1
|
Govindarajan VU, Renganathan V, Muthuraman MS. Naringin-templated magnetic molecularly imprinted polymers for selective quercetin extraction from onion peel. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1248:124349. [PMID: 39504814 DOI: 10.1016/j.jchromb.2024.124349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
A Magnetic Molecularly Imprinted Polymer (MMIP) was developed using naringin as template molecule, acrylamide as functional monomer and polymerized by ultrasound irradiation for the adsorption of naringin. In an unexpected turn of results, the selectivity study unveiled that the synthesized MMIP exhibited a higher affinity for quercetin over naringin. Given this high selectivity, adsorption isotherm and kinetic studies were conducted for both quercetin and naringin. The adsorption isotherm indicated multilayer adsorption of the adsorbate on the adsorbent. The kinetic study showed better agreement with the pseudo-second-order kinetic model. The maximum adsorption capacity of 7.2 mg/g was achieved for quercetin at 50 mg/L and 4.9 mg/g was attained for naringin at the same concentration. Furthermore, quercetin quantification was performed by coupling MMIP with HPLC-UV, with method validation revealing the limits of detection (LOD) and quantification (LOQ) for quercetin. Additionally, agro-industrial waste onion peel, enriched with phenolic compounds such as quercetin, was subjected to solid-phase extraction using MMIP for the purification of quercetin.
Collapse
Affiliation(s)
- Vinitha Udhayabanu Govindarajan
- Process Development Laboratory (ASK1, #208), Department of Biotechnology, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613401, India
| | - Vaishnavi Renganathan
- Process Development Laboratory (ASK1, #208), Department of Biotechnology, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613401, India
| | - Meenakshi Sundaram Muthuraman
- Process Development Laboratory (ASK1, #208), Department of Biotechnology, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613401, India.
| |
Collapse
|
2
|
Hong D, Wang C, Gao L, Nie C. Fundamentals, Synthetic Strategies and Applications of Non-Covalently Imprinted Polymers. Molecules 2024; 29:3555. [PMID: 39124961 PMCID: PMC11314232 DOI: 10.3390/molecules29153555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Molecular imprinting has emerged as an important and practical technology to create economical and stable synthetic mimics of antibodies and enzymes. It has already found a variety of important applications, such as affinity separation, chemical/biological sensing, disease diagnostics, proteomics, bioimaging, controlled drug release, and catalysis. In the past decade, significant breakthroughs have been made in non-covalently imprinted polymers, from their synthesis through to their applications. In terms of synthesis, quite a few versatile and facile imprinting approaches for preparing MIPs have been invented, which have effectively solved some key issues in molecular imprinting. Additionally, important applications in several areas, such as sensors, proteomics and bioimaging, have been well demonstrated. In this review, we critically and comprehensively survey key recent advances made in the preparation of non-covalently imprinted polymers and their important applications. We focus on the state-of-art of this technology from three different perspectives: fundamentals, synthetic strategies, and applications. We first provide a fundamental basis for molecular imprinting technologies that have been developed, which is extremely helpful for establishing a sound understanding of the challenges in molecular imprinting. Then, we discuss in particular the major breakthroughs within the last ten years (2014-2024), with emphasis on new imprinting approaches, what strengths the breakthroughs can provide, and which new applications the properties of the prepared non-covalently imprinted polymers are fit for.
Collapse
Affiliation(s)
- Dongfeng Hong
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China; (C.W.); (L.G.); (C.N.)
| | | | | | | |
Collapse
|
3
|
Wang Y, Wang C, Feng R, Li Y, Zhang Z, Guo S. A review of passive acid mine drainage treatment by PRB and LPB: From design, testing, to construction. ENVIRONMENTAL RESEARCH 2024; 251:118545. [PMID: 38431067 DOI: 10.1016/j.envres.2024.118545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
An extensive volume of acid mine drainage (AMD) generated throughout the mining process has been widely regarded as one of the most catastrophic environmental problems. Surface water and groundwater impacted by pollution exhibit extreme low pH values and elevated sulfate and metal/metalloid concentrations, posing a serious threat to the production efficiency of enterprises, domestic water safety, and the ecological health of the basin. Over the recent years, a plethora of techniques has been developed to address the issue of AMD, encompassing nanofiltration membranes, lime neutralization, and carrier-microencapsulation. Nonetheless, these approaches often come with substantial financial implications and exhibit restricted long-term sustainability. Among the array of choices, the permeable reactive barrier (PRB) system emerges as a noteworthy passive remediation method for AMD. Distinguished by its modest construction expenses and enduring stability, this approach proves particularly well-suited for addressing the environmental challenges posed by abandoned mines. This study undertook a comprehensive evaluation of the PRB systems utilized in the remediation of AMD. Furthermore, it introduced the concept of low permeability barrier, derived from the realm of site-contaminated groundwater management. The strategies pertaining to the selection of materials, the physicochemical aspects influencing long-term efficacy, the intricacies of design and construction, as well as the challenges and prospects inherent in barrier technology, are elaborated upon in this discourse.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Chunrong Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Rongfei Feng
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Yang Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Zhiqiang Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Saisai Guo
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| |
Collapse
|
4
|
Saadatidizaji Z, Sohrabi N, Mohammadi R. Development of a simple polymer-based sensor for detection of the Pirimicarb pesticide. Sci Rep 2024; 14:10293. [PMID: 38704412 PMCID: PMC11069528 DOI: 10.1038/s41598-024-60748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
In this study, a sensitive and selective fluorescent chemosensor was developed for the determination of pirimicarb pesticide by adopting the surface molecular imprinting approach. The magnetic molecularly imprinted polymer (MIP) nanocomposite was prepared using pirimicarb as the template molecule, CuFe2O4 nanoparticles, and graphene quantum dots as a fluorophore (MIP-CuFe2O4/GQDs). It was then characterized using X-ray diffraction (XRD) technique, Fourier transforms infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), and transmission electron microscopy (TEM). The response surface methodology (RSM) was also employed to optimize and estimate the effective parameters of pirimicarb adsorption by this polymer. According to the experimental results, the average particle size and imprinting factor (IF) of this polymer are 53.61 nm and 2.48, respectively. Moreover, this polymer has an excellent ability to adsorb pirimicarb with a removal percentage of 99.92 at pH = 7.54, initial pirimicarb concentration = 10.17 mg/L, polymer dosage = 840 mg/L, and contact time = 6.15 min. The detection of pirimicarb was performed by fluorescence spectroscopy at a concentration range of 0-50 mg/L, and a sensitivity of 15.808 a.u/mg and a limit of detection of 1.79 mg/L were obtained. Real samples with RSD less than 2 were measured using this chemosensor. Besides, the proposed chemosensor demonstrated remarkable selectivity by checking some other insecticides with similar and different molecular structures to pirimicarb, such as diazinon, deltamethrin, and chlorpyrifos.
Collapse
Affiliation(s)
- Zahra Saadatidizaji
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Negin Sohrabi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Department of Biosystem Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
5
|
Jahanban-Esfahlan A, Amarowicz R. Molecularly imprinted polymers for sensing/depleting human serum albumin (HSA): A critical review of recent advances and current challenges. Int J Biol Macromol 2024; 266:131132. [PMID: 38531529 DOI: 10.1016/j.ijbiomac.2024.131132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Human serum albumin (HSA) is an essential biomacromolecule in the blood circulatory system because it carries numerous molecules, including fatty acids (FAs), bilirubin, metal ions, hormones, and different pharmaceuticals, and plays a significant role in regulating blood osmotic pressure. Fluctuations in HSA levels in human biofluids, particularly urine and serum, are associated with several disorders, such as elevated blood pressure, diabetes mellitus (DM), liver dysfunction, and a wide range of renal diseases. Thus, the ability to quickly and accurately measure HSA levels is important for the rapid identification of these disorders in human populations. Molecularly imprinted polymers (MIPs), well known as artificial antibodies (Abs), have been extensively used for the quantitative detection of small molecules and macromolecules, especially HSA, in recent decades. This review highlights major challenges and recent developments in the application of MIPs to detect HSA in artificial and real samples. The fabrication and application of various MIPs for the depletion of HSA are also discussed, as well as different MIP preparation approaches and strategies for overcoming obstacles that hinder the development of MIPs with high efficiency and recognition capability for HSA determination/depletion.
Collapse
Affiliation(s)
- Ali Jahanban-Esfahlan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665813, Iran.
| | - Ryszard Amarowicz
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Street Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
6
|
Tuli A, Suresh G, Halder N, Velpandian T. Analysis and remediation of phthalates in aquatic matrices: current perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23408-23434. [PMID: 38456985 DOI: 10.1007/s11356-024-32670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Phthalic acid esters (PAEs) are high production volume chemicals used extensively as plasticizers, to increase the flexibility of the main polymer. They are reported to leach into their surroundings from plastic products and are now a ubiquitous environmental contaminant. Phthalate levels have been determined in several environmental matrices, especially in water. These levels serve as an indicator of plasticizer abuse and plastic pollution, and also serve as a route of exposure to different species including humans. Reports published on effects of different PAEs on experimental models demonstrate their carcinogenic, teratogenic, reproductive, and endocrine disruptive effects. Therefore, regular monitoring and remediation of environmental water samples is essential to ascertain their hazard quotient and daily exposure levels. This review summarises the extraction and detection techniques available for phthalate analysis in water samples such as chromatography, biosensors, immunoassays, and spectroscopy. Current remediation strategies for phthalate removal such as adsorption, advanced oxidation, and microbial degradation have also been highlighted.
