted polymer directly coupled to UV detection for the determination of benzoylecgonine in urine. Talanta 2021; 233:122611. [PMID: 34215095 DOI: 10.1016/j.talanta.2021.122611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 02/03/2023]
Abstract
A simple, selective, and sensitive method involving a miniaturized solid phase extraction step based on a monolithic molecularly imprinted polymer (MIP) directly coupled on-line to UV detection was developed for the determination of benzoylecgonine (BZE) in complex biological samples. Monolithic MIPs were prepared into 100 μm internal diameter fused-silica capillaries either by thermal or photopolymerization. While leading to similar selectivities with respect to BZE, photopolymerization has made it possible to produce monoliths of different lengths that can be adapted to the targeted miniaturized application. The homogeneous morphology of these monolithic MIPs was evaluated by scanning electron microscopy prior to measuring their permeability. Their selectivity was evaluated leading to imprinting factors of 2.7 ± 0.1 for BZE and 4.0 ± 0.6 for cocaine (selected as template for the MIP synthesis) with polymers resulting from three independent syntheses, showing both the high selectivity of the MIPs and the reproducibility of their synthesis. After selecting the appropriate capillary length and the set-up configuration and optimizing the extraction protocol to promote selectivity, the extraction of BZE present in human urine samples spiked at 150, 250, and 500 ng mL-1 was successfully carried out on the monolithic MIP and coupled directly on-line with UV detection. The very clean-baseline of the resulting chromatograms revealing only the peak of interest for BZE illustrated the high selectivity brought by the monolithic MIP. Limits of detection and quantification of 56.4 ng mL-1 and 188.0 ng mL-1 were achieved in urine samples, respectively. It is therefore possible to achieve analytical threshold in accordance with the legislation on BZE detection in urine without the need for an additional chromatographic separation.
Collapse
|
4
|
Bouvarel T, Delaunay N, Pichon V. Molecularly imprinted polymers in miniaturized extraction and separation devices. J Sep Sci 2021; 44:1727-1751. [DOI: 10.1002/jssc.202001223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Thomas Bouvarel
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation—UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS PSL University Paris 75005 France
| | - Nathalie Delaunay
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation—UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS PSL University Paris 75005 France
| | - Valérie Pichon
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation—UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS PSL University Paris 75005 France
- Sorbonne Université Paris 75005 France
| |
Collapse
|
5
|
Bouvarel T, Delaunay N, Pichon V. Selective extraction of cocaine from biological samples with a miniaturized monolithic molecularly imprinted polymer and on-line analysis in nano-liquid chromatography. Anal Chim Acta 2020; 1096:89-99. [DOI: 10.1016/j.aca.2019.10.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
|
6
|
Huang S, Chen G, Ye N, Kou X, Zhu F, Shen J, Ouyang G. Solid-phase microextraction: An appealing alternative for the determination of endogenous substances - A review. Anal Chim Acta 2019; 1077:67-86. [PMID: 31307724 DOI: 10.1016/j.aca.2019.05.054] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
The determination of endogenous substances is of great significance for obtaining important biotic information such as biological components, metabolic pathways and disease biomarkers in different living organisms (e.g. plants, insects, animals and humans). However, due to the complex matrix and the trace concentrations of target analytes, the sample preparation procedure is an essential step before the analytes of interest are introduced into a detection instrument. Solid-phase microextraction (SPME), an emerging sample preparation technique that integrates sampling, extraction, concentration, and sample introduction into one step, has gained wide acceptance in various research fields, including in the determination of endogenous compounds. In this review, recent developments and applications of SPME for the determination of endogenous substances over the past five years are summarized. Several aspects, including the design of SPME devices (sampling configuration and coating), applications (in vitro and in vivo sampling), and coupling with emerging instruments (comprehensive two-dimensional gas chromatography (GC × GC), ambient mass spectrometry (AMS) and surface enhanced Raman scattering (SERS)) are involved. Finally, the challenges and opportunities of SPME methods in endogenous substances analysis are also discussed.
Collapse
Affiliation(s)
- Siming Huang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Niru Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China; College of Chemistry & Molecular Engineering, Center of Advanced Analysis and Computational Science, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, PR China.
