1
|
Hao S, Wang H, Zhao W, Sun C, Gao R, Zhang Y. Simultaneous determination of trace level riot control agents in environmental water by solid-phase microextraction and gas chromatography coupled with a Flame Ionization Detector. J Sep Sci 2022; 45:2612-2620. [PMID: 35522798 DOI: 10.1002/jssc.202100851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/08/2022]
Abstract
In this paper, a direct immersion solid-phase microextraction procedure for the simultaneous analyses of four primary riot control agents: 2-Chloroacetophenone, o-chlorobenzylidene malonitrile, Dibenz (b, f)-1,4-Oxazepine, and oleoresin capsicum at μg·L-1 concentration from environmental water was developed. Several parameters that influence the extraction effectiveness were investigated, including fiber type, extraction temperature, extraction time, starring rate, and salinity. Under the recommended conditions, the optimized method had reasonable linearity and accuracy. The average recovery of this method ranged from 84% to 108.1%. The limit of detection for all the analytes ranged from 0.2 to 3 μg·L-1 and the limit of quantification ranged from 1 to 10 μg·L-1 , respectively. A relative standard deviation from 3.0% to 4.3% can be achieved depending on the compounds. The procedure was applied to analyze all the four riot control agents simultaneously in several environmental samples. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shangpeng Hao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Haitao Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Wenbo Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Chao Sun
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Runli Gao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yuanpeng Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| |
Collapse
|
2
|
Ge W, Suryoprabowo S, Kuang H, Liu L, Song S. Rapid detection of triazophos in cucumber using lateral flow immunochromatographic assay. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1816919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Wenliang Ge
- Wuxi No.2 people’s hospital, Wuxi, People’s Republic of China
| | - Steven Suryoprabowo
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Shanshan Song
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|
3
|
Xiang X, Wang Y, Zhang X, Huang M, Li X, Pan S. Multifiber solid‐phase microextraction using different molecularly imprinted coatings for simultaneous selective extraction and sensitive determination of organophosphorus pesticides. J Sep Sci 2020; 43:756-765. [DOI: 10.1002/jssc.201900994] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaozhe Xiang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education)College of Food Science & TechnologyHuazhong Agricultural University Wuhan P. R. China
| | - Yulong Wang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education)College of Food Science & TechnologyHuazhong Agricultural University Wuhan P. R. China
| | - Xiaowei Zhang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education)College of Food Science & TechnologyHuazhong Agricultural University Wuhan P. R. China
| | - Mingquan Huang
- China Light Industry Key Laboratory of Liquor Quality and SafetyBeijing Technology and Business University Beijing P. R. China
| | - Xiujuan Li
- Key Laboratory of Environment Correlative Dietology (Ministry of Education)College of Food Science & TechnologyHuazhong Agricultural University Wuhan P. R. China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education)College of Food Science & TechnologyHuazhong Agricultural University Wuhan P. R. China
| |
Collapse
|
4
|
Xiang L, Wu H, Cui Z, Tang J. Indirect Competitive Aptamer-Based Enzyme-Linked Immunosorbent Assay (apt-ELISA) for the Specific and Sensitive Detection of Isocarbophos Residues. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1587446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Li Xiang
- Department of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, People's Republic of China
| | - Huanle Wu
- Department of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, People's Republic of China
| | - Zhaoxing Cui
- Department of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, People's Republic of China
| | - Jianshe Tang
- Department of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, People's Republic of China
- Key Laboratory of Water Pollution Control and Waste Water Resources in Anhui Province, Hefei, People's Republic of China
| |
Collapse
|
5
|
Li X, Jiang X, Liu Q, Liang A, Jiang Z. Using N-doped Carbon Dots Prepared Rapidly by Microwave Digestion as Nanoprobes and Nanocatalysts for Fluorescence Determination of Ultratrace Isocarbophos with Label-Free Aptamers. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E223. [PMID: 30736465 PMCID: PMC6409902 DOI: 10.3390/nano9020223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022]
Abstract
The strongly fluorescent and highly catalytic N-doped carbon dots (CDN) were rapidly prepared by a microwave irradiation procedure and were characterized by electron microscopy (EM), laser scattering, infrared spectroscopy (IR), and by their fluorescence spectrum. It was found that the CDN had a strong catalytic effect on the fluorescence reaction of 3,3',5,5'-tetramethylbenzidine hydroxide ((TMB)⁻H₂O₂) which produced the oxidation product of TMB (TMBOX) with strong fluorescence at 406 nm. The aptamer (Apt) was adsorbed on the CDN surfaces which weakened the fluorescence intensity due to the inhibition of catalytic activity. When the target molecule isocarbophos (IPS) was added, it reacted with the Apt to form a stable conjugate and free CDN which restored the catalytic activity to enhance the fluorescence. Using TMBOX as a fluorescent probe, a highly sensitive nanocatalytic method for determination of 0.025⁻1.5 μg/L IPS was established with a detection limit of 0.015 μg/L. Coupling the CDN fluorescent probe with the Apt⁻IPS reaction, a new CD fluorescence method was established for the simple and rapid determination of 0.25⁻1.5 μg/L IPS with a detection limit of 0.11 μg/L.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Guilin 541004, China.
- Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| | - Xin Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Guilin 541004, China.
- Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| | - Qingye Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Guilin 541004, China.
- Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Guilin 541004, China.
- Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Guilin 541004, China.
- Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| |
Collapse
|
6
|
Li H, Chen H, Li M, Lu Q, Zhang Y, Yao S. Template protection of gold nanoclusters for the detection of organophosphorus pesticides. NEW J CHEM 2019. [DOI: 10.1039/c9nj01007f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A simple and economic fluorescence sensing method has been developed. This method based on trypsin digestion of the template of BSA-AuNCs for the sensitive detection of OPs.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- P. R. China
| | - Hongyu Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- P. R. China
| | - Mingxia Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- P. R. China
| | - Qiujun Lu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- P. R. China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- P. R. China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- P. R. China
| |
Collapse
|
7
|
Liang D, Liu W, Raza R, Bai Y, Liu H. Applications of solid-phase micro-extraction with mass spectrometry in pesticide analysis. J Sep Sci 2018; 42:330-341. [DOI: 10.1002/jssc.201800804] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/21/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Dapeng Liang
- Key Lab of Groundwater Resources and Environment of Ministry of Education; College of New Energy and Environment; Jilin University; Changchun P. R. China
| | - Wenjie Liu
- Key Lab of Groundwater Resources and Environment of Ministry of Education; College of New Energy and Environment; Jilin University; Changchun P. R. China
| | - Rabia Raza
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; Institute of Analytical Chemistry; College of Chemistry and Molecular Engineering; Peking University; Beijing P. R. China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; Institute of Analytical Chemistry; College of Chemistry and Molecular Engineering; Peking University; Beijing P. R. China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; Institute of Analytical Chemistry; College of Chemistry and Molecular Engineering; Peking University; Beijing P. R. China
| |
Collapse
|
8
|
Sajid M, Płotka-Wasylka J. Combined extraction and microextraction techniques: Recent trends and future perspectives. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.03.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Asfaram A, Ghaedi M, Purkait MK. Novel synthesis of nanocomposite for the extraction of Sildenafil Citrate (Viagra) from water and urine samples: Process screening and optimization. ULTRASONICS SONOCHEMISTRY 2017. [PMID: 28633848 DOI: 10.1016/j.ultsonch.2017.03.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A sensitive analytical method is investigated to concentrate and determine trace level of Sildenafil Citrate (SLC) present in water and urine samples. The method is based on a sample treatment using dispersive solid-phase micro-extraction (DSPME) with laboratory-made Mn@ CuS/ZnS nanocomposite loaded on activated carbon (Mn@ CuS/ZnS-NCs-AC) as a sorbent for the target analyte. The efficiency was enhanced by ultrasound-assisted (UA) with dispersive nanocomposite solid-phase micro-extraction (UA-DNSPME). Four significant variables affecting SLC recovery like; pH, eluent volume, sonication time and adsorbent mass were selected by the Plackett-Burman design (PBD) experiments. These selected factors were optimized by the central composite design (CCD) to maximize extraction of SLC. The results exhibited that the optimum conditions for maximizing extraction of SLC were 6.0 pH, 300μL eluent (acetonitrile) volume, 10mg of adsorbent and 6min sonication time. Under optimized conditions, virtuous linearity of SLC was ranged from 30 to 4000ngmL-1 with R2 of 0.99. The limit of detection (LOD) was 2.50ngmL-1 and the recoveries at two spiked levels were ranged from 97.37 to 103.21% with the relative standard deviation (RSD) less than 4.50% (n=15). The enhancement factor (EF) was 81.91. The results show that the combination UAE with DNSPME is a suitable method for the determination of SLC in water and urine samples.