Collapse
Affiliation(s)
- Anannya Tuli
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Gayatri Suresh
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Nabanita Halder
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Thirumurthy Velpandian
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
7
|
Faysal AA, Kaya SI, Cetinkaya A, Ozkan SA, Gölcü A. The Effect of Polymerization Techniques on the Creation of Molecularly Imprinted Polymer Sensors and Their Application on Pharmaceutical Compounds. Crit Rev Anal Chem 2024:1-20. [PMID: 38252120 DOI: 10.1080/10408347.2023.2301652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Molecularly imprinted polymers (MIPs) have become more prevalent in fabricating sensor applications, particularly in medicine, pharmaceuticals, food quality monitoring, and the environment. The ease of their preparation, adaptability of templates, superior affinity and specificity, improved stability, and the possibility for downsizing are only a few benefits of these sensors. Moreover, from a medical perspective, monitoring therapeutic medications and determining pharmaceutical compounds in their pharmaceutical forms and biological systems is very important. Additionally, because medications are hazardous to the environment, effective, quick, and affordable determination in the surrounding environment is of major importance. Concerning a variety of performance criteria, including sensitivity, specificity, low detection limits, and affordability, MIP sensors outperform other published technologies for analyzing pharmaceutical drugs. MIP sensors have, therefore, been widely used as one of the most crucial techniques for analyzing pharmaceuticals. The first part of this review provides a detailed explanation of the many polymerization techniques that were employed to create high-performing MIP sensors. In the subsequent section of the review, the utilization of MIP-based sensors for quantifying the drugs in their pharmaceutical preparation, biological specimens, and environmental samples are covered in depth. Finally, a critical evaluation of the potential future research paths for MIP-based sensors clarifies the use of MIP in pharmaceutical fields.
Collapse
Affiliation(s)
- Abdullah Al Faysal
- Faculty of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Türkiye
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Türkiye
| | - Ahmet Cetinkaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Türkiye
- Graduate School of Health Sciences, Ankara University, Türkiye
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Türkiye
| | - Ayşegül Gölcü
- Faculty of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Türkiye
| |
Collapse
|
8
|
Küçük M, Osman B, Tümay Özer E. Dummy molecularly imprinted polymer-based solid-phase extraction method for the determination of some phthalate monoesters in urine by gas chromatography-mass spectrometry analysis. J Chromatogr A 2024; 1713:464532. [PMID: 38039622 DOI: 10.1016/j.chroma.2023.464532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
A dummy molecularly imprinted polymer-based solid-phase extraction (SPE) sorbent was used for the selective extraction of some phthalate monoesters, monoethyl phthalate (MEP), monobutyl phthalate (MnBP) and mono-(2-ethylhexyl) phthalate (MEHP) in urine prior to gas-chromatography-mass spectrometry (GC-MS) analysis. Diethyl phthalate (DEP), a phthalate ester, was successfully used as a dummy template to prepare selective sorbent for MEP, MnBP, and MEHP extraction. DEP-imprinted poly(ethylene glycol dimethacrylate N-methacryloyl-l-tryptophan methyl ester) (DPEMT) microbeads were synthesized by suspension polymerization and characterized by Fourier Transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and Brunauer Emmet Teller (BET) analysis. The critical parameters (i.e., pH, sorbent amount, ionic strength, sample volume, elution solvent) affecting the extraction performance of the DPEMT-SPE sorbent were optimized. Under optimum conditions, good linearities were obtained in the concentration range of 4 to 60 ng/mL with determination coefficients (R2) of greater than 0.9959. The developed SPE method provided low limits of detection (LOD) of 0.05-1.20 ng/mL and limits of quantification (LOQ) of 0.18-4.01 ng/mL with relative standard deviations (RSDs) of less than 8.95 % for intra- and inter-day analyses. The proposed SPE method was used to analyze phthalate monoesters in spiked urine samples, and recoveries of 97.45-109.26 % were obtained. DPEMT-SPE sorbent was reused for 15 times without any losses of performance. Consequently, a highly selective and sensitive SPE method based on a dummy molecularly imprinted polymer combined with GC-MS was successfully developed to monitor human phthalate exposure via urine samples.
Collapse
Affiliation(s)
- Melike Küçük
- Department of Chemistry, Faculty of Arts and Science, Bursa Uludag University, Görükle, Bursa 16059, Turkey
| | - Bilgen Osman
- Department of Chemistry, Faculty of Arts and Science, Bursa Uludag University, Görükle, Bursa 16059, Turkey
| | - Elif Tümay Özer
- Department of Chemistry, Faculty of Arts and Science, Bursa Uludag University, Görükle, Bursa 16059, Turkey.
| |
Collapse
|
9
|
KARAMAN ERSOY Ş, TÜTEM E, SÖZGEN BAŞKAN K, APAK R. Preparation and application of caffeic acid imprinted polymer. Turk J Chem 2023; 47:699-714. [PMID: 38174067 PMCID: PMC10760595 DOI: 10.55730/1300-0527.3572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/25/2023] [Accepted: 05/22/2023] [Indexed: 01/05/2024] Open
Abstract
In the present study, molecularly imprinted polymers were synthesized using caffeic acid (CA) as a template molecule and then used for the extraction of CA and chlorogenic acid (CLA) from complex matrices. Syntheses were carried out in tetrahydrofuran as porogenic solvent using 4-vinyl pyridine, methacrylic acid, acrylamide, and 1-vinyl imidazole as monomers, ethylene glycol dimethacrylate as crosslinker and 2,2'-azobisisobutyronitrile as initiator. In polymerization processes, different ratios of the template:monomer:crosslinker (T:M:CrL) were used to obtain the most suitable polymer. Caffeic acid:4-vinylpiridine:ethylene glycol dimethacrylate's 1:4:16 mole ratio of MIP was determined as the most convenient polymer for CA recognition. In addition, nonimprinted polymers (NIPs) without templates were prepared. Dynamic and static adsorption tests were applied to determine the absorption features of the NIPs and CA-MIPs. Separation and purification studies of CA and CLA were performed with molecular imprinted solid phase extraction (MISPE) application. All steps of MISPE (loading, washing, elution) were optimized by HPLC analysis.
Collapse
Affiliation(s)
- Şeyda KARAMAN ERSOY
- Division of Analytical Chemistry, Faculty of Pharmacy, Fenerbahçe University, İstanbul,
Turkiye
| | - Esma TÜTEM
- Department of Chemistry, Faculty of Engineering, İstanbul University-Cerrahpaşa, İstanbul,
Turkiye
| | - Kevser SÖZGEN BAŞKAN
- Department of Chemistry, Faculty of Engineering, İstanbul University-Cerrahpaşa, İstanbul,
Turkiye
| | - Reşat APAK
- Department of Chemistry, Faculty of Engineering, İstanbul University-Cerrahpaşa, İstanbul,
Turkiye
- Turkish Academy of Sciences (TÜBA), Ankara,
Turkiye
| |
Collapse
|
10
|
Mustafa Y, Leese HS. Fabrication of a Lactate-Specific Molecularly Imprinted Polymer toward Disease Detection. ACS OMEGA 2023; 8:8732-8742. [PMID: 36910990 PMCID: PMC9996612 DOI: 10.1021/acsomega.2c08127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The development of sensitive and selective robust sensor materials for targeted biomarker detection aims to contribute to self-health monitoring and management. Molecularly imprinted polymeric (MIP) materials can perform as biomimetic recognition elements via tailored routes of synthesis for specific target analyte extraction and/or detection. In this work, a sensitive- and selective-lactate MIP has been developed utilizing methacrylic acid and ethylene glycol dimethacrylate as the functional monomer and cross-linker, respectively. The sensitivity of the as-synthesized imprinted species was evaluated by determining the target analyte retention, imprinting factor, and selectivity adsorption of up to 63.5%, 6.86, and 0.82, respectively. MIP selectivity elucidated the imprinting mechanism between the functional monomers and target analyte lactate, further experimentally evidenced by using structurally competitive analytes malic acid and sodium 2-hydroxybutyrate, where retentions of 22.6 and 25.2%, respectively, were observed. Understanding the specific intermolecular mechanisms of both the template analyte and structural interferents with the MIP enables experimentalists to make informed decisions regarding monomer-target and porogen selections and possible sites of interaction for improved molecular imprinting. This imprinting system highlights the potential to be further developed into artificial receptor sensor materials for the detection of disease.
Collapse
Affiliation(s)
- Yasemin
L. Mustafa
- Materials
for Health Lab, Department of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
- Centre
for Biosensors, Bioelectronics and Biodevices, University of Bath, Bath BA2 7AY, U.K.
| | - Hannah S. Leese
- Materials
for Health Lab, Department of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
- Centre
for Biosensors, Bioelectronics and Biodevices, University of Bath, Bath BA2 7AY, U.K.
| |
Collapse
|
11
|
Høj PH, Møller-Sørensen J, Wissing AL, Alatraktchi FA. Electrochemical biosensors for monitoring of selected pregnancy hormones during the first trimester: A systematic review. Talanta 2023; 258:124396. [PMID: 36870154 DOI: 10.1016/j.talanta.2023.124396] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
The hormones human chorionic gonadotropin, progesterone, estrogen and four of its metabolites (estradiol, estrone, estriol, estetrol), as well as relaxin play an essential role in the development of the fetus during the first trimester. Imbalances in these hormones during the first trimester have been directly linked to miscarriages. However, frequent monitoring of the hormones is limited by the current conventional centralized analytical tools that do not allow a rapid response time. Electrochemical sensing is considered an ideal tool to detect hormones owing to its advantages such as quick response, user-friendliness, low economic costs, and possibility of use in point-of-care settings. Electrochemical detection of pregnancy hormones is an emerging field that has been demonstrated primarily at research level. Thus, it is timely with a comprehensive overview of the characteristics of the reported detection techniques. This is the first extensive review focusing on the advances related to electrochemical detection of hormones linked to the first trimester of pregnancy. Additionally, this review offers insights into the main challenges that must be addressed imminently to ensure progress from research to clinical applications.
