1
|
Du J, Chu Y, Hu Y, Liu J, Liu H, Wang H, Yang C, Wang Z, Yu A, Ran J. A multifunctional self-reinforced injectable hydrogel for enhancing repair of infected bone defects by simultaneously targeting macrophages, bacteria, and bone marrow stromal cells. Acta Biomater 2024:S1742-7061(24)00597-X. [PMID: 39396629 DOI: 10.1016/j.actbio.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/21/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Injectable hydrogels (IHs) have demonstrated huge potential in promoting repair of infected bone defects (IBDs), but how to endow them with desired anti-bacterial, immunoregulatory, and osteo-inductive properties as well as avoid mechanical failure during their manipulation are challenging. In this regard, we developed a multifunctional AOHA-RA/Lap nanocomposite IH for IBDs repair, which was constructed mainly through two kinds of reversible cross-links: (i) the laponite (Lap) crystals mediated electrostatic interactions; (ii) the phenylboronic acid easter bonds between the 4-aminobenzeneboronic acid grafted oxidized hyaluronic acid (AOHA) and rosmarinic acid (RA). Due to the specific structural composition, the AOHA-RA/Lap IH demonstrated superior injectability, self-recoverability, spatial adaptation, and self-reinforced mechanical properties after being injected to the bone defect site. In addition, the RA molecules could be locally released from the hydrogel following a Weibull model for over 10 days. Systematic in vitro/vivo assays proved the strong anti-bacterial activity of the hydrogel against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Moreover, its capability of inducing M2 polarization of macrophages (Mφ) and osteogenic differentiation of bone marrow stromal cells (BMSCs) was verified either, and the mechanism of the former was identified to be related to the JAK1-STAT1 and PI3K-AKT signaling pathways and that of the latter was identified to be related to the calcium signaling pathway, extracellular matrix (ECM) receptor interaction and TGF-β signaling pathway. After being implanted to a S. aureus infected rat skull defect model, the AOHA-RA/Lap IH significantly accelerated repair of IBDs without causing significant systemic toxicity. STATEMENT OF SIGNIFICANCE: Rosmarinic acid and laponite were utilized to develop an injectable hydrogel, promising for accelerating repair of infected bone defects in clinic. The gelation of the hydrogel was completely driven by two kinds of reversible cross-links, which endow the hydrogel superior spatial adaption, self-recoverability, and structural stability. The as-prepared hydrogel demonstrated superior anti-bacterial/anti-biofilm activity and could induce M2 polarization of macrophages and osteogenic differentiation of BMSCs. The mechanism behind macrophages polarization was identified to be related to the JAK1-STAT1 and PI3K-AKT signaling pathways. The mechanism behind osteogenic differentiation of BMSCs was identified to be related to the ECM receptor interaction and calcium signaling/TGF-β signaling pathways.
Collapse
Affiliation(s)
- Jingyi Du
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Ying Chu
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Yan Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan, 430000, China
| | - Jin Liu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Hanghang Liu
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Huimin Wang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Changying Yang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Zheng Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan, 430000, China.
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan, 430000, China.
| | - Jiabing Ran
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
2
|
Hu K, Pang T, Yang C, Han P, Li L, Wang P, Zhang Z, Zhao W, Zhang S. Simultaneous extraction of hydroxylated polycyclic aromatic hydrocarbons and catecholamines with magnetic boronic acid hypercrosslinked polymers. J Chromatogr A 2023; 1712:464491. [PMID: 37931428 DOI: 10.1016/j.chroma.2023.464491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Urinary hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and catecholamines (CAs) are important biomarkers of PAHs exposure. In this study, a novel magnetic boronic acid hypercrosslinked composite (Fe3O4@HCP-BA) is synthesized using a facile one-pot strategy and applied as a sorbent for the simultaneous extraction of OH-PAHs and CAs in urine samples. The synthesized Fe3O4@HCP-BA composites are characterized by rich pore structure, highly specific surface area, good magnetic response, and excellent selectivity and adsorption efficiency (range: 65.26-496.71 and 1227.3-1581.8 µmol g-1 for CAs and OH-PAHs, respectively). The mechanisms governing the adsorption of the OH-PAHs and CAs to the Fe3O4@HCP-BA composites were systematically studied via adsorption kinetics, isotherm models, XPS characterization, and molecular simulation. The resultant Fe3O4@HCP-BA composite-based MSPE/HPLC-FLD method exhibited good linearity (R2 > 0.9916), low limits of detection (0.2-0.3 pg mL-1 and 0.2-0.3 ng mL-1 for OH-PAHs and CAs, respectively), and good precision (intra-day and inter-day RSDs < 11.1%). The analysis of CAs and OH-PAHs in the urine samples from 14 smokers and 14 non-smokers revealed a positive correlation between the concentrations of CAs and OH-PAHs. Our findings not only establish the proposed method as a green, environmentally friendly, and simple strategy for preparing magnetic adsorbents, but also confirm it as a promising alternative method for accurate determination of OH-PAHs and CAs in biological samples.
