1
|
Luo H, Hang Y, Zhu H, Zhong Q, Peng S, Gu S, Fang X, Hu L. Rapid Identification of Carbapenemase-Producing Klebsiella pneumoniae Using Headspace Solid-Phase Microextraction Combined with Gas Chromatography-Mass Spectrometry. Infect Drug Resist 2023; 16:2601-2609. [PMID: 37152404 PMCID: PMC10162101 DOI: 10.2147/idr.s404742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
Background Carbapenemase-producing Klebsiella pneumoniae is an unprecedented threat to public health, and its detection remains challenging. Analysis of microbial volatile organic compounds (VOCs) may offer a rapid way to determine bacterial antibiotic susceptibility. Purpose The aim of this study was to explore the VOCs released by carbapenemase-producing carbapenem-resistant Klebsiella pneumoniae (CRKP) using headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS). Methods Test bacteria were incubated in trypticase soy broth to the end of exponential growth phase, and imipenem was added in the middle time. Headspace VOCs were concentrated and analyzed using HS-SPME/GC-MS. Results The compound 3-methyl-1-butanol was found to be a biomarker among the 26 bacterial isolates (10 KPC-positive, 10 NDM-positive, 2 IMP-positive, 2 carbapenemase-negative CRKP, and 2 carbapenem-susceptible K. pneumonoiae). Conclusion This study explored a promising new strategy for the screening of carbapenemase-producing CRKP strains. Further research with larger sample sizes will potentially accelerate the application of biomarkers in routine microbiology.
Collapse
Affiliation(s)
- Hong Luo
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Yaping Hang
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Hongying Zhu
- Clinical Laboratory of Ganzhou People’s Hospital, Ganzhou, Jiangxi, People’s Republic of China
| | - Qiaoshi Zhong
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Suqin Peng
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Shumin Gu
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Xueyao Fang
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Longhua Hu
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
2
|
Choueiry F, Barham A, Zhu J. Analyses of lung cancer-derived volatiles in exhaled breath and in vitro models. Exp Biol Med (Maywood) 2022; 247:1179-1190. [PMID: 35410512 PMCID: PMC9335511 DOI: 10.1177/15353702221082634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer incidence and cancer-related deaths in the world. Early diagnosis of pulmonary tumors results in improved survival compared to diagnosis with more advanced disease, yet early disease is not reliably indicated by symptoms. Despite of the improved testing and monitoring techniques for lung cancer in the past decades, most diagnostic tests, such as sputum cytology or tissue biopsies, are invasive and risky, rendering them unfeasible for large population screening. The non-invasive analysis of exhaled breath has gained attentions as an innovative screening method to measure chemical alterations within the human volatilome profile as a result of oncogenesis. More importantly, volatile organic compounds (VOCs) have been correlated to the pathophysiology of disease since the source of volatile compounds relies mostly on endogenous metabolic processes that are altered as a result of disease onset. Therefore, studying VOCs emitted from human breath may assist lung cancer diagnosis, treatment monitoring, and other surveillance of this devastating disease. In this mini review, we evaluated recent human studies that have attempted to identify lung cancer-derived volatiles in exhaled breath of patients. We also examined reported volatiles in cell cultures of lung cancer to better understand the origins of cancer-associated VOCs. We highlight the metabolic processes of lung cancer that could be responsible for the endogenous synthesis of these VOCs and pinpoint the protein-encoding genes involved in these pathways. Finally, we highlight the potential value of a breath test in lung cancer and propose prominent areas for future research required for the incorporation of VOCs-based testing into clinical settings.