Collapse
Affiliation(s)
- Pernille Hagen Høj
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jon Møller-Sørensen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | | |
Collapse
|
12
|
Molecularly Imprinted Polymer Nanospheres with Hydrophilic Shells for Efficient Molecular Recognition of Heterocyclic Aromatic Amines in Aqueous Solution. Molecules 2023; 28:molecules28052052. [PMID: 36903298 PMCID: PMC10004106 DOI: 10.3390/molecules28052052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Heterocyclic aromatic amine molecularly imprinted polymer nanospheres with surface-bound dithioester groups (haa-MIP) were firstly synthesized via reversible addition-fragmentation chain transfer (RAFT) precipitation polymerization. Then, a series of core-shell structural heterocyclic aromatic amine molecularly imprinted polymer nanospheres with hydrophilic shells (MIP-HSs) were subsequently prepared by grafting the hydrophilic shells on the surface of haa-MIP via on-particle RAFT polymerization of 2-hydroxyethyl methacrylate (HEMA), itaconic acid (IA), and diethylaminoethyl methacrylate (DEAEMA). The haa-MIP nanospheres showed high affinity and specific recognition toward harmine and its structural analogs in organic solution of acetonitrile, but lost the specific binding ability in aqueous solution. However, after the grafting of the hydrophilic shells on the haa-MIP particles, the surface hydrophilicity and water dispersion stability of the polymer particles of MIP-HSs greatly improved. The binding of harmine by MIP-HSs with hydrophilic shells in aqueous solutions is about two times higher than that of NIP-HSs, showing an efficient molecular recognition of heterocyclic aromatic amines in aqueous solution. The effect of hydrophilic shell structure on the molecular recognition property of MIP-HSs was further compared. MIP-PIA with carboxyl groups containing hydrophilic shells showed the highest selective molecular recognition ability to heterocyclic aromatic amines in aqueous solution.
Collapse
|
13
|
Mishra S, Raval M, Singh V, Tiwari AK. Synthetic receptors in medicine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:303-335. [PMID: 36813363 DOI: 10.1016/bs.pmbts.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cellular signaling is controlled by ligand receptor interaction and subsequent biochemical changes inside the cell. Manipulating receptors as per need that can be a strategy to alter the disease pathologies in various conditions. With recent advances in synthetic biology, now it is possible to engineer the artificial receptor "synthetic receptors." Synthetic receptors are the engineering receptors that have potential to alter the disease pathology by altering/manipulating the cellular signaling. Several synthetic receptors are being engineered that have shown positive regulation in several disease conditions. Thus, synthetic receptor-based strategy opens a new avenue in the medical field to cope up with various health issues. The current chapter summarizes updated information about the synthetic receptors and their applications in the medical field.
Collapse
Affiliation(s)
- Sarita Mishra
- School of Forensic Science, National Forensic Sciences University, Gandhinagar, Gujarat, India
| | - Mahima Raval
- Genetics & Developmental Biology Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India.
| |
Collapse
|
14
|
Yoosefi S, Esfandyari-Manesh M, Ghorbani-Bidkorpeh F, Ahmadi M, Moraffah F, Dinarvand R. Novel biodegradable molecularly imprinted polymer nanoparticles for drug delivery of methotrexate anti-cancer; synthesis, characterization and cellular studies. Daru 2022; 30:289-302. [PMID: 36087235 PMCID: PMC9715907 DOI: 10.1007/s40199-022-00447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Recently biodegradable nanoparticles are the center of attention for the development of drug delivery systems. Molecularly imprinted polymer (MIP) is an interesting candidate for designing drug nano-carriers. MIP-based nanoparticles could be used for cancer treatment and exhibited the potential to fill gaps regarding to ligand-based nanomaterials. Also, the presence of a cross-linker can play an essential role in nanoparticle stability and physicochemical properties of nanoparticles after synthesis. OBJECTIVES In this research, a biodegradable drug delivery system based on MIP nanoparticles was prepared using a biodegradable cross-linker (dimethacryloyl hydroxylamine, DMHA) for methotrexate (MTX). A hydrolysable functional group CO-O-NH-CO was added to the crosslinking agent to increase the final biodegradability of the polymer. METHODS Firstly, a biodegradable cross-linker was synthesized. Then, the non-imprinted polymers were prepared through mini-emulsion polymerization in the absence of a template; and efficient particle size distribution was determined. Finally, methotrexate was placed in imprinted polymers to achieve the desired MIP. Different types of MIPs were synthesized using different molar ratios of template, cross-linker, and functional monomer, and the optimal molar ratio was obtained at 1:4:20, respectively. RESULTS HNMR successfully confirmed the chemical structure of the cross-linker. According to SEM images, nanoparticles had a spherical shape with a smooth surface. The imprinted nanoparticles showed a narrow size distribution with an average of 120 nm at a high ratio of cross-linker. The drug loading and entrapment efficiency were 6.4% and 92%, respectively. The biodegradability studies indicated that the nanoparticles prepared by DMHA had a more degradability rate than ethylene glycol dimethacrylate as a conventional cross-linker. Also, the polymer degradation rate was higher in alkaline environments. Release studies in physiological and alkaline buffer showed an initial burst release of a quarter of loaded MTX during the day and a 70% release during a week. The Korsmeyer-Peppas model described the release pattern. The cytotoxicity of MTX loaded in nanoparticles was studied on the MCF-7 cell line, and the IC50 was 3.54 μg/ml. CONCLUSION It was demonstrated that nanoparticles prepared by DMHA have the potential to be used as biodegradable drug carriers for anticancer delivery. Synthesis schema of molecular imprinting of methotrexate in biodegradable polymer based on dimethacryloyl hydroxylamine cross-linker, for use as nanocarrier anticancer delivery to breast tumor.
Collapse
Affiliation(s)
- Sepideh Yoosefi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Esfandyari-Manesh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahnaz Ahmadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moraffah
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Banakar M, Hamidi M, Khurshid Z, Zafar MS, Sapkota J, Azizian R, Rokaya D. Electrochemical Biosensors for Pathogen Detection: An Updated Review. BIOSENSORS 2022; 12:bios12110927. [PMID: 36354437 PMCID: PMC9688024 DOI: 10.3390/bios12110927] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 05/30/2023]
Abstract
Electrochemical biosensors are a family of biosensors that use an electrochemical transducer to perform their functions. In recent decades, many electrochemical biosensors have been created for pathogen detection. These biosensors for detecting infections have been comprehensively studied in terms of transduction elements, biorecognition components, and electrochemical methods. This review discusses the biorecognition components that may be used to identify pathogens. These include antibodies and aptamers. The integration of transducers and electrode changes in biosensor design is a major discussion topic. Pathogen detection methods can be categorized by sample preparation and secondary binding processes. Diagnostics in medicine, environmental monitoring, and biothreat detection can benefit from electrochemical biosensors to ensure food and water safety. Disposable and reusable biosensors for process monitoring, as well as multiplexed and conformal pathogen detection, are all included in this review. It is now possible to identify a wide range of diseases using biosensors that may be applied to food, bodily fluids, and even objects' surfaces. The sensitivity of optical techniques may be superior to electrochemical approaches, but optical methods are prohibitively expensive and challenging for most end users to utilize. On the other hand, electrochemical approaches are simpler to use, but their efficacy in identifying infections is still far from satisfactory.