Collapse
Affiliation(s)
- Kai Hu
- Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Tiantian Pang
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Cheng Yang
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Pengzhao Han
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Lixin Li
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Pan Wang
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenqiang Zhang
- Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Wenjie Zhao
- School of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Shusheng Zhang
- Center for modern analysis and gene sequencing, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou 450001, China
| |
Collapse
|
3
|
Xu Y, Zheng H, Sui J, Lin H, Cao L. Rapid and Sensitive Fluorescence Detection of Staphylococcus aureus Based on Polyethyleneimine-Enhanced Boronate Affinity Isolation. Foods 2023; 12:foods12071366. [PMID: 37048187 PMCID: PMC10093574 DOI: 10.3390/foods12071366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
There are increasing demands for fast and simple detection of pathogens in foodstuffs. Fluorescence analysis has demonstrated significant advantages for easy operation and high sensitivity, although it is usually hindered by a complex matrix, low bacterial abundance, and long-term bacterial enrichment. Effective enrichment procedures are required to meet the requirements for food detection. Here, boronate-functionalized cellulose filter paper and specific fluorescent probes were combined. An integrated approach for the enrichment of detection of Staphylococcus aureus was proposed. The modification of polyethyleneimine demonstrated a significant effect in enhancing the bacterial enrichment, and the boronate affinity efficiency of the paper was increased by about 51~132%. With optimized conditions, the adsorption efficiency for S. aureus was evaluated as 1.87 × 108 CFU/cm2, the linear range of the fluorescent analysis was 104 CFU/mL~108 CFU/mL (R2 = 0.9835), and the lowest limit of detection (LOD) was calculated as 2.24 × 102 CFU/mL. Such efficiency was validated with milk and yogurt samples. These results indicated that the material had a high enrichment capacity, simple operation, and high substrate tolerance, which had the promising potential to be the established method for the fast detection of food pathogens.
Collapse
Affiliation(s)
- Yujia Xu
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hongwei Zheng
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
| | - Jianxin Sui
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Limin Cao
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
4
|
Zhang J, Tian X, Cui X, Zheng A, Li J, Bai Y, Zheng Y. Facile synthesis of hyperbranched magnetic nanomaterials for selective adsorption of proteins. Talanta 2023; 252:123895. [DOI: 10.1016/j.talanta.2022.123895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
|
5
|
Boron-doped titania for separation and purification of lactoferrin in dairy products. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1212:123501. [DOI: 10.1016/j.jchromb.2022.123501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/22/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|
6
|
Shi N, Bu X, Zhang M, Wang B, Xu X, Shi X, Hussain D, Xu X, Chen D. Current Sample Preparation Methodologies for Determination of Catecholamines and Their Metabolites. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092702. [PMID: 35566052 PMCID: PMC9099465 DOI: 10.3390/molecules27092702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/18/2022]
Abstract
Catecholamines (CAs) and their metabolites play significant roles in many physiological processes. Changes in CAs concentration in vivo can serve as potential indicators for the diagnosis of several diseases such as pheochromocytoma and paraganglioma. Thus, the accurate quantification of CAs and their metabolites in biological samples is quite important and has attracted great research interest. However, due to their extremely low concentrations and numerous co-existing biological interferences, direct analysis of these endogenous compounds often suffers from severe difficulties. Employing suitable sample preparation techniques before instrument detection to enrich the target analytes and remove the interferences is a practicable and straightforward approach. To date, many sample preparation techniques such as solid-phase extraction (SPE), and liquid-liquid extraction (LLE) have been utilized to extract CAs and their metabolites from various biological samples. More recently, several modern techniques such as solid-phase microextraction (SPME), liquid-liquid microextraction (LLME), dispersive solid-phase extraction (DSPE), and chemical derivatizations have also been used with certain advanced features of automation and miniaturization. There are no review articles with the emphasis on sample preparations for the determination of catecholamine neurotransmitters in biological samples. Thus, this review aims to summarize recent progress and advances from 2015 to 2021, with emphasis on the sample preparation techniques combined with separation-based detection methods such capillary electrophoresis (CE) or liquid chromatography (LC) with various detectors. The current review manuscript would be helpful for the researchers with their research interests in diagnostic analysis and biological systems to choose suitable sample pretreatment and detection methods.