Collapse
Affiliation(s)
- Fouad Choueiry
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210-1132, USA
| | - Addison Barham
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210-1132, USA
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210-1132, USA,James Comprehensive Cancer Center, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA,Jiangjiang Zhu.
| |
Collapse
|
3
|
Golder KM, Böller B, Stienen G, Sickerling J, Wintterlin J. A highly sensitive gas chromatograph for in situ and operando experiments on catalytic reactions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:124103. [PMID: 34972407 DOI: 10.1063/5.0068021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
We describe an automated gas sampling and injection unit for a gas chromatograph (GC). It has specially been designed for low concentrations of products formed in catalytic in situ and operando experiments when slow reactions on single crystal models are investigated. The unit makes use of a buffer volume that is filled with gas samples from the reactor at a reduced pressure. The gas samples are then compressed by He to the injection pressure of 1000 mbar and pushed into two sample loops of the GC, without major intermixing with He. With an additional cryo trap at one of the GC column heads, the design aims at concentrating the gas samples and focusing the peaks. The performance is characterized by experiments on the Fischer-Tropsch synthesis, using H2/CO mixtures (syngas) at 200 and 950 mbar and a Co(0001) single crystal sample as model catalyst. Chromatograms recorded during the reaction display sharp, well separated peaks of saturated and unsaturated C1 to C4 hydrocarbons formed by the reaction, whereas the syngas matrix only gives moderate signals that can be well separated from the product peaks. Detection and quantification limits of 0.4 and 1.3 ppb, respectively, have been achieved and turnover numbers as low as 10-5 s-1 could be measured. The system can be combined with all known analysis techniques used in in situ and operando experiments.
Collapse
Affiliation(s)
- Katharina M Golder
- Department Chemie, Ludwig-Maximilians-Universität München, 80377 Munich, Germany
| | - Bernhard Böller
- Department Chemie, Ludwig-Maximilians-Universität München, 80377 Munich, Germany
| | | | | | - Joost Wintterlin
- Department Chemie, Ludwig-Maximilians-Universität München, 80377 Munich, Germany
| |
Collapse
|
4
|
Novaes FJM, Marriott PJ. Cryogenic trapping as a versatile approach for sample handling, enrichment and multidimensional analysis in gas chromatography. J Chromatogr A 2021; 1644:462135. [PMID: 33839448 DOI: 10.1016/j.chroma.2021.462135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022]
Abstract
Cryogenic methods - those that employ cryogenic fluids/gases but also other approaches to generate reduced temperature - are versatile, functional and relatively easily implemented as part of a total gas chromatographic method. The general utility of a cold region is almost invariably as a trapping or focussing step, to collect analyte into a sharp zone. The success in effectively trapping analyte depends on analyte volatility and the temperature of the cold region. Analytes collection into a sorbent phase supported by cryotrapping usually provide a greater capacity trapping for the sorption step. Stripping analyte from a sample into a cryogenic trap, with subsequent introduction to GC as in a purge-and-trap method, sample introduction into an injector with incorporation of a cooling zone, manipulation and management of chromatographic bands during chromatography elution such as employed in multidimensional gas chromatography, and focussing analyte just prior to the detector, all have the same goal of concentrating the band, reducing its dispersion, and maximising response. This review summarises various approaches that demonstrate how cryogenic methods have been incorporated into gas chromatographic analysis.
Collapse
Affiliation(s)
- Fábio Junior Moreira Novaes
- Universidade Federal de Viçosa, Departamento de Química, Avenida Peter Henry Rolfs, s/n, Viçosa, MG 36570-900, Brazil; Universidade Federal do Rio de Janeiro, Instituto de Química, Programa de Pós-Graduação em Química, Avenida Athos da Silveira Ramos, 149, Bloco A, 6° Andar, Sala 626, Rio de Janeiro, RJ 21941-909, Brazil.
| | - Philip John Marriott
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.
| |
Collapse
|
5
|
Janssens E, van Meerbeeck JP, Lamote K. Volatile organic compounds in human matrices as lung cancer biomarkers: a systematic review. Crit Rev Oncol Hematol 2020; 153:103037. [PMID: 32771940 DOI: 10.1016/j.critrevonc.2020.103037] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Volatile organic compounds (VOCs) have shown potential as non-invasive breath biomarkers for lung cancer, but their unclear biological origin currently limits clinical applications. This systematic review explores headspace analysis of VOCs in patient-derived body fluids and lung cancer cell lines to pinpoint lung cancer-specific VOCs and uncover their biological origin. A search was performed in the databases MEDLINE and Web of Science. Twenty-two articles were included in this systematic review. Since there is no standardised approach to analyse VOCs, a plethora of techniques and matrices/cell lines were explored, which is reflected in the various VOCs identified. However, comparing VOCs in the headspace of urine, blood and pleural effusions from patients and lung cancer cell lines showed some overlapping VOCs, indicating their potential use in lung cancer diagnosis. This review demonstrates that VOCs are promising biomarkers for lung cancer. However, due to lack of inter-matrix consensus, standardised prospective trials will have to be conducted to validate clinically relevant biomarkers.