Collapse
Affiliation(s)
- Morteza Banakar
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 41887-94755, Iran
| | - Zohaib Khurshid
- Department of Prosthodontics and Implantology, College of Dentistry, King Faisal University, Al-Hofuf, Al Ahsa 31982, Saudi Arabia
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Janak Sapkota
- Research Center of Applied Sciences and Technology, Kritipur 44600, Nepal
| | - Reza Azizian
- Pediatric Infectious Diseases Research Center (PIDRC), Tehran University of Medical Sciences, Tehran 14197-33151, Iran
- Biomedical Innovation & Start-Up Association (Biomino), Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Dinesh Rokaya
- Department of Clinical Dentistry, Walailak University International College of Dentistry, Walailak University, Bangkok 10400, Thailand
| |
Collapse
|
16
|
Wu Q, Naeem A, Zou J, Yu C, Wang Y, Chen J, Ping Y. Isolation of Phenolic Compounds from Raspberry Based on Molecular Imprinting Techniques and Investigation of Their Anti-Alzheimer's Disease Properties. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206893. [PMID: 36296486 PMCID: PMC9611113 DOI: 10.3390/molecules27206893] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease is the most common neurodegenerative disease, characterized by memory loss and cognitive dysfunction. Raspberry fruits contain polyphenols which have antioxidant and anti-inflammatory properties. In this study, we used molecular imprinting technology to efficiently isolate phenolic components from the raspberry ethyl acetate extracts. Six phenolic components (ellagic acid, tiliroside, kaempferol-3-o-rutoside, gallic acid, ferulic acid and vanillic acid) were identified by UPLC-Q-TOF-MS analysis. Molecular docking was used to predict the anti-inflammatory effects and anti-Alzheimer's potential of these isolated compounds, which showed a good binding ability to diseases and related proteins. However, the binding energy and docking fraction of ellagic acid, tiliroside, and kaempferol-3-o-rutoside were better than those of gallic acid, ferulic acid and vanillic acid. Additionally, by studying the effects of these six phenolic components on the LPS-induced secretion of inflammatory mediators in murine microglial (BV2) cells, it was further demonstrated that they were all capable of inhibiting the secretion of NO, IL-6, TNF-α, and IL-1β to a certain extent. However, ellagic acid, tiliroside, and kaempferol-3-o-rutoside have better inhibitory effects compared to others. The results obtained suggest that the phenolic components extracted from ethyl acetate extracts of raspberry by molecularly imprinted polymers have the potential to inhibit the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Qian Wu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Jiamei Zou
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Chengqun Yu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Yingjie Wang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Jingbin Chen
- Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Yuhui Ping
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
- Correspondence:
| |
Collapse
|
17
|
Carnicero A, Miretti M, Rosso AP, Martinelli M. Design of smart nanodevices based on
N
‐vinyl caprolactam nanogels for photosensitizers. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Anabela Carnicero
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica CONICET, Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA) Córdoba Argentina
| | - Mariana Miretti
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica CONICET, Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA) Córdoba Argentina
| | - Anabella P. Rosso
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica CONICET, Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA) Córdoba Argentina
| | - Marisa Martinelli
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica CONICET, Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA) Córdoba Argentina
| |
Collapse
|
18
|
Orbay S, Kocaturk O, Sanyal R, Sanyal A. Molecularly Imprinted Polymer-Coated Inorganic Nanoparticles: Fabrication and Biomedical Applications. MICROMACHINES 2022; 13:1464. [PMID: 36144087 PMCID: PMC9501141 DOI: 10.3390/mi13091464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Molecularly imprinted polymers (MIPs) continue to gain increasing attention as functional materials due to their unique characteristics such as higher stability, simple preparation, robustness, better binding capacity, and low cost. In particular, MIP-coated inorganic nanoparticles have emerged as a promising platform for various biomedical applications ranging from drug delivery to bioimaging. The integration of MIPs with inorganic nanomaterials such as silica (SiO2), iron oxide (Fe3O4), gold (Au), silver (Ag), and quantum dots (QDs) combines several attributes from both components to yield highly multifunctional materials. These materials with a multicomponent hierarchical structure composed of an inorganic core and an imprinted polymer shell exhibit enhanced properties and new functionalities. This review aims to provide a general overview of key recent advances in the fabrication of MIPs-coated inorganic nanoparticles and highlight their biomedical applications, including drug delivery, biosensor, bioimaging, and bioseparation.
Collapse
Affiliation(s)
- Sinem Orbay
- Institute of Biomedical Engineering, Bogazici University, Istanbul 34684, Turkey
| | - Ozgur Kocaturk
- Institute of Biomedical Engineering, Bogazici University, Istanbul 34684, Turkey
| | - Rana Sanyal
- Department of Chemistry, Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| |
Collapse
|
19
|
Attallah OA, Nady M, Al Gendy AM, Choucry M, Khalil MNA. Preparation and optimization of a molecularly imprinted polymers - solid phase extraction system for the extraction of bioactive sesquiterpene lactones of Ambrosia maritima plant. Nat Prod Res 2022; 37:1844-1850. [PMID: 36054814 DOI: 10.1080/14786419.2022.2118744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
A solid phase extraction (SPE) system for sesquiterpene lactones of damsissa was developed utilising molecularly imprinted polymers (MIPs). The prepared MIPs had a mesoporous structure and particle size of ≈2.65 µm with 3.99 nm pore size. Additionally, MIPs exhibited high thermal stability with degradation temperature between 209 and 459 °C. Optimized MIP-SPE protocol conditions were set at loading step: 1 mL ethanol; washing step: 1 mL water; eluting step: 4 mL methanol. Developed MIP-SPE system showed a binding capacity of 66.66 mg/g based on Langmuir isotherm which was selected as the best fitting model isotherm. Good selectivity coefficients were observed for neoambrosin of 2.37, 1.31 and 1.14 against umbelliferone, quercetin glucoside and p-coumaric acid, respectively. Furthermore, the proposed MIP-SPE protocol displayed some potential in the isolation of sesquiterpene lactones from damsissa plant extract and laid a foundation for the development of more selective MIPs to nonpolar natural products.
Collapse
Affiliation(s)
- Olivia A Attallah
- Department of Chemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Martin Nady
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asmaa M Al Gendy
- Department of Pharmacology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Mouchira Choucry
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Chinese Egyptian University, Cairo, Egypt
| | - Mohammed N A Khalil
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| |
Collapse
|
20
|
Moradi Falah Langeroodi S, Kazemipour M, Eslaminejad T, Naghipour A, Ansari M. Molecular imprinted polymer with dorzolamide for contact lens applications assisted by computational and experimental design. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Elaine AA, Krisyanto SI, Hasanah AN. Dual-Functional Monomer MIPs and Their Comparison to Mono-Functional Monomer MIPs for SPE and as Sensors. Polymers (Basel) 2022; 14:polym14173498. [PMID: 36080573 PMCID: PMC9460123 DOI: 10.3390/polym14173498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
A molecularly imprinted polymer (MIP) is a synthetic polymer that has characteristics such as natural receptors which are able to interact and bind to a specific molecule that is used as a template in the MIP polymerization process. MIPs have been widely developed because of the need for more selective, effective, and efficient methods for sample preparation, identification, isolation, and separation. The MIP compositions consist of a template, monomer, crosslinker, initiator, and porogenic solvent. Generally, MIPs are only synthesized using one type of monomer (mono-functional monomer); however, along with the development of MIPs, MIPs began to be synthesized using two types of monomers to improve the performance of MIPs. MIPs used for identification, separation, and molecular analysis have the most applications in solid-phase extraction (SPE) and as biochemical sensors. Until now, no review article has discussed the various studies carried out in recent years in relation to the synthesis of dual-functional monomer MIPs. This review is necessary, as an improvement in the performance of MIPs still needs to be explored, and a dual-functional monomer strategy is one way of overcoming the current performance limitations. In this review article, we discuss the techniques commonly used in the synthesis of dual-functional monomer MIPs, and the use of dual-functional monomer MIPs as sorbents in the MI-SPE method and as detection elements in biochemical sensors. The application of dual-functional monomer MIPs showed better selectivity and adsorption capacity in these areas when compared to mono-functional monomer MIPs. However, the combination of functional monomers must be selected properly, in order to achieve an effective synergistic effect and produce the ideal MIP characteristics. Therefore, studies regarding the synergistic effect of the MIP combination still need to be carried out to obtain MIPs with superior characteristics.
Collapse
Affiliation(s)
- Angela Alysia Elaine
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21.5, Sumedang 45363, Indonesia
| | - Steven Imanuel Krisyanto
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21.5, Sumedang 45363, Indonesia
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21.5, Sumedang 45363, Indonesia
- Drug Development Study Center, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21.5, Sumedang 45363, Indonesia
- Correspondence: ; Tel.: +62-812-2346-382
| |
Collapse
|
22
|
De Carvalho Gomes P, Hardy M, Tagger Y, Rickard JJ, Mendes P, Oppenheimer PG. Optimization of Nanosubstrates toward Molecularly Surface-Functionalized Raman Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:13774-13784. [PMID: 36017358 PMCID: PMC9393890 DOI: 10.1021/acs.jpcc.2c03524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Diagnostic advancements require continuous developments of reliable analytical sensors, which can simultaneously fulfill many criteria, including high sensitivity and specificity for a broad range of target analytes. Incorporating the highly sensitive attributes of surface-enhanced Raman spectroscopy (SERS) combined with highly specific analyte recognition capabilities via molecular surface functionalization could address major challenges in molecular diagnostics and analytical spectroscopy fields. Herein, we have established a controllable molecular surface functionalization process for a series of textured gold surfaces. To create the molecularly surface-functionalized SERS platforms, self-assembled benzyl-terminated and benzoboroxole-terminated monolayers were used to compare which thicknesses and root-mean-square (RMS) roughness of planar gold produced the most sensitive and specific surfaces. Optimal functionalization was identified at 80 ± 8 nm thickness and 7.2 ± 1.0 nm RMS. These exhibited a considerably higher SERS signal (70-fold) and improved sensitivity for polysaccharides when analyzed using principal component analysis (PCA) and self-organizing maps (SOM). These findings lay the procedure for establishing the optimal substrate specifications as an essential prerequisite for future studies aiming at developing the feasibility of molecular imprinting for SERS diagnostic applications and the subsequent delivery of advanced, highly selective, and sensitive sensing devices and analytical platforms.
