1
|
Medina DAV, Cardoso AT, Borsatto JVB, Lanças FM. Open tubular liquid chromatography: Recent advances and future trends. J Sep Sci 2023; 46:e2300373. [PMID: 37582640 DOI: 10.1002/jssc.202300373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
Nano-liquid chromatography (nanoLC) is gaining significant attention as a primary analytical technique across various scientific domains. Unlike conventional high-performance LC, nanoLC utilizes columns with inner diameters (i.ds.) usually ranging from 10 to 150 μm and operates at mobile phase flow rates between 10 and 1000 nl/min, offering improved chromatographic performance and detectability. Currently, most exploration of nanoLC has focused on particle-packed columns. Although open tubular LC (OTLC) can provide superior performance, optimized OTLC columns require very narrow i.ds. (< 10 μm) and demand challenging instrumentation. At the moment, these challenges have limited the success of OTLC. Nevertheless, remarkable progress has been made in developing and utilizing OTLC systems featuring narrow columns (< 2 μm). Additionally, significant efforts have been made to explore larger columns (10-75 μm i.d), demonstrating practical applicability in many situations. Due to their perceived advantages, interest in OTLC has resurged in the last two decades. This review provides an updated outlook on the latest developments in OTLC, focusing on instrumental challenges, achievements, and advancements in column technology. Moreover, it outlines selected applications that illustrate the potential of OTLC for performing targeted and untargeted studies.
Collapse
Affiliation(s)
- Deyber Arley Vargas Medina
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Alessandra Timoteo Cardoso
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - João Victor Basolli Borsatto
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Fernando Mauro Lanças
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
2
|
Greguš M, Ivanov AR, Wilson SR. Ultralow flow liquid chromatography and related approaches: A focus on recent bioanalytical applications. J Sep Sci 2023; 46:e2300440. [PMID: 37528733 PMCID: PMC11087205 DOI: 10.1002/jssc.202300440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Ultralow flow LC employs ultra-narrow bore columns and mid-range pL/min to low nL/min flow rates (i.e., ≤20 nL/min). The separation columns that are used under these conditions are typically 2-30 μm in inner diameter. Ultralow flow LC systems allow for exceptionally high sensitivity and frequently high resolution. There has been an increasing interest in the analysis of scarce biological samples, for example, circulating tumor cells, extracellular vesicles, organelles, and single cells, and ultralow flow LC was efficiently applied to such samples. Hence, advances towards dedicated ultralow flow LC instrumentation, technical approaches, and higher throughput (e.g., tens-to-hundreds of single cells analyzed per day) were recently made. Here, we review the types of ultralow flow LC technology, followed by a discussion of selected representative ultralow flow LC applications, focusing on the progress made in bioanalysis of amount-limited samples during the last 10 years. We also discuss several recently reported high-sensitivity applications utilizing flow rates up to 100 nL/min, which are below commonly used nanoLC flow rates. Finally, we discuss the path forward for future developments of ultralow flow LC.
Collapse
Affiliation(s)
- Michal Greguš
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts, USA
| | - Alexander R. Ivanov
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts, USA
| | - Steven Ray Wilson
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Chemistry, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
|
4
|
Ali F, AlOthman ZA, Al-Shaalan NH. Mixed-mode open tubular column for peptide separations by capillary electrochromatography. J Sep Sci 2021; 44:2602-2611. [PMID: 33905621 DOI: 10.1002/jssc.202100116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/03/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023]
Abstract
Mixed-mode chromatography open tubular column has been developed for peptide separation in electrochromatography. A column with 92 cm effective length and 50 μm internal diameter is fabricated internally with a copolymer sheet of restricted thickness. Catalyst facilitated binding of the coupling agent 3,5-bis (trifluoromethyl) phenyl isocyanate has been carried out at the interior surface of the column. The initiator sodium diethyldithiocarbamate was bound to the coupling agent. A small amount of N-[2-(acryloylamino) phenyl] acrylamide was used along with methacrylic acid and styrene in the monomer mixture to induce a little polar character in the stationary phase fabricated inside the column. Twenty-three peptides have been separated from a chemically digested protein mixture present in cytochrome C in capillary electrochromatography, in addition to the separation of six commercial peptides. We achieved an average plate count of over 1.5 million/m with the column of current study both for the digested protein components and commercial peptides using 70/30% v/v (acetonitrile/20 mM ammonium formate) at pH 6.5. In addition, the column resulted in baseline separation of all the peptides with very good resolution, enhanced peak capacity, and better retention time span.