Collapse
Affiliation(s)
- Eline Janssens
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Jan P van Meerbeeck
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium; Department of Internal Medicine, Ghent University, Ghent, Belgium; Pulmonology and Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium; Department of Internal Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
6
|
Kulas P, Seidel M, Bozzato A, Schick B, Sessler DI, Kreuer S, Hüppe T. Volatile organic compounds in head and neck squamous cell carcinoma-An in vitro pilot study. Biomed Chromatogr 2020; 34:e4811. [PMID: 32059060 DOI: 10.1002/bmc.4811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 02/02/2020] [Accepted: 02/11/2020] [Indexed: 11/07/2022]
Abstract
Owing to the lack of specific symptoms, diagnosis of head and neck squamous cell carcinoma (HNSCC) may be delayed. We evaluated volatile organic compounds in tumor samples from patients suffering from HNSCC and tested the hypothesis that there is a characteristic altered composition in the headspace of HNSCC compared with control samples from the same patient with normal squamous epithelium. These results provide the basis for future noninvasive breath analysis in HNSCC. Headspace air of suspected tumor and contralateral control samples in 20 patients were analyzed using ion-mobility spectrometry. Squamous cell carcinoma was diagnosed in 16 patients. In total, we observed 93 different signals in headspace measurements. Squamous cell carcinomas revealed significantly higher levels of volatile cyclohexanol (0.54 ppbv , 25th to 75th percentiles 0.35-0.86) compared with healthy squamous epithelium (0.24 ppbv , 25th to 75th percentiles 0.12-0.3; p < 0.001). In conclusion, head and neck squamous cell carcinoma emitted significantly higher levels of volatile cyclohexanol in headspace compared with normal squamous epithelium. These findings form the basis for future breath analysis for diagnosis, therapy control and the follow-up of HNSSC to improve therapy and aftercare.
Collapse
Affiliation(s)
- Philipp Kulas
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, Homburg (Saar), Germany
| | - Martin Seidel
- Center of Breath Research, Department of Anesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg (Saar), Germany
| | - Alessandro Bozzato
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, Homburg (Saar), Germany
| | - Bernhard Schick
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, Homburg (Saar), Germany
| | - Daniel I Sessler
- Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sascha Kreuer
- Center of Breath Research, Department of Anesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg (Saar), Germany
| | - Tobias Hüppe
- Center of Breath Research, Department of Anesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg (Saar), Germany
| |
Collapse
|
7
|
Abou Mrad N, Werner S, Mouzay J, Danger G. Sensitivity and resolution optimization in gas chromatography coupled to mass spectrometry analyses of volatile organic compounds present in vacuum environment. J Chromatogr A 2020; 1609:460489. [DOI: 10.1016/j.chroma.2019.460489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 11/25/2022]
|
8
|
Ghosh C, Singh V, Grandy J, Pawliszyn J. Recent advances in breath analysis to track human health by new enrichment technologies. J Sep Sci 2019; 43:226-240. [PMID: 31826324 DOI: 10.1002/jssc.201900769] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/31/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022]
Abstract
Detection of biomarkers in exhaled breath has been gaining increasing attention as a tool for diagnosis of specific diseases. However, rapid and accurate quantification of biomarkers associated with specific diseases requires the use of analytical methods capable of fast sampling and preconcentration from breath matrix. In this regard, solid phase microextraction and needle trap technology are becoming increasingly popular in the field of breath analysis due to the unique benefits imparted by such methods, such as the integration of sampling, extraction, and preconcentration in a single step. This review discusses recent advances in breath analysis using these sample preparation techniques, providing a summary of recent developments of analytical methods based on breath volatile organic compounds analysis, including the successful identification of various biomarkers related to human diseases.