Collapse
Affiliation(s)
- Paulo De Carvalho Gomes
- School of Chemical
Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Mike Hardy
- School of Chemical
Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Yazmin Tagger
- School of Chemical
Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | | | - Paula Mendes
- School of Chemical
Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Pola Goldberg Oppenheimer
- School of Chemical
Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
- Healthcare
Technologies Institute, Translational Medicine, Mindelsohn Way, Birmingham B15 2TH, U.K.
| |
Collapse
|
23
|
Simultaneous Determination of 21 Sulfonamides in Poultry Eggs Using Ionic Liquid-Modified Molecularly Imprinted Polymer SPE and UPLC-MS/MS. Molecules 2022; 27:molecules27154953. [PMID: 35956903 PMCID: PMC9370267 DOI: 10.3390/molecules27154953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
An ionic liquid-modified molecularly imprinted polymer (IL-MIP) composite with sulfamethazine as a template molecule and methyl acrylic acid and 1-aminopropyl-3-methylimidazolium bromide as functional monomers was successfully synthesized. The achieved IL-MIP was characterized and evaluated in detail and utilized in the extraction and cleanup of sulfonamides (SAs) in poultry egg samples. The results demonstrated that the IL-MIP possessed a broad reorganization toward SAs and could selectively adsorb 21 kinds of SA compounds. Furthermore, the solid-phase extraction column based on the IL-MIP was used in the extraction and cleanup of 21 SAs in eggs, and the confirmatory detection of SAs was performed using ultraperformance liquid chromatography−tandem mass spectrometry. Under optimum conditions, the limits of detection (LODs) for all SAs ranged from 0.1 ng·g−1 to 1.5 ng·g−1, and the LOD of this method was better than those of the existing methods. The recoveries of SA compounds spiked in egg samples ranged from 84.3% to 105.8%, with low relative standard deviations (<15%). The developed method based on the IL-MIP extraction and cleanup was successfully used in the detection of 21 SAs in more than 100 real poultry egg samples. The results indicated that the proposed method was suitable for detecting 21 SAs in poultry eggs.
Collapse
|
24
|
Preparation of C-Terminal Epitope Imprinted Particles Via Reversible Addition-Fragmentation Chain Transfer Polymerization and Zn2+ Chelating Strategy: Selective Recognition of Cytochrome c. Chromatographia 2022. [DOI: 10.1007/s10337-022-04180-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
25
|
Ali F, Shah Z, Khan A, Saadia M, AlOthman ZA, Cheong WJ. Synthesis, column packing and liquid chromatography of molecularly imprinted polymers for the acid black 1, acid black 210, and acid Brown 703 dyes. RSC Adv 2022; 12:19611-19623. [PMID: 35865557 PMCID: PMC9258683 DOI: 10.1039/d2ra02357a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/23/2022] [Indexed: 01/29/2023] Open
Abstract
Molecularly imprinted polymers have been synthesized for the acid black 1, acid black 210, and acid brown 703 dyes using methacrylic acid, ethylene glycol, and azobisisobutyronitrile as the monomer, cross-linker, and initiator, respectively, in the ratio of 1 : 10 : 44 (template:monomer:cross-linker). The MIPs were used for the selective removal of their corresponding dyes. The selective nature of the MIPs towards their respective dyes was confirmed by a homemade liquid chromatography system. The resultant polymer materials were packed in a stainless steel column and checked for the separation of mixtures of dyes in liquid chromatography. The dyes complementary in structure to the imprinted cavities in the MIPs had long retention times, showing the highly selective nature of the MIPs. The pH, quantity of the MIPs, time, and concentration of the dyes were optimized for the highly efficient removal of the newly synthesized MIP adsorbents in batch adsorption studies. First-order, second-order, and intra-particle diffusion models were applied to all the three MIP-based adsorbents for their kinetic investigations towards the dyes. All the three MIPs selectively absorbed their target template molecule in the presence of four other template dyes having closely related structures with % RSD < 4% for the three batch experiments. The synthesized MIPs were characterized by FTIR, SEM imaging and liquid chromatography. FTIR results strongly confirmed the presence of hydrogen bonding interactions (600–900) between the template and the individual monomers present in the unwashed MIPs. Liquid chromatography revealed the highly selective nature of the MIPs towards their template molecules. The synthesized polymeric substances possess excellent thermal, chemical, and mechanical stability and can be reused several hundred times. The MIPs were applied in the removal of dyes from spiked water samples (river water, tap water and distilled water) where the % removal of the dyes by their corresponding MIPs was greater than 90%. MIP synthesis for the recently emerging dyes, a new method for their characterization in liquid chromatography by packing packing the MIP particles in a stainless steel column, and their application in environmental remediation.![]()
Collapse
Affiliation(s)
- Faiz Ali
- Department of Chemistry, University of Malakand Chakdara Dir(L) 18800 Khyber Pakhtunkhwa Pakistan
| | - Zuber Shah
- Department of Chemistry, University of Malakand Chakdara Dir(L) 18800 Khyber Pakhtunkhwa Pakistan
| | - Alamgir Khan
- Department of Chemistry, University of Malakand Chakdara Dir(L) 18800 Khyber Pakhtunkhwa Pakistan
| | - Maria Saadia
- Department of Chemistry, University of Malakand Chakdara Dir(L) 18800 Khyber Pakhtunkhwa Pakistan
| | - Zeid A AlOthman
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Won Jo Cheong
- Department of Chemistry, Inha University 100 Inharo, Namku Incheon 402-751 South Korea
| |
Collapse
|
26
|
Üzek R, Şenel S, Denizli A. Investigation of Thermodynamic, Kinetic, and Isothermal Parameters for the Selective Adsorption of Bisphenol A. ACS OMEGA 2022; 7:18940-18952. [PMID: 35694526 PMCID: PMC9178953 DOI: 10.1021/acsomega.2c01975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Herein, a novel imprinted solid-phase extraction cartridge was fabricated to investigate the kinetic, thermodynamic, and isothermal parameters for the selective adsorption of Bisphenol A (BPA). The imprinted polymeric cartridges (BMC) for the BPA adsorption were fabricated in the presence of a template and functional monomer using the in situ polymerization technique. To prove the efficiency and selectivity of BMC, the nonimprinted polymeric cartridges (BNC) and the empty polymeric cartridges (EC) were also fabricated with and without functional monomer using the same manner for the preparation of BMC. The characterization of cartridges was performed by elemental analysis, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area measurements, and swelling tests. BPA removal studies were performed by analyzing some parameters such as temperature, BPA concentration, flow rate, salt type, and concentration. The highest capacity was determined as 103.2 mg BPA/g polymer for a 0.75 mL/min flow rate of 0.75 M (NH4)2SO4 containing 200 mg/L BPA solution at 50 °C. NaOH (1.0 M) was used as a desorption agent. The reusability performance was examined by performing 10 consecutive cycles. The solid-phase extraction (SPE) performance was also checked to determine the enrichment and extraction recovery factors for tap water and synthetic wastewater samples. Temkin, Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models were applied to BPA adsorption data examining the adsorption mechanism, surface properties, and adsorption degree. The most suitable isotherm model for BPA adsorption was determined as the Langmuir isotherm model. The thermodynamic parameters (ΔG°, ΔH°, and ΔS°) were investigated to reveal the thermodynamics of adsorption. Adsorption thermodynamic parameters (ΔH°, ΔS°, and ΔG°) were calculated using the thermodynamic equilibrium constant (thermodynamic equilibrium constant, K°) values that change with temperature. It was determined that BPA adsorption was spontaneous (ΔG° < 0) and endothermic (ΔH° > 0) and entropy increased (ΔS° > 0) at the temperatures studied in the BPA adsorption process. The rate control step in the adsorption process was examined by applying pseudo-first-order and pseudo-second-order kinetic models to the adsorption data for the investigations of BPA adsorption kinetics, and the pseudo-second-order kinetic model was found to be more suitable for describing BPA adsorption kinetics. In examining the selectivity of cartridges, structural analogues of hydroquinone, phenol, β-estradiol, and 8-hydroxyquinoline were tested.
Collapse
|
27
|
Surface imprinted core–shell nanorod for selective extraction of glycoprotein. J Colloid Interface Sci 2022; 615:597-605. [DOI: 10.1016/j.jcis.2022.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 12/23/2022]
|
28
|
Zafarghandi SS, Panahi HA, Nezhati MN. Preparation of pH‐Sensitive Molecularly Imprinted Polymer via Dual‐Monomer for Selective Solid‐Phase Extraction of Ribavirin from Human Urine and Pharmaceutical Samples. ChemistrySelect 2022. [DOI: 10.1002/slct.202104038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Homayon Ahmad Panahi
- Department of Chemistry Central Tehran Branch Islamic Azad University Tehran Iran
| | | |
Collapse
|
29
|
Modern and Dedicated Methods for Producing Molecularly Imprinted Polymer Layers in Sensing Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Molecular imprinting (MI) is the most available and known method to produce artificial recognition sites, similar to antibodies, inside or at the surface of a polymeric material. For this reason, scholars all over the world have found MI appealing, thus developing, in this past period, various types of molecularly imprinted polymers (MIPs) that can be applied to a wide range of applications, including catalysis, separation sciences and monitoring/diagnostic devices for chemicals, biochemicals and pharmaceuticals. For instance, the advantages brought by the use of MIPs in the sensing and analytics field refer to higher selectivity, sensitivity and low detection limits, but also to higher chemical and thermal stability as well as reusability. In light of recent literature findings, this review presents both modern and dedicated methods applied to produce MIP layers that can be integrated with existent detection systems. In this respect, the following MI methods to produce sensing layers are presented and discussed: surface polymerization, electropolymerization, sol–gel derived techniques, phase inversionand deposition of electroactive pastes/inks that include MIP particles.