| |
Collapse
|
7
|
Saito A, Hamano M, Kataoka H. Simultaneous analysis of multiple urinary biomarkers for the evaluation of oxidative stress by automated online in-tube solid-phase microextraction coupled with negative/positive ion-switching mode liquid chromatography-tandem mass spectrometry. J Sep Sci 2018; 41:2743-2749. [DOI: 10.1002/jssc.201800175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/07/2018] [Accepted: 04/10/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Akihiro Saito
- School of Pharmacy; Shujitsu University; Okayama Japan
| | - Mariko Hamano
- School of Pharmacy; Shujitsu University; Okayama Japan
| | | |
Collapse
|
8
|
Hamidi S, Alipour-Ghorbani N, Hamidi A. Solid Phase Microextraction Techniques in Determination of Biomarkers. Crit Rev Anal Chem 2018; 48:239-251. [DOI: 10.1080/10408347.2017.1396885] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Samin Hamidi
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nastaran Alipour-Ghorbani
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Aliasghar Hamidi
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Gan H, Xu H. A novel aptamer-based online magnetic solid phase extraction method for the selective determination of 8-hydroxy-2'-deoxyguanosine in human urine. Anal Chim Acta 2018; 1008:48-56. [PMID: 29420943 DOI: 10.1016/j.aca.2017.12.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/07/2017] [Accepted: 12/16/2017] [Indexed: 12/15/2022]
Abstract
In this work, an innovative magnetic aptamer adsorbent (Fe3O4-aptamer MNPs) was synthesized for the selective extraction of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Amino-functionalized-Fe3O4 was crosslinked with 8-OHdG aptamer by glutaraldehyde and fixed into a steel stainless tube as the sorbent of magnetic solid phase extraction (MSPE). After selective extraction by the aptamer adsorbent, the adsorbed 8-OHdG was desorbed dynamically and online analyzed by high performance liquid chromatography-mass spectrometry (HPLC-MS). The synthesized sorbent presented outstanding features, including specific selectivity, high enrichment capacity, stability and biocompatibility. Moreover, this proposed MSPE-HPLC-MS can achieve adsorption and desorption operation integration, greatly simplify the analysis process and reduce human errors. When compared with offline MSPE, a sensitivity enhancement of 800 times was obtained for the online method. Some experimental parameters such as the amount of the sorbent, sample flow rate and sample volume, were optimized systematically. Under the optimal conditions, low limit of detection (0.01 ng mL-1, S/N = 3), limit of quantity (0.03 ng mL-1, S/N = 10) and wide linear range with a satisfactory correlation coefficient (R2 ≥ 0.9992) were obtained. And the recoveries of 8-OHdG in the urine samples varied from 82% to 116%. All these results revealed that the method is simple, rapid, selective, sensitive and automated, and it could be expected to become a potential approach for the selective determination of trace 8-OHdG in complex urinary samples.
Collapse
Affiliation(s)
- Haijiao Gan
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Hui Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China.
| |
Collapse
|
10
|
Pattern recognition of 8-hydroxy-2′-deoxyguanosine in biological fluids. Anal Bioanal Chem 2017; 410:115-121. [DOI: 10.1007/s00216-017-0698-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/01/2017] [Accepted: 10/06/2017] [Indexed: 11/25/2022]
|
11
|
Peron G, Uddin J, Stocchero M, Mammi S, Schievano E, Dall’Acqua S. Studying the effects of natural extracts with metabolomics: A longitudinal study on the supplementation of healthy rats with Polygonum cuspidatum Sieb. et Zucc. J Pharm Biomed Anal 2017; 140:62-70. [DOI: 10.1016/j.jpba.2017.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 01/27/2023]
|
12
|
Porous monoliths for on-line sample preparation: A review. Anal Chim Acta 2017; 964:24-44. [DOI: 10.1016/j.aca.2017.02.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 11/23/2022]
|
13
|
Determination of the oxidative stress biomarker urinary 8-hydroxy-2⿲-deoxyguanosine by automated on-line in-tube solid-phase microextraction coupled with liquid chromatographytandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1019:140-6. [DOI: 10.1016/j.jchromb.2015.08.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 11/18/2022]
|
14
|
Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chem Soc Rev 2016; 45:2137-211. [DOI: 10.1039/c6cs00061d] [Citation(s) in RCA: 1438] [Impact Index Per Article: 159.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This critical review presents a survey of recent developments in technologies and strategies for the preparation of MIPs, followed by the application of MIPs in sample pretreatment, chromatographic separation and chemical sensing.
Collapse
Affiliation(s)
- Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xiaoyan Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Wenhui Lu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xiaqing Wu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Jinhua Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| |
Collapse
|
15
|
Ocaña-González JA, Fernández-Torres R, Bello-López MÁ, Ramos-Payán M. New developments in microextraction techniques in bioanalysis. A review. Anal Chim Acta 2016; 905:8-23. [DOI: 10.1016/j.aca.2015.10.041] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/08/2015] [Accepted: 10/28/2015] [Indexed: 12/21/2022]
|
16
|
In vivo and ex vivo SPME: a low invasive sampling and sample preparation tool in clinical bioanalysis. Bioanalysis 2015; 6:1227-39. [PMID: 24946923 DOI: 10.4155/bio.14.91] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Solid phase microextraction (SPME) is well-established technology in bioanalysis. Current review discusses the features of SPME, which determine the non- or low-invasiveness of the method in biomedical analysis. In the first section we analyze the factors, which have significant influence on the SPME sampling device performance in the view of sampling safety and efficiency. In the later sections applicability of various SPME approaches for analysis of easily accessible samples routinely used for analysis (e.g., urine, blood) as well as limited availability samples (tissues) is discussed. Moreover, the examples of sampling alternative matrices such as hair, saliva, sweat or breath are presented. The advantages and limitation of the technology in the view of future development of SPME are also reviewed.