Collapse
Affiliation(s)
- Faiz Ali
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Zeid A AlOthman
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nora Hamad Al-Shaalan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Vargas Medina DA, Pereira Dos Santos NG, da Silva Burato JS, Borsatto JVB, Lanças FM. An overview of open tubular liquid chromatography with a focus on the coupling with mass spectrometry for the analysis of small molecules. J Chromatogr A 2021; 1641:461989. [PMID: 33611115 DOI: 10.1016/j.chroma.2021.461989] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 01/22/2023]
Abstract
Open tubular liquid chromatography (OT-LC) can provide superior chromatographic performance and more favorable mass spectrometry (MS) detection conditions. These features could provide enhanced sensitivity when coupled with electrospray ionization sources (ESI-) and lead to unprecedented detection capabilities if interfaced with a highly structural informative electron ionization (EI) source. In the past, the exploitation of OT columns in liquid chromatography evolved slowly. However, the recent instrumental developments in capillary/nanoLC-MS created new opportunities in developing and applying OT-LC-MS. Currently, the analytical advantages of OT-LC-MS are mainly exploited in the fields of proteomics and biosciences analysis. Nevertheless, under the right conditions, OT-LC-MS can also offer superior chromatographic performance and enhanced sensitivity in analyzing small molecules. This review will provide an overview of the latest developments in OT-LC-MS, focusing on the wide variety of employed separation mechanisms, innovative stationary phases, emerging column fabrication technologies, and new OT formats. In the same way, the OT-LC's opportunities and shortcomings coupled to both ESI and EI will be discussed, highlighting the complementary character of those two ionization modes to expand the LC's detection boundaries in the performance of targeted and untargeted studies.
Collapse
Affiliation(s)
| | | | | | | | - Fernando Mauro Lanças
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, SP, Brazil.
| |
Collapse
|
6
|
Wang X, Shen S, Rasam SS, Qu J. MS1 ion current-based quantitative proteomics: A promising solution for reliable analysis of large biological cohorts. MASS SPECTROMETRY REVIEWS 2019; 38:461-482. [PMID: 30920002 PMCID: PMC6849792 DOI: 10.1002/mas.21595] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/28/2019] [Indexed: 05/04/2023]
Abstract
The rapidly-advancing field of pharmaceutical and clinical research calls for systematic, molecular-level characterization of complex biological systems. To this end, quantitative proteomics represents a powerful tool but an optimal solution for reliable large-cohort proteomics analysis, as frequently involved in pharmaceutical/clinical investigations, is urgently needed. Large-cohort analysis remains challenging owing to the deteriorating quantitative quality and snowballing missing data and false-positive discovery of altered proteins when sample size increases. MS1 ion current-based methods, which have become an important class of label-free quantification techniques during the past decade, show considerable potential to achieve reproducible protein measurements in large cohorts with high quantitative accuracy/precision. Nonetheless, in order to fully unleash this potential, several critical prerequisites should be met. Here we provide an overview of the rationale of MS1-based strategies and then important considerations for experimental and data processing techniques, with the emphasis on (i) efficient and reproducible sample preparation and LC separation; (ii) sensitive, selective and high-resolution MS detection; iii)accurate chromatographic alignment; (iv) sensitive and selective generation of quantitative features; and (v) optimal post-feature-generation data quality control. Prominent technical developments in these aspects are discussed. Finally, we reviewed applications of MS1-based strategy in disease mechanism studies, biomarker discovery, and pharmaceutical investigations.
Collapse
Affiliation(s)
- Xue Wang
- Department of Cell Stress BiologyRoswell Park Cancer InstituteBuffaloNew York
| | - Shichen Shen
- Department of Pharmaceutical SciencesUniversity at BuffaloState University of New YorkNew YorkNew York
| | - Sailee Suryakant Rasam
- Department of Biochemistry, University at BuffaloState University of New YorkNew YorkNew York
| | - Jun Qu
- Department of Cell Stress BiologyRoswell Park Cancer InstituteBuffaloNew York
- Department of Pharmaceutical SciencesUniversity at BuffaloState University of New YorkNew YorkNew York
- Department of Biochemistry, University at BuffaloState University of New YorkNew YorkNew York
| |
Collapse
|
7
|
Couvillion SP, Zhu Y, Nagy G, Adkins JN, Ansong C, Renslow RS, Piehowski PD, Ibrahim YM, Kelly RT, Metz TO. New mass spectrometry technologies contributing towards comprehensive and high throughput omics analyses of single cells. Analyst 2019; 144:794-807. [PMID: 30507980 PMCID: PMC6349538 DOI: 10.1039/c8an01574k] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mass-spectrometry based omics technologies - namely proteomics, metabolomics and lipidomics - have enabled the molecular level systems biology investigation of organisms in unprecedented detail. There has been increasing interest for gaining a thorough, functional understanding of the biological consequences associated with cellular heterogeneity in a wide variety of research areas such as developmental biology, precision medicine, cancer research and microbiome science. Recent advances in mass spectrometry (MS) instrumentation and sample handling strategies are quickly making comprehensive omics analyses of single cells feasible, but key breakthroughs are still required to push through remaining bottlenecks. In this review, we discuss the challenges faced by single cell MS-based omics analyses and highlight recent technological advances that collectively can contribute to comprehensive and high throughput omics analyses in single cells. We provide a vision of the potential of integrating pioneering technologies such as Structures for Lossless Ion Manipulations (SLIM) for improved sensitivity and resolution, novel peptide identification tactics and standards free metabolomics approaches for future applications in single cell analysis.