Collapse
|
30
|
Banan K, Ghorbani-Bidkorbeh F, Afsharara H, Hatamabadi D, Landi B, Keçili R, Sellergren B. Nano-sized magnetic core-shell and bulk molecularly imprinted polymers for selective extraction of amiodarone from human plasma. Anal Chim Acta 2022; 1198:339548. [DOI: 10.1016/j.aca.2022.339548] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 01/04/2023]
|
31
|
Cai J, Niu B, Xie Q, Lu N, Huang S, Zhao G, Zhao J. Accurate Removal of Toxic Organic Pollutants from Complex Water Matrices. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2917-2935. [PMID: 35148082 DOI: 10.1021/acs.est.1c07824] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Characteristic emerging pollutants at low concentration have raised much attention for causing a bottleneck in water remediation, especially in complex water matrices where high concentration of interferents coexist. In the future, tailored treatment methods are therefore of increasing significance for accurate removal of target pollutants in different water matrices. This critical review focuses on the overall strategies for accurately removing highly toxic emerging pollutants in the presence of typical interferents. The main difficulties hindering the improvement of selectivity in complex matrices are analyzed, implying that it is difficult to adopt a universal approach for multiple targets and water substrates. Selective methods based on assorted principles are proposed aiming to improve the anti-interference ability. Thus, typical approaches and fundamentals to achieve selectivity are subsequently summarized including their mechanism, superiority and inferior position, application scope, improvement method and the bottlenecks. The results show that different methods may be applicable to certain conditions and target pollutants. To better understand the mechanism of each selective method and further select the appropriate method, advanced methods for qualitative and quantitative characterization of selectivity are presented. The processes of adsorption, interaction, electron transfer, and bond breaking are discussed. Some comparable selective quantitative methods are helpful for promoting the development of related fields. The research framework of selectivity removal and its fundamentals are established. Presently, although continuous advances and remarkable achievements have been attained in the selective removal of characteristic organic pollutants, there are still various substantial challenges and opportunities. It is hopeful to inspire the researches on the new generation of water and wastewater treatment technology, which can selectively and preferentially treat characteristic pollutants, and establish a reliable research framework to lead the direction of environmental science.
Collapse
Affiliation(s)
- Junzhuo Cai
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Baoling Niu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Qihao Xie
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Ning Lu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Shuyu Huang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| |
Collapse
|
32
|
Lie KR, Samuel AO, Hasanah AN. Molecularly imprinted mesoporous silica: potential of the materials, synthesis and application in the active compound separation from natural product. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02074-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Mukunzi D, Habimana JDD, Li Z, Zou X. Mycotoxins detection: view in the lens of molecularly imprinted polymer and nanoparticles. Crit Rev Food Sci Nutr 2022; 63:6034-6068. [PMID: 35048762 DOI: 10.1080/10408398.2022.2027338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecularly imprinted polymers (MIPs) are tailor-made functional composites which selectively recognize and bind the target molecule of interest. MIP composites are products of the massively cross-linked polymer matrices, generated via polymerization, with bio-inspired recognition cavities that are morphologically similar in size, shape and spatial patterns to the target conformation. These features have enabled researchers to expand the field of molecular recognition, more specifically for target with peculiar requirements. Nevertheless, MIPs alone are characterized with weak sensitivity. Besides, nanoparticles (NPs) are remarkably sensitive but also suffer from poor selectivity. Intriguingly, the combination of the two results in a highly sensitive and selective MIP composite. For instance, the conjugation of different functional NPs with MIPs can generate new flexible target capture tools, either a dynamic sensor or a novel drug delivery system. In this regard, although the technology is considered an established and feasible approach, it is still perceived as a burgeoning technology for various fields, which makes it unceasingly worthy reviewing. Therefore, in this review, we attempt to give an update on various custom-made biosensors based on MIPs in combination with various NPs for the detection of mycotoxins, the toxic secondary metabolites of fungi. We first summarize the classification, prevalence, and toxicological characteristics of common mycotoxins. Next, we provide an overview of MIP composites and their characterization, and then segment the role of NPs with respect to common types of MIP-based sensors. At last, conclusions and outlook are discussed.
Collapse
Affiliation(s)
- Daniel Mukunzi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jean de Dieu Habimana
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
34
|
Determination of Neopterin as a Prognostic Indicator Using Neopterin-Imprinted Cryogel Membranes. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2359:171-181. [PMID: 34410669 DOI: 10.1007/978-1-0716-1629-1_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neopterin (Neo) is thought of as a key biomarker for the diagnosis and prognosis of a wide variety of diseases associated with cellular immune response. Therefore, it has become a vital need to be able to specifically determine the Neo concentration in human serum. Molecularly imprinted cryogels have come into prominence among other affinity systems by combining advantages of Molecular Imprinting Technology (MIT) and cryogels. In this chapter, synthesis of novel Neopterin-imprinted cryogel membranes (Neo-mip), characterization studies of synthesized materials, and their use in the determination of Neo in human serum is described in detail. In addition, the evaluation of selective Neo adsorption properties of Neo-mip against competitors (Pterin and Glucose) is discussed. Neo-mip will come into prominence as important affinity materials for the selective Neo recognition in body fluids, prior to use in the health sector.
Collapse
|
35
|
Shinde S, Mansour M, Mavliutova L, Incel A, Wierzbicka C, Abdel-Shafy HI, Sellergren B. Oxoanion Imprinting Combining Cationic and Urea Binding Groups: A Potent Glyphosate Adsorber. ACS OMEGA 2022; 7:587-598. [PMID: 35036726 PMCID: PMC8757333 DOI: 10.1021/acsomega.1c05079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The use of polymerizable hosts in anion imprinting has led to powerful receptors with high oxyanion affinity and specificity in both aqueous and non-aqueous environments. As demonstrated in previous reports, a carefully tuned combination of orthogonally interacting binding groups, for example, positively charged and neutral hydrogen bonding monomers, allows receptors to be constructed for use in either organic or aqueous environments, in spite of the polymer being prepared in non-competitive solvent systems. We here report on a detailed experimental design of phenylphosphonic and benzoic acid-imprinted polymer libraries prepared using either urea- or thiourea-based host monomers in the presence or absence of cationic comonomers for charge-assisted anion recognition. A comparison of hydrophobic and hydrophilic crosslinking monomers allowed optimum conditions to be identified for oxyanion binding in non-aqueous, fully aqueous, or high-salt media. This showed that recognition improved with the water content for thiourea-based molecularly imprinted polymers (MIPs) based on hydrophobic EGDMA with an opposite behavior shown by the polymers prepared using the more hydrophilic crosslinker PETA. While the affinity of thiourea-based MIPs increased with the water content, the opposite was observed for the oxourea counterparts. Binding to the latter could however be enhanced by raising the pH or by the introduction of cationic amine- or Na+-complexing crown ether-based comonomers. Use of high-salt media as expected suppressed the amine-based charge assistance, whereas it enhanced the effect of the crown ether function. Use of the optimized receptors for removing the ubiquitous pesticide glyphosate from urine finally demonstrated their practical utility.
Collapse
Affiliation(s)
- Sudhirkumar Shinde
- Biofilms
Research Center for Biointerfaces, Department of Biomedical Sciences,
Faculty of Health and Society, Malmö
University, 20506 Malmö, Sweden
- School
of Consciousness, Dr. Vishwanath Karad MIT
World Peace University, Kothrud, 411038 Pune, India
| | - Mona Mansour
- Biofilms
Research Center for Biointerfaces, Department of Biomedical Sciences,
Faculty of Health and Society, Malmö
University, 20506 Malmö, Sweden
| | - Liliia Mavliutova
- Biofilms
Research Center for Biointerfaces, Department of Biomedical Sciences,
Faculty of Health and Society, Malmö
University, 20506 Malmö, Sweden
| | - Anil Incel
- Biofilms
Research Center for Biointerfaces, Department of Biomedical Sciences,
Faculty of Health and Society, Malmö
University, 20506 Malmö, Sweden
| | - Celina Wierzbicka
- Biofilms
Research Center for Biointerfaces, Department of Biomedical Sciences,
Faculty of Health and Society, Malmö
University, 20506 Malmö, Sweden
| | - Hussein I. Abdel-Shafy
- Water
Research & Pollution Control Department, National Research Centre, Dokki, 11727 Cairo, Egypt
| | - Börje Sellergren
- Biofilms
Research Center for Biointerfaces, Department of Biomedical Sciences,
Faculty of Health and Society, Malmö
University, 20506 Malmö, Sweden
| |
Collapse
|
36
|
Ali GK, Omer KM. Molecular imprinted polymer combined with aptamer (MIP-aptamer) as a hybrid dual recognition element for bio(chemical) sensing applications. Review. Talanta 2022; 236:122878. [PMID: 34635258 DOI: 10.1016/j.talanta.2021.122878] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
The development of diagnostic devices based on memetic molecular recognitions are becoming highly promising due to high specificity, sensitivity, stability, and low-cost comparing to natural molecular recognition. During the last decade, molecular imprinted polymers (MIPs) and aptamer have shown dramatic enhancement in the molecular recognition characteristics for bio(chemical) sensing applications. Recently, MIP-aptamer, as an emerging hybrid recognition element, merged the advantages of the both recognition components. This dual recognition-based sensor has shown improved properties and desirable features, such as high sensitivity, low limit of detection, high stability under harsh environmental conditions, high binding affinity, and superior selectivity. Hybrid MIP-aptamer as dual recognition element, was used in the real sample analysis, such as detection of proteins, neurotransmitters, environmental pollutants, biogenic compounds, small ions, explosives, virus detections and pharmaceuticals. This review focuses on a comprehensive overview of the preparation strategies of various MIP-aptamer recognition elements, mechanism of formation of MIP-aptamer, and detection of various target molecules in different matrices.