Collapse
Affiliation(s)
- Arash Asfaram
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
10
|
Zhang X, Cui Y, Bai J, Sun Z, Ning B, Li S, Wang J, Peng Y, Gao Z. Novel Biomimic Crystalline Colloidal Array for Fast Detection of Trace Parathion. ACS Sens 2017; 2:1013-1019. [PMID: 28750527 DOI: 10.1021/acssensors.7b00281] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel gold doped inverse opal photonic crystal (IO PC) was successfully fabricated with combination of molecularly imprinted technical for the fast determination of parathion. First, a closest silica array arrangement behaved as the 3D photonic crystal precursors to build the opal photonic crystal (O PC). Second, the parathion-containing polymeric solution with gold nanoparticles was drawn into the 3D array cracks. After polymerization, the well-designed O PC was treated with HF solution for the etching of the silica skeleton. Finally, the template parathion was removed and the Au-MIP IO PCs were obtained. The morphology of SiO2 and Au NPs was characterized by transmission electron microscopy (TEM), and the eluted influence of the IO PCs was monitored by scanning electron microscopy (SEM). The cross-linking effect was well optimized according to the best spectrum signal of parathion. The as-synthesized Au-MIP IO PCs displayed the specificity toward parathion and the selectivity to other competitive pesticide molecules. The response time was only 5 min, and the parathion could be well detected from real water samples. The recoveries were between 95.5% and 101.5%.
Collapse
Affiliation(s)
- Xihao Zhang
- Tianjin
Key Laboratory of Risk Assessment and Control Technology for Environment
and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P. R. China
| | - Yanguang Cui
- Tianjin
Key Laboratory of Risk Assessment and Control Technology for Environment
and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P. R. China
| | - Jialei Bai
- Tianjin
Key Laboratory of Risk Assessment and Control Technology for Environment
and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P. R. China
| | - Zhiyong Sun
- No. 11
Hospital
of PLA, Yining 835000, China
| | - Baoan Ning
- Tianjin
Key Laboratory of Risk Assessment and Control Technology for Environment
and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P. R. China
| | - Shuang Li
- Tianjin
Key Laboratory of Risk Assessment and Control Technology for Environment
and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P. R. China
| | - Jiang Wang
- Tianjin
Key Laboratory of Risk Assessment and Control Technology for Environment
and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P. R. China
| | - Yuan Peng
- Tianjin
Key Laboratory of Risk Assessment and Control Technology for Environment
and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P. R. China
| | - Zhixian Gao
- Tianjin
Key Laboratory of Risk Assessment and Control Technology for Environment
and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P. R. China
| |
Collapse
|
11
|
Zhu X, Jia C, Zheng Z, Feng X, He Y, Zhao E. Solid-phase extraction combined with dispersive liquid-liquid microextraction for the determination of pyrethroid pesticides in wheat and maize samples. J Sep Sci 2016; 39:4621-4628. [DOI: 10.1002/jssc.201600840] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/05/2016] [Accepted: 10/04/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Xiaodan Zhu
- Institute of Plant and Environment Protection; Beijing Academy of Agriculture and Forestry Science; Beijing China
| | - Chunhong Jia
- Institute of Plant and Environment Protection; Beijing Academy of Agriculture and Forestry Science; Beijing China
- Beijing Research Center for Agricultural Standards and Testing; Beijing China
| | - Zuntao Zheng
- Institute for the Control of Agrochemicals; Ministry of Agriculture; Beijing China
| | - Xiaoyuan Feng
- Beijing Research Center for Agricultural Standards and Testing; Beijing China
| | - Yue He
- Institute of Plant and Environment Protection; Beijing Academy of Agriculture and Forestry Science; Beijing China
| | - Ercheng Zhao
- Institute of Plant and Environment Protection; Beijing Academy of Agriculture and Forestry Science; Beijing China
- Beijing Research Center for Agricultural Standards and Testing; Beijing China
| |
Collapse
|
12
|
Rahimi Z, Shahbazi Y, Ahmadi F. Polypyrrole as an Efficient Solid-Phase Extraction Sorbent for Determination of Chloramphenicol Residue in Chicken Liver, Kidney, and Meat. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0656-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Wang X, Wang H, Lu M, Ma X, Huang P, Lu X, Du X. 3-D graphene-supported mesoporous SiO2@Fe3O4composites for the analysis of pesticides in aqueous samples by magnetic solid-phase extraction with high-performance liquid chromatography. J Sep Sci 2016; 39:1734-41. [DOI: 10.1002/jssc.201600148] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Xuemei Wang
- College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou China
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province; Lanzhou P. R. China
| | - Huan Wang
- College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou China
| | - Muxin Lu
- College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou China
| | - Xiaomin Ma
- College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou China
| | - Pengfei Huang
- College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou China
| | - Xiaoquan Lu
- College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou China
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province; Lanzhou P. R. China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou China
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province; Lanzhou P. R. China
| |
Collapse
|