Collapse
Affiliation(s)
- Sneha P Couvillion
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lam SC, Sanz Rodriguez E, Haddad PR, Paull B. Recent advances in open tubular capillary liquid chromatography. Analyst 2019; 144:3464-3482. [DOI: 10.1039/c9an00329k] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review covers advances and applications of open tubular capillary liquid chromatography (OT-LC) over the period 2007–2018.
Collapse
Affiliation(s)
- Shing Chung Lam
- ASTech
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech)
- and Australian Centre for Research on Separation Science (ACROSS)
- School of Natural Sciences
- University of Tasmania
| | - Estrella Sanz Rodriguez
- ASTech
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech)
- and Australian Centre for Research on Separation Science (ACROSS)
- School of Natural Sciences
- University of Tasmania
| | - Paul R. Haddad
- ASTech
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech)
- and Australian Centre for Research on Separation Science (ACROSS)
- School of Natural Sciences
- University of Tasmania
| | - Brett Paull
- ASTech
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech)
- and Australian Centre for Research on Separation Science (ACROSS)
- School of Natural Sciences
- University of Tasmania
| |
Collapse
|
9
|
Hara T, Izumi Y, Nakao M, Hata K, Baron GV, Bamba T, Desmet G. Silica-based hybrid porous layers to enhance the retention and efficiency of open tubular capillary columns with a 5 μm inner diameter. J Chromatogr A 2018; 1580:63-71. [DOI: 10.1016/j.chroma.2018.10.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/09/2018] [Accepted: 10/14/2018] [Indexed: 12/16/2022]
|
10
|
Rodriguez ES, Lam SC, Haddad PR, Paull B. Reversed-Phase Functionalised Multi-lumen Capillary as Combined Concentrator, Separation Column, and ESI Emitter in Capillary-LC–MS. Chromatographia 2018. [DOI: 10.1007/s10337-018-3629-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Skjærvø Ø, Brandtzaeg OK, Lausund KB, Pabst O, Martinsen ØG, Lundanes E, Wilson SR. Exploring bioimpendance instrumentation for the characterization of open tubular liquid chromatography columns. J Chromatogr A 2018; 1534:195-200. [DOI: 10.1016/j.chroma.2017.12.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 11/26/2022]
|
12
|
LI RN, WANG YN, PENG MH, WANG XY, GUO GS. Preparation and Application of Porous Layer Open Tubular Capillary Columns with Narrow Bore in Liquid Chromatography. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61057-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Yi L, Piehowski PD, Shi T, Smith RD, Qian WJ. Advances in microscale separations towards nanoproteomics applications. J Chromatogr A 2017; 1523:40-48. [PMID: 28765000 PMCID: PMC6042839 DOI: 10.1016/j.chroma.2017.07.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 01/22/2023]
Abstract
Microscale separation (e.g., liquid chromatography or capillary electrophoresis) coupled with mass spectrometry (MS) has become the primary tool for advanced proteomics, an indispensable technology for gaining understanding of complex biological processes. In recent decades significant advances have been achieved in MS-based proteomics. However, the current proteomics platforms still face an analytical challenge in overall sensitivity towards nanoproteomics applications for starting materials of less than 1μg total proteins (e.g., cellular heterogeneity in tissue pathologies). Herein, we review recent advances in microscale separation techniques and integrated sample processing strategies that improve the overall sensitivity and proteome coverage of the proteomics workflow, and their contributions towards nanoproteomics applications.
Collapse
Affiliation(s)
- Lian Yi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Paul D Piehowski
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Tujin Shi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States.
| |
Collapse
|
14
|
An automated and self-cleaning nano liquid chromatography mass spectrometry platform featuring an open tubular multi-hole crystal fiber solid phase extraction column and an open tubular separation column. J Chromatogr A 2017; 1518:104-110. [DOI: 10.1016/j.chroma.2017.08.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 11/24/2022]
|
15
|
Lynch KB, Chen A, Liu S. Miniaturized high-performance liquid chromatography instrumentation. Talanta 2017; 177:94-103. [PMID: 29108588 DOI: 10.1016/j.talanta.2017.09.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 12/26/2022]
Abstract
Miniaturized high performance liquid chromatography (HPLC) has attracted increasing attention for its potential in high-throughput analyses and point-of-care applications. In this review we highlight the recent advancements in HPLC system miniaturization. We focus on the major components that constitute these instruments along with their respective advantages and drawbacks as well as present a few representative miniaturized HPLC systems. We discuss briefly some of the applications and also anticipate the future development trends of these instrumental platforms.