Collapse
Affiliation(s)
- Gona K Ali
- Center for Biomedical Analysis, Department of Chemistry, College of Science, University of Sulaimani, Qliasan St, 46002, Slemani City, Kurdistan Region, Iraq
| | - Khalid M Omer
- Center for Biomedical Analysis, Department of Chemistry, College of Science, University of Sulaimani, Qliasan St, 46002, Slemani City, Kurdistan Region, Iraq.
| |
Collapse
|
37
|
Song Z, Li J, Lu W, Li B, Yang G, Bi Y, Arabi M, Wang X, Ma J, Chen L. Molecularly imprinted polymers based materials and their applications in chromatographic and electrophoretic separations. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116504] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Sajini T, Mathew B. A brief overview of molecularly imprinted polymers: Highlighting computational design, nano and photo-responsive imprinting. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
39
|
Jiao J, Zhou Z, Tian S, Ren Z. Facile preparation of molecular-imprinted polymers for selective extraction of theophylline molecular from aqueous solution. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Soni S, Jain U, Chauhan N. A systematic review on sensing techniques for drug- facilitated sexual assaults (DFSA) monitoring. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/j.cjac.2021.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Teixeira SPB, Reis RL, Peppas NA, Gomes ME, Domingues RMA. Epitope-imprinted polymers: Design principles of synthetic binding partners for natural biomacromolecules. SCIENCE ADVANCES 2021; 7:eabi9884. [PMID: 34714673 PMCID: PMC8555893 DOI: 10.1126/sciadv.abi9884] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/07/2021] [Indexed: 05/27/2023]
Abstract
Molecular imprinting (MI) has been explored as an increasingly viable tool for molecular recognition in various fields. However, imprinting of biologically relevant molecules like proteins is severely hampered by several problems. Inspired by natural antibodies, the use of epitopes as imprinting templates has been explored to circumvent those limitations, offering lower costs and greater versatility. Here, we review the latest innovations in this technology, as well as different applications where MI polymers (MIPs) have been used to target biomolecules of interest. We discuss the several steps in MI, from the choice of epitope and functional monomers to the different production methods and possible applications. We also critically explore how MIP performance can be assessed by various parameters. Last, we present perspectives on future breakthroughs and advances, offering insights into how MI techniques can be expanded to new fields such as tissue engineering.
Collapse
Affiliation(s)
- Simão P. B. Teixeira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nicholas A. Peppas
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712-1801, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, University of Texas at Austin, Austin, TX 78712-1801, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712-1801, USA
- Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX 78712-1801, USA
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, Austin, TX 78712-1801, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, Austin, TX 78712-1801, USA
| | - Manuela E. Gomes
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui M. A. Domingues
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
42
|
Nguyen HT, Vuong Bui NT, Kanhounnon WG, Vu Huynh KL, Nguyen TVA, Nguyen HM, Do MH, Badawi M, Thach UD. Co-precipitation polymerization of dual functional monomers and polystyrene- co-divinylbenzene for ciprofloxacin imprinted polymer preparation. RSC Adv 2021; 11:34281-34290. [PMID: 35497320 PMCID: PMC9042346 DOI: 10.1039/d1ra05505d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
Novel ciprofloxacin composite imprinted materials are synthesized by using co-precipitation polymerization of dual functional monomers (methacrylic acid and 2-vinylpyridine) and polystyrene-co-divinylbenzene. The intermolecular interactions between monomers and template are evaluated by molecular modeling analysis. The physicochemical properties of the obtained polymers are characterized using FT-IR, TGA, and SEM. Batch adsorption experiments are used to investigate adsorption properties (kinetic, pH, and isotherm). These polymers are employed to prepare the solid phase extraction cartridges, and their extraction performances are analyzed by the HPLC-UV method. DFT calculations indicate that hydrogen bonding and π−π stacking are the driving forces for the formation of selective rebinding sites. The obtained polymers exhibit excellent adsorption properties, including fast kinetics and high adsorption capacity (up to 10.28 mg g−1) with an imprinted factor of 2.55. The Scatchard analysis indicates the presence of specific high-affinity adsorption sites on the imprinted polymer. These absorbents are employed to extract CIP in river water with recoveries in the range of 65.97–119.26% and the relative standard deviation of 3.59–14.01%. Furthermore, the used cartridges could be reused at least eight times without decreasing their initial adsorption capacity. Ciprofloxacin imprinted polymers were prepared using co-precipitation polymerization of methacrylic acid, 2-vinylpyridine and polystyrene-co-divinylbenzene.![]()
Collapse
Affiliation(s)
- Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam +84 028 37 761 043
| | - Nhat Thao Vuong Bui
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam +84 028 37 761 043
| | - Wilfried G Kanhounnon
- Laboratoire de Chimie Théorique et de Spectroscopie Moléculaire (LACTHESMO), Université d'Abomey-Calavi Benin
| | - Kim Long Vu Huynh
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam +84 028 37 761 043
| | - Tran-Van-Anh Nguyen
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam +84 028 37 761 043
| | - Hien Minh Nguyen
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam +84 028 37 761 043
| | - Minh Huy Do
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine France
| | - Ut Dong Thach
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam +84 028 37 761 043
| |
Collapse
|
43
|
Chen RN, Kang SH, Li J, Lu LN, Luo XP, Wu L. Comparison and recent progress of molecular imprinting technology and dummy template molecular imprinting technology. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4538-4556. [PMID: 34570126 DOI: 10.1039/d1ay01014j] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular imprinting technology for the preparation of polymers with specific molecular recognition function had become one of the current research hotspots. It has been widely applied in chromatographic separation, antibody and receptor mimetics, solid-phase extraction, bio-sensors, and other fields in the last decades. In this study, molecular imprinting technology was summarized from the points of templates and dummy templates, and four typical target analytes were selected to compare the differences between templates and dummy templates. The current status and prospects of molecular imprinting technology were also proposed.
Collapse
Affiliation(s)
| | | | - Jia Li
- Northwest Minzu University, China.
| | - Li-Na Lu
- Northwest Minzu University, China.
| | | | - Lan Wu
- Northwest Minzu University, China.
| |
Collapse
|
44
|
Factors Affecting Preparation of Molecularly Imprinted Polymer and Methods on Finding Template-Monomer Interaction as the Key of Selective Properties of the Materials. Molecules 2021; 26:molecules26185612. [PMID: 34577083 PMCID: PMC8470890 DOI: 10.3390/molecules26185612] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022] Open
Abstract
Molecular imprinting is a technique for creating artificial recognition sites on polymer matrices that complement the template in terms of size, shape, and spatial arrangement of functional groups. The main advantage of Molecularly Imprinted Polymers (MIP) as the polymer for use with a molecular imprinting technique is that they have high selectivity and affinity for the target molecules used in the molding process. The components of a Molecularly Imprinted Polymer are template, functional monomer, cross-linker, solvent, and initiator. Many things determine the success of a Molecularly Imprinted Polymer, but the Molecularly Imprinted Polymer component and the interaction between template-monomers are the most critical factors. This review will discuss how to find the interaction between template and monomer in Molecularly Imprinted Polymer before polymerization and after polymerization and choose the suitable component for MIP development. Computer simulation, UV-Vis spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Proton-Nuclear Magnetic Resonance (1H-NMR) are generally used to determine the type and strength of intermolecular interaction on pre-polymerization stage. In turn, Suspended State Saturation Transfer Difference High Resolution/Magic Angle Spinning (STD HR/MAS) NMR, Raman Spectroscopy, and Surface-Enhanced Raman Scattering (SERS) and Fluorescence Spectroscopy are used to detect chemical interaction after polymerization. Hydrogen bonding is the type of interaction that is becoming a focus to find on all methods as this interaction strongly contributes to the affinity of molecularly imprinted polymers (MIPs).
Collapse
|
45
|
Thach UD, Nguyen Thi HH, Pham TD, Mai HD, Nhu-Trang TT. Synergetic Effect of Dual Functional Monomers in Molecularly Imprinted Polymer Preparation for Selective Solid Phase Extraction of Ciprofloxacin. Polymers (Basel) 2021; 13:2788. [PMID: 34451328 PMCID: PMC8398442 DOI: 10.3390/polym13162788] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ciprofloxacin (CIP), an important broad-spectrum fluoroquinolone antibiotic, was often used as a template molecule for the preparation of imprinted materials. In this study, methacrylic acid and 2-vinylpyridine were employed for the first time as dual functional monomers for synthesizing ciprofloxacin imprinted polymers. METHODS The chemical and physicochemical properties of synthesized polymers were characterized using Fourier transform-infrared spectroscopy, thermogravimetric analysis-differential scanning calorimetry, scanning electron microscopy, and nitrogen adsorption-desorption isotherm. The adsorption properties of ciprofloxacin onto synthesized polymers were determined by batch experiments. The extraction performances were studied using the solid phase extraction and HPLC-UV method. RESULTS The molecularly imprinted polymer synthesized with dual functional monomers showed a higher adsorption capacity and selectivity toward the template molecule. The adsorbed amounts of ciprofloxacin onto the imprinted and non-imprinted polymer were 2.40 and 1.45 mg g-1, respectively. Furthermore, the imprinted polymers were employed as a selective adsorbent for the solid phase extraction of ciprofloxacin in aqueous solutions with the recovery of 105% and relative standard deviation of 7.9%. This work provides an alternative approach for designing a new adsorbent with high adsorption capacity and good extraction performance for highly polar template molecules.