Collapse
Affiliation(s)
- Nian Shi
- Physics Diagnostic Division, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China;
| | - Xinmiao Bu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
| | - Manyu Zhang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
| | - Bin Wang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
| | - Xinli Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
| | - Xuezhong Shi
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China;
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (D.H.); (X.X.); (D.C.)
| | - Xia Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
- Correspondence: (D.H.); (X.X.); (D.C.)
| | - Di Chen
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
- Correspondence: (D.H.); (X.X.); (D.C.)
| |
Collapse
|
7
|
Castillo-Aguirre A, Maldonado M, Esteso MA. Removal of Toxic Metal Ions Using Poly(BuMA–co–EDMA) Modified with C-Tetra(nonyl)calix[4]resorcinarene. TOXICS 2022; 10:toxics10050204. [PMID: 35622617 PMCID: PMC9145833 DOI: 10.3390/toxics10050204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023]
Abstract
A copolymer of poly(BuMA–co–EDMA) modified with C-tetra(nonyl)calix[4]resorcinarene was obtained via the impregnation method. The formation of the modified copolymer was confirmed and investigated using various techniques; in this way, the presence of calix[4]resorcinarene was confirmed by FT-IR spectroscopy and by high resolution transmission electron microscopy. The modified copolymer was used for the removal of highly toxic cations (Pb2+, Hg2+, and Cd2+) from aqueous solutions. To perform the removal, we used the batch sorption technique and the effects of time of contact, pH, and volume of sample on the effective sorption were determined. The best results were observed for Pb2+ extraction, which was comparatively more efficient. Adsorption–desorption experiments revealed that the modified copolymer could be used for several cycles without significant loss of adsorption capacity. Finally, the results showed that the modified copolymer application is highly efficient for the removal of lead ions from aqueous solutions.
Collapse
Affiliation(s)
- Alver Castillo-Aguirre
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, 30 No. 45-03 Carrera, Bogotá 111321, Colombia;
| | - Mauricio Maldonado
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, 30 No. 45-03 Carrera, Bogotá 111321, Colombia;
- Correspondence: (M.M.); (M.A.E.)
| | - Miguel A. Esteso
- Universidad Católica de Ávila, 05005 Ávila, Calle los Canteros s/n, Spain
- U.D. Química Física, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
- Correspondence: (M.M.); (M.A.E.)
| |
Collapse
|
8
|
Recent advances in applications of hybrid natural polymers as adsorbent for perfluorinated compounds removal – review paper. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02820-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Hu K, Pang T, Shi Y, Han P, Zhao Y, Zhao W, Zeng H, Zhang S, Zhang Z. Magnetic borate-modified Mxene: A highly affinity material for the extraction of catecholamines. Anal Chim Acta 2021; 1176:338769. [PMID: 34399896 DOI: 10.1016/j.aca.2021.338769] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/04/2021] [Accepted: 06/13/2021] [Indexed: 12/21/2022]
Abstract
A novel magnetic borate-modified MXene composite was prepared by in situ growth of Fe3O4 particles onto the surface of phenylboronic acid modified Ti3C2Tx nanosheets. The magnetic composite possesses highly selective recognition properties to catecholamines, and high adsorption capacity (up to 319.6 μmol g-1) for dopamine. Besides, the adsorption of urinary catecholamines can be accomplished within 2.0 min. The excellent adsorption performance can be assigned to its unique 2D layered structures, which helps to shorten the diffusion path and facilitate molecular transport. In addition, the multilayer adsorption and the synergetic interactions of borate affinity, van der Waals forces, hydrogen bonding and π-π stacking also contribute to the adsorption. By coupling the magnetic boronate affinity composites with high-performance liquid chromatography-fluorescence detection, a sensitive method for the determination of catecholamines in urine samples was proposed. The validation results revealed it can offer good linearities (correlation coefficients higher than 99%). The method detection limits were 0.06, 0.16, 0.03 and 0.14 ng mL-1 for norepinephrine, epinephrine, dopamine and isoprenaline, respectively, and relative recoveries for these catecholamines were in the range of 98.56-108.1%, 92.56-110.0%, 98.79-112.3% and 88.14-97.81%, respectively. The proposed method was successfully applied to analyze the catecholamines in the urine samples from 15 healthy volunteers and 16 patients with Alzheimer's disease. The results indicated that the magnetic borate-modified Mxene composite possesses superior extraction performance, and can be used as an outstanding candidate for the extraction of catecholamines in pre-clinical or clinical studies.