Collapse
Affiliation(s)
- Kyle B Lynch
- Department of Chemistry and Biochemistry, University of Oklahoma, USA.
| | - Apeng Chen
- Department of Chemistry and Biochemistry, University of Oklahoma, USA
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, USA
| |
Collapse
|
16
|
Brandtzaeg OK, Røen BT, Enger S, Lundanes E, Wilson SR. Multichannel Open Tubular Enzyme Reactor Online Coupled with Mass Spectrometry for Detecting Ricin. Anal Chem 2017; 89:8667-8673. [PMID: 28783436 DOI: 10.1021/acs.analchem.7b02590] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For counterterrorism purposes, a selective nano liquid chromatography-mass spectrometry (nanoLC-MS) platform was developed for detecting the highly lethal protein ricin from castor bean extract. Manual sample preparation steps were omitted by implementing a trypsin/Lys-C enzyme-immobilized multichannel reactor (MCR) consisting of 126 channels (8 μm inner diameter in all channels) that performed online digestion of proteins (5 min reaction time, instead of 4-16 h in previous in-solution methods). Reduction and alkylation steps were not required. The MCR allowed identification of ricin by signature peptides in all targeted mode injections performed, with a complete absence of carry-over in blank injections. The MCRs (interior volume ≈ 1 μL) have very low backpressure, allowing for trivial online coupling with commercial nanoLC-MS systems. The open tubular nature of the MCRs allowed for repeatable within/between-reactor preparation and performance.
Collapse
Affiliation(s)
| | - Bent-Tore Røen
- Norwegian Defence Research Establishment (FFI) , P.O. Box 25, N-2027 Kjeller, Norway
| | - Siri Enger
- Norwegian Defence Research Establishment (FFI) , P.O. Box 25, N-2027 Kjeller, Norway
| | - Elsa Lundanes
- Department of Chemistry, University of Oslo , P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Steven Ray Wilson
- Department of Chemistry, University of Oslo , P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| |
Collapse
|
17
|
Preparation of open tubular capillary columns by in situ ring-opening polymerization and their applications in cLC-MS/MS analysis of tryptic digest. Anal Chim Acta 2017; 979:58-65. [DOI: 10.1016/j.aca.2017.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/30/2017] [Accepted: 05/06/2017] [Indexed: 11/23/2022]
|
18
|
Vehus T. Performing Quantitative Determination of Low-Abundant Proteins by Targeted Mass Spectrometry Liquid Chromatography. Mass Spectrom (Tokyo) 2017. [DOI: 10.5772/intechopen.68713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
19
|
Ali A, Cheong WJ. Open tubular capillary column of 50 μm internal diameter with a very high separation efficiency for the separation of peptides in CEC and LC. J Sep Sci 2017; 40:2654-2661. [DOI: 10.1002/jssc.201700242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/22/2017] [Accepted: 04/28/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Ashraf Ali
- Department of Chemistry; Inha University; Incheon South Korea
| | - Won Jo Cheong
- Department of Chemistry; Inha University; Incheon South Korea
| |
Collapse
|
20
|
Self-packed core shell nano liquid chromatography columns and silica-based monolithic trap columns for targeted proteomics. J Chromatogr A 2017; 1498:111-119. [DOI: 10.1016/j.chroma.2017.03.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 03/06/2017] [Accepted: 03/19/2017] [Indexed: 01/23/2023]
|
21
|
Li R, Shao Y, Yu Y, Wang X, Guo G. Pico-HPLC system integrating an equal inner diameter femtopipette into a 900 nm I.D. porous layer open tubular column. Chem Commun (Camb) 2017; 53:4104-4107. [DOI: 10.1039/c7cc00799j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pico-HPLC method was developed using a bifunctional chromatographic column enabling femtoliter volume sampling and separation.