Collapse
|
17
|
Zhang Q, Xiao X, Li G. Porous molecularly imprinted monolithic capillary column for on-line extraction coupled to high-performance liquid chromatography for trace analysis of antimicrobials in food samples. Talanta 2014; 123:63-70. [DOI: 10.1016/j.talanta.2014.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/02/2014] [Accepted: 02/04/2014] [Indexed: 11/25/2022]
|
18
|
Pan J, Zhang C, Zhang Z, Li G. Review of online coupling of sample preparation techniques with liquid chromatography. Anal Chim Acta 2014; 815:1-15. [DOI: 10.1016/j.aca.2014.01.017] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/05/2013] [Accepted: 01/07/2014] [Indexed: 11/16/2022]
|
19
|
Evaluation of the oxidative deoxyribonucleic acid damage biomarker 8-hydroxy-2'-deoxyguanosine in the urine of leukemic children by micellar electrokinetic capillary chromatography. J Chromatogr A 2014; 1336:112-9. [PMID: 24582397 DOI: 10.1016/j.chroma.2014.02.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 12/11/2022]
Abstract
Determining the level of urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), an oxidative DNA damage biomarker, is vital to the study of clinical pathogenesis and drug toxicity. The principal limitation of capillary electrophoresis (CE) with UV detection is its low sensitivity. To overcome this shortcoming, we developed a micellar electrokinetic capillary chromatography (MEKC) with solid-phase extraction (SPE) for urinary 8-OHdG analysis. The sensitivity of MEKC-UV was improved using a reasonable UV system, injection mode, and SPE. The parameters affecting MEKC and SPE were also optimized. The calibration curve was linear within the range from 1 to 500 μg L(-1). The limits of detection and quantification were 0.27 μg L(-1) and 0.82 μg L(-1), respectively. Interday and intraday precision were both <5.6%. The recovery of 8-OHdG in urine ranged from 94.5% to 103.2%. This method was used to measure urinary 8-OHdG from eight normal children, eight newly diagnosed leukemic children, and eight leukemic children undergoing chemotherapy. The results show that the proposed method can be used to assess oxidative stress in patients and the side effects of chemotherapeutic drugs by measuring urinary 8-OHdG.
Collapse
|
20
|
Xia G, Jing F, Guifen Z, Xiaolong W, Jianji W. Molecularly imprinted SPE coupled with HPLC for the selective separation and enrichment of alkyl imidazolium ionic liquids in environmental water samples. J Sep Sci 2013; 36:3277-84. [PMID: 23970465 DOI: 10.1002/jssc.201300361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/06/2013] [Accepted: 07/09/2013] [Indexed: 11/12/2022]
Abstract
A novel 1-butyl-3-methylimidazolium chloride ionic liquid surface imprinted solid-phase sorbent was synthesized. The as-prepared material was characterized by SEM, Brunauer-Emmett-Teller surface area analysis and Fourier Transform IR measurements. Then its adsorption properties for alkyl imidazolium ionic liquids, including adsorption capacities, adsorption kinetics, and properties of selective separation and enrichment were studied in detail. It was shown that the ionic liquid surface imprinted polymer exhibited high selective recognition characteristics for the imidazolium chloride ionic liquids with short alkyl chains (C(n)mimCl, n = 2, 4, 6, 8) and the adsorption equilibrium was achieved within 25 min. Various parameters were optimized for the 1-butyl-3-methylimidazolium chloride ionic liquid surface imprinted polymer SPE column, such as flow rate, eluent solvent, selectivity, and reusability of the column. Then, the SPE column coupled with HPLC was used for the determination of alkyl imidazolium ionic liquids. Experimental results showed that the existence of their structural analogs and common concomitants in environmental matrices did not affect the enrichment of 1-butyl-3-methyl imidazolium chloride ionic liquid. The average recoveries of 1-butyl-3-methylimidazolium chloride ionic liquid in spiked water samples were in the range of 92.0-102.0% with the RSD lower than 5.8%.
Collapse
Affiliation(s)
- Gao Xia
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, P. R. China; School of Public Health, Xinxiang Medical University, Xinxiang, Henan, P. R. China
| | | | | | | | | |
Collapse
|