Collapse
Affiliation(s)
- Kai Hu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Tiantian Pang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yanmei Shi
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Pengzhao Han
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yuanqing Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wenjie Zhao
- School of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Huahui Zeng
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Shusheng Zhang
- Center for Modern Analysis and Gene Sequencing, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, China.
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
10
|
Li H, Li T, Shi X, Xu G. Recent development of nanoparticle-assisted metabolites analysis with mass spectrometry. J Chromatogr A 2020; 1636:461785. [PMID: 33340742 DOI: 10.1016/j.chroma.2020.461785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Metabolomics systematically studies the changes of metabolites in biological systems in the temporal or spatial dimensions. It is a challenging task for comprehensive analysis of metabolomics because of diverse physicochemical properties and wide concentration distribution of metabolites. Used as enrichment sorbents, chemoselective probes, chromatographic stationary phases, MS ionization matrix, nanomaterials play excellent roles in improving the selectivity, separation performance, detection sensitivity and identification efficiency of metabolites when mass spectrometry is employed as the detection technique. This review summarized the recent development of nanoparticle-assisted metabolites analysis in terms of assisting the pretreatment of biological samples, improving the separation performance and enhancing the MALDI-MS detection.
Collapse
Affiliation(s)
- Hua Li
- SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Ting Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
11
|
Wang Y, Wu S, Wu D, Shen J, Wei Y, Wang C. Amino bearing core-shell structured magnetic covalent organic framework nanospheres: Preparation, postsynthetic modification with phenylboronic acid and enrichment of monoamine neurotransmitters in human urine. Anal Chim Acta 2020; 1093:61-74. [DOI: 10.1016/j.aca.2019.09.078] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 12/01/2022]
|
12
|
Chen Y, Huang A, Zhang Y, Bie Z. Recent advances of boronate affinity materials in sample preparation. Anal Chim Acta 2019; 1076:1-17. [DOI: 10.1016/j.aca.2019.04.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 11/28/2022]
|
13
|
Boronate affinity magnetic nanoparticles with hyperbranched polymer brushes for the adsorption of cis-diol biomolecules. Mikrochim Acta 2019; 186:683. [DOI: 10.1007/s00604-019-3785-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2023]
|
14
|
Castillo-Aguirre A, Maldonado M. Preparation of Methacrylate-based Polymers Modified with Chiral Resorcinarenes and Their Evaluation as Sorbents in Norepinephrine Microextraction. Polymers (Basel) 2019; 11:E1428. [PMID: 31480387 PMCID: PMC6780700 DOI: 10.3390/polym11091428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 11/17/2022] Open
Abstract
Aminomethylation reactions between chiral amino compounds (S)-(-)-1-phenylethylamine and l-proline with tetranonylresorcinarene and tetra-(4-hydroxyphenyl)resorcinarene in presence of formaldehyde were studied. The reaction between l-proline and resorcinarenes generated regioselectively chiral tetra-Mannich bases, due to the molecular incorporation of the fragment of the chiral amino acid. On the other hand, tetranonylresorcinarene and (S)-(-)-1-phenylethylamine formed regio- and diasteroselectively chiral tetrabenzoxazines, both by chiral auxiliary functionalization and by the transformation of the molecular structure that confers inherent chirality. The products obtained were characterized using IR, 1H-NMR, 13C-NMR, COSY, HMQC, and HMBC techniques. The reaction of (S)-(-)-1-phenylethylamine with tetra-(4-hydroxyphenyl)resorcinarene did not proceed under the experimental conditions. Once the chiral aminomethylated tetra-(4-hydroxyphenyl)resorcinarene was obtained, the chemical modification of poly(GMA-co-EDMA) was studied, and the results showed an efficient incorporation of the aminomethylated compound. For the physical modification, chiral aminomethylated tetranonylresorcinarenes were employed, finding that the incorporation of modified resorcinarenes occurs, but with less efficiency than that observed using chemical modification. The modified polymers were characterized via FT-IR, scanning electron microscopy imaging, and elemental analysis. Finally, polymers modified with chiral resorcinarenes were used as sorbents in norepinephrine microextraction; for practical purposes, artificial urine was prepared and used. To perform the microextraction, the decision was made to use the modern rotating-disk sorptive extraction technique (RDSE), because of its analytical attributes as a green, or eco-friendly, technique. According to the results, the method preliminarily validated for the determination of norepinephrine in artificial urine shows that the modified polymer with chiral derivative of tetra-(4-hydroxyphenyl)resorcinarene worked effectively as a new sorbent phase for the quantitative microextraction of norepinephrine, exhibiting high stability and homogeneity of composition and structure within the working range.