Collapse
Affiliation(s)
- Ruonan Li
- Beijing Key Laboratory for Green Catalysis and Separation
- Department of Chemistry and Chemistry Engineering
- Beijing University of Technology
- Beijing 100124
- China
| | - Yunlong Shao
- Beijing Key Laboratory for Green Catalysis and Separation
- Department of Chemistry and Chemistry Engineering
- Beijing University of Technology
- Beijing 100124
- China
| | - Yanmin Yu
- Beijing Key Laboratory for Green Catalysis and Separation
- Department of Chemistry and Chemistry Engineering
- Beijing University of Technology
- Beijing 100124
- China
| | - Xiayan Wang
- Beijing Key Laboratory for Green Catalysis and Separation
- Department of Chemistry and Chemistry Engineering
- Beijing University of Technology
- Beijing 100124
- China
| | - Guangsheng Guo
- Beijing Key Laboratory for Green Catalysis and Separation
- Department of Chemistry and Chemistry Engineering
- Beijing University of Technology
- Beijing 100124
- China
| |
Collapse
|
22
|
Vehus T, Roberg-Larsen H, Waaler J, Aslaksen S, Krauss S, Wilson SR, Lundanes E. Versatile, sensitive liquid chromatography mass spectrometry - Implementation of 10 μm OT columns suitable for small molecules, peptides and proteins. Sci Rep 2016; 6:37507. [PMID: 27897190 PMCID: PMC5126632 DOI: 10.1038/srep37507] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/28/2016] [Indexed: 12/14/2022] Open
Abstract
We have designed a versatile and sensitive liquid chromatographic (LC) system, featuring a monolithic trap column and a very narrow (10 μm ID) fused silica open tubular liquid chromatography (OTLC) separation column functionalized with C18-groups, for separating a wide range of molecules (from small metabolites to intact proteins). Compared to today's capillary/nanoLC approaches, our system provides significantly enhanced sensitivity (up to several orders) with matching or improved separation efficiency, and highly repeatable chromatographic performance. The chemical properties of the trap column and the analytical column were fine-tuned to obtain practical sample loading capacities (above 2 μg), an earlier bottleneck of OTLC. Using the OTLC system (combined with Orbitrap mass spectrometry), we could perform targeted metabolomics of sub-μg amounts of exosomes with 25 attogram detection limit of a breast cancer-related hydroxylated cholesterol. With the same set-up, sensitive bottom-up proteomics (targeted and untargeted) was possible, and high-resolving intact protein analysis. In contrast to state-of-the-art packed columns, our platform performs chromatography with very little dilution and is "fit-for-all", well suited for comprehensive analysis of limited samples, and has potential as a tool for challenges in diagnostics.
Collapse
Affiliation(s)
- T. Vehus
- Department of Chemistry, University of Oslo, Post Box 1033 Blindern, NO-0315 Oslo, Norway
- Department of Engineering Sciences, University of Agder, Jon Lilletunsvei 9, NO-4891 Grimstad, Norway
| | - H. Roberg-Larsen
- Department of Chemistry, University of Oslo, Post Box 1033 Blindern, NO-0315 Oslo, Norway
| | - J. Waaler
- Unit for Cell Signaling, SFI-CAST Biomedical Innovation Center, Oslo University Hospital, Rikshospitalet, NO-0027 Oslo, Norway
| | - S. Aslaksen
- Unit for Cell Signaling, SFI-CAST Biomedical Innovation Center, Oslo University Hospital, Rikshospitalet, NO-0027 Oslo, Norway
| | - S. Krauss
- Unit for Cell Signaling, SFI-CAST Biomedical Innovation Center, Oslo University Hospital, Rikshospitalet, NO-0027 Oslo, Norway
| | - S. R. Wilson
- Department of Chemistry, University of Oslo, Post Box 1033 Blindern, NO-0315 Oslo, Norway
| | - E. Lundanes
- Department of Chemistry, University of Oslo, Post Box 1033 Blindern, NO-0315 Oslo, Norway
| |
Collapse
|
23
|
Hara T, Futagami S, Eeltink S, De Malsche W, Baron GV, Desmet G. Very High Efficiency Porous Silica Layer Open-Tubular Capillary Columns Produced via in-Column Sol-Gel Processing. Anal Chem 2016; 88:10158-10166. [PMID: 27642813 DOI: 10.1021/acs.analchem.6b02713] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It is demonstrated that 5 μm i.d. capillaries can be coated with mesoporous silica layers up to 550 nm thickness. All the columns produced using in-column sol-gel synthesis with tetramethoxysilane provide plate height curves that closely follow the Golay-Aris theory. In 60 cm long columns, efficiencies as high as N = 150 000 and N = 120 000 were obtained, respectively, for a 300 and 550 nm thick porous layer. An excellent retention and plate height reproducibility was obtained when the recipes were subsequently applied to produce very long (1.9 and 2.5 m) capillaries. These columns produced efficiencies up to N = 600 000 plates for a retained and around N = 1 000 000 plates for an unretained component. Given the good reproducibility on the long capillaries, and considering that mesoporous silica is still the preferred support for LC, it is believed the present study could spur a renewed interest in open-tubular LC.