Collapse
Affiliation(s)
- Ut Dong Thach
- Department of Polymer Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi 100000, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Hong Hanh Nguyen Thi
- Faculty of Chemistry, University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam; (H.H.N.T.); (T.D.P.); (H.D.M.)
| | - Tuan Dung Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam; (H.H.N.T.); (T.D.P.); (H.D.M.)
| | - Hong Dao Mai
- Faculty of Chemistry, University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam; (H.H.N.T.); (T.D.P.); (H.D.M.)
| | - Tran-Thi Nhu-Trang
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University (NTTU), Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
46
|
Li D, Luo Y, Onidas D, He L, Jin M, Gazeau F, Pinson J, Mangeney C. Surface functionalization of nanomaterials by aryl diazonium salts for biomedical sciences. Adv Colloid Interface Sci 2021; 294:102479. [PMID: 34237631 DOI: 10.1016/j.cis.2021.102479] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Nanoparticles (NPs) can be prepared by simple reactions and methods from a number of materials. Their small size opens up a number of applications in different fields, among which biomedicine, including: i) drug delivery, ii) biosensors, iii) bioimaging, iv) antibacterial activity. To be able to perform such tasks, NPs must be modified with a variety of functional molecules, such as drugs, targeting groups, chemical tags or antibacterial agents, and must also be prevented from aggregation. The attachment must be stable to resist during the transportation to the targeted location. Diazonium salts, which have been widely used for coupling applications and surface modification, fulfil such criteria. Moreover, they are simple to prepare and can be easily substituted with a large number of organic groups. This review describes the use of these compounds in nanomedicine with a focus on the construction of nanohybrids derived from metal, oxide and carbon-based NPs as well as viruses.
Collapse
Affiliation(s)
- Da Li
- Université de Paris, LCBPT, CNRS, F-75006 Paris, France
| | - Yun Luo
- Université de Paris, LCBPT, CNRS, F-75006 Paris, France.
| | | | - Li He
- Université de Paris, LCBPT, CNRS, F-75006 Paris, France
| | - Ming Jin
- Université de Paris, LCBPT, CNRS, F-75006 Paris, France
| | | | - Jean Pinson
- Université de Paris, ITODYS, CNRS, F-75013 Paris, France.
| | | |
Collapse
|
47
|
Kampes R, Zechel S, Hager MD, Schubert US. Halogen bonding in polymer science: towards new smart materials. Chem Sci 2021; 12:9275-9286. [PMID: 34349897 PMCID: PMC8278954 DOI: 10.1039/d1sc02608a] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022] Open
Abstract
The halogen bond is a special non-covalent interaction, which can represent a powerful tool in supramolecular chemistry. Although the halogen bond offers several advantages compared to the related hydrogen bond, it is currently still underrepresented in polymer science. The structural related hydrogen bonding assumes a leading position in polymer materials containing supramolecular interactions, clearly indicating the high potential of using halogen bonding for the design of polymeric materials. The current developments regarding halogen bonding containing polymers include self-assembly, photo-responsive materials, self-healing materials and others. These aspects are highlighted in the present perspective. Furthermore, a perspective on the future of this rising young research field is provided. The incorporation of halogen bonding into polymer architectures is a new approach for the design of functional materials. This perspective emphasizes the current development in the field of halogen bonding featuring polymer materials.![]()
Collapse
Affiliation(s)
- Robin Kampes
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstraße 10 07743 Jena Germany .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena Philosophenweg 7 D-07743 Jena Germany
| | - Stefan Zechel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstraße 10 07743 Jena Germany .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena Philosophenweg 7 D-07743 Jena Germany
| | - Martin D Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstraße 10 07743 Jena Germany .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena Philosophenweg 7 D-07743 Jena Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstraße 10 07743 Jena Germany .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena Philosophenweg 7 D-07743 Jena Germany
| |
Collapse
|
48
|
Köse K, Kehribar DY, Uzun L. Molecularly imprinted polymers in toxicology: a literature survey for the last 5 years. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35437-35471. [PMID: 34024002 DOI: 10.1007/s11356-021-14510-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/17/2021] [Indexed: 05/23/2023]
Abstract
The science of toxicology dates back almost to the beginning of human history. Toxic chemicals, which are encountered in different forms, are always among the chemicals that should be investigated in criminal field, environmental application, pharmaceutic, and even industry, where many researches have been carried out studies for years. Almost all of not only drugs but also industrial dyes have toxic side and direct effects. Environmental micropollutants accumulate in the tissues of all living things, especially plants, and show short- or long-term toxic symptoms. Chemicals in forensic science can be known by detecting the effect they cause to the body with the similar mechanism. It is clear that the best tracking tool among analysis methods is molecularly printed polymer-based analytical setups. Different polymeric combinations of molecularly imprinted polymers allow further study on detection or extraction using chromatographic and spectroscopic instruments. In particular, methods used in forensic medicine can detect trace amounts of poison or biological residues on the scene. Molecularly imprinted polymers are still in their infancy and have many variables that need to be developed. In this review, we summarized how molecular imprinted polymers and toxicology intersect and what has been done about molecular imprinted polymers in toxicology by looking at the studies conducted in the last 5 years.
Collapse
Affiliation(s)
- Kazım Köse
- Department of Joint Courses, Hitit University, Çorum, Turkey.
| | - Demet Yalçın Kehribar
- Department of Internal Medicine, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Lokman Uzun
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
49
|
Zheng X, Khaoulani S, Ktari N, Lo M, Khalil AM, Zerrouki C, Fourati N, Chehimi MM. Towards Clean and Safe Water: A Review on the Emerging Role of Imprinted Polymer-Based Electrochemical Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:4300. [PMID: 34201852 PMCID: PMC8271813 DOI: 10.3390/s21134300] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022]
Abstract
This review critically summarizes the knowledge of imprinted polymer-based electrochemical sensors for the detection of pesticides, metal ions and waterborne pathogenic bacteria, focusing on the last five years. MIP-based electrochemical sensors exhibit low limits of detection (LOD), high selectivity, high sensitivity and low cost. We put the emphasis on the design of imprinted polymers and their composites and coatings by radical polymerization, oxidative polymerization of conjugated monomers or sol-gel chemistry. Whilst most imprinted polymers are used in conjunction with differential pulse or square wave voltammetry for sensing organics and metal ions, electrochemical impedance spectroscopy (EIS) appears as the chief technique for detecting bacteria or their corresponding proteins. Interestingly, bacteria could also be probed via their quorum sensing signaling molecules or flagella proteins. If much has been developed in the past decade with glassy carbon or gold electrodes, it is clear that carbon paste electrodes of imprinted polymers are more and more investigated due to their versatility. Shortlisted case studies were critically reviewed and discussed; clearly, a plethora of tricky strategies of designing selective electrochemical sensors are offered to "Imprinters". We anticipate that this review will be of interest to experts and newcomers in the field who are paying time and effort combining electrochemical sensors with MIP technology.
Collapse
Affiliation(s)
- Xiaofeng Zheng
- Université de Paris, CNRS, ITODYS (UMR 7086), 75013 Paris, France;
| | - Sohayb Khaoulani
- SATIE, UMR CNRS 8029, Cnam, 75003 Paris, France; (S.K.); (C.Z.); (N.F.)
| | - Nadia Ktari
- Laboratoire Matériaux, Traitement et Analyse, INRAP, BiotechPole Sidi-Thabet, Ariana 2032, Tunisia;
| | - Momath Lo
- Département de Chimie, Laboratoire de Chimie Physique Organique & Analyse Instrumentale, Faculté des Sciences, Université Cheikh Anta Diop, Dakar 5005, Senegal;
| | - Ahmed M. Khalil
- Photochemistry Department, National Research Centre, Dokki, Giza 12622, Egypt;
- Université Paris Est, CNRS, ICMPE, UMR7182, 94320 Thiais, France
| | - Chouki Zerrouki
- SATIE, UMR CNRS 8029, Cnam, 75003 Paris, France; (S.K.); (C.Z.); (N.F.)
| | - Najla Fourati
- SATIE, UMR CNRS 8029, Cnam, 75003 Paris, France; (S.K.); (C.Z.); (N.F.)
| | - Mohamed M. Chehimi
- Université de Paris, CNRS, ITODYS (UMR 7086), 75013 Paris, France;
- Université Paris Est, CNRS, ICMPE, UMR7182, 94320 Thiais, France
| |
Collapse
|
50
|
Recent Advances in Solid-Phase Extraction (SPE) Based on Molecularly Imprinted Polymers (MIPs) for Analysis of Hormones. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Steroid hormones are active substances that are necessary in the normal functioning of all physiological activities in the body, such as sexual characteristics, metabolism, and mood control. They are also widely used as exogenous chemicals in medical and pharmaceutical applications as treatments and at times growth promoters in animal farming. The vast application of steroid hormones has resulted in them being found in different matrices, such as food, environmental, and biological samples. The presence of hormones in such matrices means that they can easily come into contact with humans and animals as exogenous compounds, resulting in abnormal concentrations that can lead to endocrine disruption. This makes their determination in different matrices a vital part of pollutant management and control. Although advances in analytical instruments are constant, it has been determined that these instruments still require some sample preparation steps to be able to determine the occurrence of pollutants in the complex matrices in which they occur. Advances are still being made in sample preparation to ensure easier, selective, and sensitive analysis of complex matrices. Molecularly imprinted polymers (MIPs) have been termed as advanced solid-phase (SPE) materials for the selective extraction and preconcentration of hormones in complex matrices. This review explores the preparation and application of MIPs for the determination of steroid hormones in different sample types.
Collapse
|