Collapse
Affiliation(s)
- Alver Castillo-Aguirre
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, 30 No. 45, Carrera 03, Colombia
| | - Mauricio Maldonado
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, 30 No. 45, Carrera 03, Colombia.
| |
Collapse
|
15
|
Zhou Z, Fu Y, Qin Q, Lu X, Shi X, Zhao C, Xu G. Synthesis of magnetic mesoporous metal-organic framework-5 for the effective enrichment of malachite green and crystal violet in fish samples. J Chromatogr A 2018; 1560:19-25. [DOI: 10.1016/j.chroma.2018.05.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/14/2018] [Accepted: 05/08/2018] [Indexed: 01/20/2023]
|
16
|
Chen L, Wang H, Xu Z, Zhang Q, Liu J, Shen J, Zhang W. High-throughput and selective solid-phase extraction of urinary catecholamines by crown ether-modified resin composite fiber. J Chromatogr A 2018; 1561:48-55. [PMID: 29801939 DOI: 10.1016/j.chroma.2018.05.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/16/2018] [Accepted: 05/20/2018] [Indexed: 01/05/2023]
Abstract
In the present study, we developed a simple and high-throughput solid phase extraction (SPE) procedure for selective extraction of catecholamines (CAs) in urine samples. The SPE adsorbents were electrospun composite fibers functionalized with 4-carboxybenzo-18-crown-6 ether modified XAD resin and polystyrene, which were packed into 96-well columns and used for high-throughput selective extraction of CAs in healthy human urine samples. Moreover, the extraction efficiency of packed-fiber SPE (PFSPE) was examined by high performance liquid chromatography coupled with fluorescence detector. The parameters affecting the extraction efficiency and impurity removal efficiency were optimized, and good linearity ranging from 0.5 to 400 ng/mL was obtained with a low limit of detection (LOD, 0.2-0.5 ng/mL) and a good repeatability (2.7%-3.7%, n = 6). The extraction recoveries of three CAs ranged from 70.5% to 119.5%. Furthermore, stable and reliable results obtained by the fluorescence detector were superior to those obtained by the electrochemical detector. Collectively, PFSPE coupled with 96-well columns was a simple, rapid, selective, high-throughput and cost-efficient method, and the proposed method could be applied in clinical chemistry.
Collapse
Affiliation(s)
- LiQin Chen
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Hui Wang
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhen Xu
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - QiuYue Zhang
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Jia Liu
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Jun Shen
- School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| | - WanQi Zhang
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
17
|
Zhang Y, Yang X, Wang J, Zhou W, Lu R, Gao H, Zhang S. In situ solvent formation microextraction combined with magnetic dispersive micro-solid-phase extraction for the determination of benzoylurea insecticides in water samples. J Sep Sci 2016; 40:442-448. [DOI: 10.1002/jssc.201600787] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/31/2016] [Accepted: 11/05/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Ying Zhang
- Department of Applied Chemistry; China Agricultural University; Beijing P.R. China
| | - Xiaoling Yang
- Department of Applied Chemistry; China Agricultural University; Beijing P.R. China
| | - Jiankang Wang
- National Engineering Research Center for Fine Petrochemical Intermediates; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou P.R. China
| | - Wenfeng Zhou
- Department of Applied Chemistry; China Agricultural University; Beijing P.R. China
| | - Runhua Lu
- Department of Applied Chemistry; China Agricultural University; Beijing P.R. China
| | - Haixiang Gao
- Department of Applied Chemistry; China Agricultural University; Beijing P.R. China
| | - Sanbing Zhang
- Department of Applied Chemistry; China Agricultural University; Beijing P.R. China
| |
Collapse
|
18
|
Gao L, Wei Y. Fabrication of boronate-decorated polyhedral oligomeric silsesquioxanes grafted cotton fiber for the selective enrichment of nucleosides in urine. J Sep Sci 2016; 39:2365-73. [DOI: 10.1002/jssc.201501406] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Li Gao
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science; Northwest University; Xi'an China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science; Northwest University; Xi'an China
| |
Collapse
|
19
|
Cheng T, Zhu S, Zhu B, Liu X, Zhang H. Highly selective capture of nucleosides with boronic acid functionalized polymer brushes prepared by atom transfer radical polymerization. J Sep Sci 2016; 39:1347-56. [DOI: 10.1002/jssc.201500968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Ting Cheng
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou China
| | - Shuqiang Zhu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou China
| | - Bin Zhu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou China
| | - Xiaoyan Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou China
| | - Haixia Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou China
| |
Collapse
|