Collapse
Affiliation(s)
- Takeshi Hara
- Department of Chemical Engineering, Vrije Universiteit Brussels , Pleinlaan 2, 1050 Brussels, Belgium
| | - Shunta Futagami
- Department of Chemical Engineering, Vrije Universiteit Brussels , Pleinlaan 2, 1050 Brussels, Belgium
| | - Sebastiaan Eeltink
- Department of Chemical Engineering, Vrije Universiteit Brussels , Pleinlaan 2, 1050 Brussels, Belgium
| | - Wim De Malsche
- Department of Chemical Engineering, Vrije Universiteit Brussels , Pleinlaan 2, 1050 Brussels, Belgium
| | - Gino V Baron
- Department of Chemical Engineering, Vrije Universiteit Brussels , Pleinlaan 2, 1050 Brussels, Belgium
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussels , Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
24
|
Ali F, Cheong WJ. High Efficiency Robust Open Tubular Capillary Electrochromatography Column for the Separation of Peptides. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10859] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Faiz Ali
- Department of Chemistry; Inha University; Incheon 402-751 South Korea
| | - Won Jo Cheong
- Department of Chemistry; Inha University; Incheon 402-751 South Korea
| |
Collapse
|
25
|
Wilson RE, Groskreutz SR, Weber SG. Improving the Sensitivity, Resolution, and Peak Capacity of Gradient Elution in Capillary Liquid Chromatography with Large-Volume Injections by Using Temperature-Assisted On-Column Solute Focusing. Anal Chem 2016; 88:5112-21. [PMID: 27033165 PMCID: PMC4940048 DOI: 10.1021/acs.analchem.5b04793] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Capillary HPLC (cLC) with gradient elution is the separation method of choice for the fields of proteomics and metabolomics. This is due to the complementary nature of cLC flow rates and electrospray or nanospray ionization mass spectrometry (ESI-MS). The small column diameters result in good mass sensitivity. Good concentration sensitivity is also possible by injection of relatively large volumes of solution and relying on solvent-based solute focusing. However, if the injection volume is too large or solutes are poorly retained during injection, volume overload occurs which leads to altered peak shapes, decreased sensitivity, and lower peak capacity. Solutes that elute early even with the use of a solvent gradient are especially vulnerable to this problem. In this paper, we describe a simple, automated instrumental method, temperature-assisted on-column solute focusing (TASF), that is capable of focusing large volume injections of small molecules and peptides under gradient conditions. By injecting a large sample volume while cooling a short segment of the column inlet at subambient temperatures, solutes are concentrated into narrow bands at the head of the column. Rapidly raising the temperature of this segment of the column leads to separations with less peak broadening in comparison to solvent focusing alone. For large volume injections of both mixtures of small molecules and a bovine serum albumin tryptic digest, TASF improved the peak shape and resolution in chromatograms. TASF showed the most dramatic improvements with shallow gradients, which is particularly useful for biological applications. Results demonstrate the ability of TASF with gradient elution to improve the sensitivity, resolution, and peak capacity of volume overloaded samples beyond gradient compression alone. Additionally, we have developed and validated a double extrapolation method for predicting retention factors at extremes of temperature and mobile phase composition. Using this method, the effects of TASF can be predicted, allowing determination of the usefulness of this technique for a particular application.
Collapse
Affiliation(s)
- Rachael E. Wilson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen R. Groskreutz
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen G. Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
26
|
Wall modified photonic crystal fibre capillaries as porous layer open tubular columns for in-capillary micro-extraction and capillary chromatography. Anal Chim Acta 2016; 905:1-7. [DOI: 10.1016/j.aca.2015.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/01/2015] [Accepted: 10/07/2015] [Indexed: 12/15/2022]
|
27
|
Simone P, Pierri G, Foglia P, Gasparrini F, Mazzoccanti G, Capriotti AL, Ursini O, Ciogli A, Laganà A. Separation of intact proteins on γ-ray-induced polymethacrylate monolithic columns: A highly permeable stationary phase with high peak capacity for capillary high-performance liquid chromatography with high-resolution mass spectrometry. J Sep Sci 2015; 39:264-71. [PMID: 26530449 DOI: 10.1002/jssc.201500844] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/19/2015] [Accepted: 10/19/2015] [Indexed: 11/09/2022]
Abstract
Polymethacrylate-based monolithic capillary columns, prepared by γ-radiation-induced polymerization, were used to optimize the experimental conditions (nature of the organic modifiers, the content of trifluoroacetic acid and the column temperature) in the separation of nine standard proteins with different hydrophobicities and a wide range of molecular weights. Because of the excellent permeability of the monolithic columns, an ion-pair reversed-phase capillary liquid chromatography with high-resolution mass spectrometry method has been developed by coupling the column directly to the mass spectrometer without a flow-split and using a standard electrospray interface. Additionally, the high working flow and concomitant high efficiency of these columns allowed us to employ a longer column (up to 50 cm) and achieve a peak capacity value superior to 1000. This work is motivated by the need to develop new materials for high-resolution chromatographic separation that combine chemical stability at elevated temperatures (up to 75°C) and a broad pH range, with a high peak capacity value. The advantage of the γ-ray-induced monolithic column lies in the batch-to-batch reproducibility and long-term high-temperature stability. Their proven high loading capacity, recovery, good selectivity and high permeability, moreover, compared well with that of a commercially available poly(styrene-divinylbenzene) monolithic column, which confirms that such monolithic supports might facilitate analysis in proteomics.
Collapse
Affiliation(s)
- Patrizia Simone
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, Italy
| | - Giuseppe Pierri
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, Italy
| | - Patrizia Foglia
- Dipartimento di Chimica, Sapienza Università di Roma, Roma, Italy
| | | | - Giulia Mazzoccanti
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, Italy
| | | | - Ornella Ursini
- Istituto di Metodologie Chimiche, Area della Ricerca di Roma del CNR, Monterotondo Stazione, Roma, Italy
| | - Alessia Ciogli
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, Italy
| | - Aldo Laganà
- Dipartimento di Chimica, Sapienza Università di Roma, Roma, Italy
| |
Collapse
|
28
|
Ali F, Cheong WJ. Open tubular capillary column for the separation of cytochrome C tryptic digest in capillary electrochromatography. J Sep Sci 2015; 38:3645-54. [DOI: 10.1002/jssc.201500765] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 07/23/2015] [Accepted: 08/08/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Faiz Ali
- Department of Chemistry; Inha University; Namku Incheon South Korea
| | - Won Jo Cheong
- Department of Chemistry; Inha University; Namku Incheon South Korea
| |
Collapse
|
29
|
Nazario CED, Silva MR, Franco MS, Lanças FM. Evolution in miniaturized column liquid chromatography instrumentation and applications: An overview. J Chromatogr A 2015; 1421:18-37. [PMID: 26381569 DOI: 10.1016/j.chroma.2015.08.051] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 02/01/2023]
Abstract
The purpose of this article is to underline the miniaturized LC instrumental system and describe the evolution of commercially available systems by discussing their advantages and drawbacks. Nowadays, there are already many miniaturized LC systems available with a great variety of pump design, interface and detectors as well as efficient columns technologies and reduced connections devices. The solvent delivery systems are able to drive the mobile phase without flow splitters and promote gradient elution using either dual piston reciprocating or syringe-type pumps. The mass spectrometry as detection system is the most widely used detection system; among many alternative ionization sources direct-EI LC-MS is a promising alternative to APCI. In addition, capillary columns are now available showing many possibilities of stationary phases, inner diameters and hardware materials. This review provides a discussion about miniaturized LC demonstrating fundamentals and instrumentals' aspects of the commercially available miniaturized LC instrumental system mainly nano and micro LC formats. This review also covers the recent developments and trends in instrumentation, capillary and nano columns, and several applications of this very important and promising field.
Collapse
Affiliation(s)
| | - Meire R Silva
- Institute of Chemistry of Sao Carlos, University of Sao Paulo, Sao Carlos, SP, Brazil
| | - Maraíssa S Franco
- Institute of Chemistry of Sao Carlos, University of Sao Paulo, Sao Carlos, SP, Brazil
| | - Fernando M Lanças
- Institute of Chemistry of Sao Carlos, University of Sao Paulo, Sao Carlos, SP, Brazil.
| |
Collapse
|
30
|
Abstract
In proteomics, nano-LC is arguably the most common tool for separating peptides/proteins prior to MS. The main advantage of nano-LC is enhanced sensitivity, as compounds enter the MS in more concentrated bands. This is particularly relevant for determining low abundant compounds in limited samples. Nano-LC columns can produce peak capacities of 1000 or more, and very narrow columns can be used to perform proteomics of 1000 cells or less. Also, nano-LC can be coupled with online add-ons such as selective trap columns or enzymatic reactors, for faster and more automated analysis. Nano-LC is today an established tool for research laboratories; but can nano-LC-based systems soon be ready for more routine settings, such as in clinics?
Collapse
|
31
|
Hustoft HK, Vehus T, Brandtzaeg OK, Krauss S, Greibrokk T, Wilson SR, Lundanes E. Open tubular lab-on-column/mass spectrometry for targeted proteomics of nanogram sample amounts. PLoS One 2014; 9:e106881. [PMID: 25222838 PMCID: PMC4164520 DOI: 10.1371/journal.pone.0106881] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/09/2014] [Indexed: 12/28/2022] Open
Abstract
A novel open tubular nanoproteomic platform featuring accelerated on-line protein digestion and high-resolution nano liquid chromatography mass spectrometry (LC-MS) has been developed. The platform features very narrow open tubular columns, and is hence particularly suited for limited sample amounts. For enzymatic digestion of proteins, samples are passed through a 20 µm inner diameter (ID) trypsin + endoproteinase Lys-C immobilized open tubular enzyme reactor (OTER). Resulting peptides are subsequently trapped on a monolithic pre-column and transferred on-line to a 10 µm ID porous layer open tubular (PLOT) liquid chromatography LC separation column. Wnt/ß-catenein signaling pathway (Wnt-pathway) proteins of potentially diagnostic value were digested+detected in targeted-MS/MS mode in small cell samples and tumor tissues within 120 minutes. For example, a potential biomarker Axin1 was identifiable in just 10 ng of sample (protein extract of ∼1,000 HCT15 colon cancer cells). In comprehensive mode, the current OTER-PLOT set-up could be used to identify approximately 1500 proteins in HCT15 cells using a relatively short digestion+detection cycle (240 minutes), outperforming previously reported on-line digestion/separation systems. The platform is fully automated utilizing common commercial instrumentation and parts, while the reactor and columns are simple to produce and have low carry-over. These initial results point to automated solutions for fast and very sensitive MS based proteomics, especially for samples of limited size.
Collapse
Affiliation(s)
| | - Tore Vehus
- Department of Chemistry, University of Oslo, Oslo, Norway
| | | | - Stefan Krauss
- Unit for Cell Signaling, Cancer Stem Cell Innovation Center, Oslo University Hospital, Oslo, Norway
| | - Tyge Greibrokk
- Department of Chemistry, University of Oslo, Oslo, Norway
| | | | - Elsa Lundanes
- Department of Chemistry, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Hustoft HK, Brandtzaeg OK, Rogeberg M, Misaghian D, Torsetnes SB, Greibrokk T, Reubsaet L, Wilson SR, Lundanes E. Integrated enzyme reactor and high resolving chromatography in "sub-chip" dimensions for sensitive protein mass spectrometry. Sci Rep 2013; 3:3511. [PMID: 24336509 PMCID: PMC3863811 DOI: 10.1038/srep03511] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/28/2013] [Indexed: 12/29/2022] Open
Abstract
Reliable, sensitive and automatable analytical methodology is of great value in e.g. cancer diagnostics. In this context, an on-line system for enzymatic cleavage of proteins, subsequent peptide separation by liquid chromatography (LC) with mass spectrometric detection has been developed using "sub-chip" columns (10-20 μm inner diameter, ID). The system could detect attomole amounts of isolated cancer biomarker progastrin-releasing peptide (ProGRP), in a more automatable fashion compared to previous methods. The workflow combines protein digestion using an 20 μm ID immobilized trypsin reactor with a polymeric layer of 2-hydroxyethyl methacrylate-vinyl azlactone (HEMA-VDM), desalting on a polystyrene-divinylbenzene (PS-DVB) monolithic trap column, and subsequent separation of resulting peptides on a 10 μm ID (PS-DVB) porous layer open tubular (PLOT) column. The high resolution of the PLOT columns was maintained in the on-line system, resulting in narrow chromatographic peaks of 3-5 seconds. The trypsin reactors provided repeatable performance and were compatible with long-term storage.
Collapse
Affiliation(s)
- Hanne Kolsrud Hustoft
- Department of Chemistry, University of Oslo, Post Box 1033 Blindern, NO-0315 Oslo, Norway
| | | | - Magnus Rogeberg
- Department of Chemistry, University of Oslo, Post Box 1033 Blindern, NO-0315 Oslo, Norway
- Department of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Dorna Misaghian
- Department of Chemistry, University of Oslo, Post Box 1033 Blindern, NO-0315 Oslo, Norway
| | - Silje Bøen Torsetnes
- School of Pharmacy, University of Oslo, Post Box 1068 Blindern, NO-0316 Oslo, Norway
| | - Tyge Greibrokk
- Department of Chemistry, University of Oslo, Post Box 1033 Blindern, NO-0315 Oslo, Norway
| | - Léon Reubsaet
- School of Pharmacy, University of Oslo, Post Box 1068 Blindern, NO-0316 Oslo, Norway
| | - Steven Ray Wilson
- Department of Chemistry, University of Oslo, Post Box 1033 Blindern, NO-0315 Oslo, Norway
| | - Elsa Lundanes
- Department of Chemistry, University of Oslo, Post Box 1033 Blindern, NO-0315 Oslo, Norway
| |
Collapse
|