Collapse
Affiliation(s)
- Chiranjit Ghosh
- Department of Chemistry, 200 University Avenue West, University of Waterloo, Ontario, Canada
| | - Varoon Singh
- Department of Chemistry, 200 University Avenue West, University of Waterloo, Ontario, Canada
| | - Jonathan Grandy
- Department of Chemistry, 200 University Avenue West, University of Waterloo, Ontario, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, 200 University Avenue West, University of Waterloo, Ontario, Canada
| |
Collapse
|
9
|
Liu M, Li Y, Wang G, Guo N, Liu D, Li D, Guo L, Zheng X, Yu K, Yu K, Wang C. Release of volatile organic compounds (VOCs) from colorectal cancer cell line LS174T. Anal Biochem 2019; 581:113340. [PMID: 31226253 DOI: 10.1016/j.ab.2019.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/31/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. To date, no non-invasive and specific biomarkers have been identified for the diagnosis of CRC. The analysis of volatile organic compounds (VOCs) is attracting increasing attention and provides the possibility of a non-invasive diagnosis. Solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) have been used to analyze the VOCs released from the headspace gas of LS174T (Dukes' type B colorectal adenocarcinoma) cells, arsenic trioxide (ATO)-treated LS174T cells and the blood from tumor-bearing mice. The data were processed using principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA), which showed that the levels of decanal, 2,4-dimethyl- heptane, and twelve other metabolites were significantly greater in the headspace gas of the LS174T cells and blood of tumor-bearing mice. Additionally, in vivo experiments indicated that formic acid, ethenyl ester and p-trimethylsilyloxyphenyl-(trimethylsilyloxy)trimethylsilylacrylate were consumed during tumor growth. In conclusion, VOCs such as 1-methoxy-hexane and 2,4-dimethyl-heptane could be useful diagnostic markers for CRC. Further research should focus on the potential metabolic pathways associated with these profiles.
Collapse
Affiliation(s)
- Miao Liu
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China; Department of Anesthesiology, Xuanwu Hospital Capital Medical University, Beijing, China.
| | - Yuhang Li
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China; Department of Anesthesiology, The First Affiliated Hospital Sun Yat-sen University, Guangzhou, China.
| | - Guiyue Wang
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China; Department of Anesthesiology, Tianjin Medical University Cancer Hospital, Tianjin, China.
| | - Nana Guo
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Desheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Dandan Li
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Lei Guo
- Department of Anesthesiology, Xuanwu Hospital Capital Medical University, Beijing, China.
| | - Xiaoya Zheng
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Kaili Yu
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Kaijiang Yu
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China; Department of Critical Care Medicine, The first Affiliated Hospital of Harbin Medical University, China.
| | - Changsong Wang
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
10
|
Huang S, Chen G, Ye N, Kou X, Zhu F, Shen J, Ouyang G. Solid-phase microextraction: An appealing alternative for the determination of endogenous substances - A review. Anal Chim Acta 2019; 1077:67-86. [PMID: 31307724 DOI: 10.1016/j.aca.2019.05.054] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
The determination of endogenous substances is of great significance for obtaining important biotic information such as biological components, metabolic pathways and disease biomarkers in different living organisms (e.g. plants, insects, animals and humans). However, due to the complex matrix and the trace concentrations of target analytes, the sample preparation procedure is an essential step before the analytes of interest are introduced into a detection instrument. Solid-phase microextraction (SPME), an emerging sample preparation technique that integrates sampling, extraction, concentration, and sample introduction into one step, has gained wide acceptance in various research fields, including in the determination of endogenous compounds. In this review, recent developments and applications of SPME for the determination of endogenous substances over the past five years are summarized. Several aspects, including the design of SPME devices (sampling configuration and coating), applications (in vitro and in vivo sampling), and coupling with emerging instruments (comprehensive two-dimensional gas chromatography (GC × GC), ambient mass spectrometry (AMS) and surface enhanced Raman scattering (SERS)) are involved. Finally, the challenges and opportunities of SPME methods in endogenous substances analysis are also discussed.
Collapse
Affiliation(s)
- Siming Huang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Niru Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China; College of Chemistry & Molecular Engineering, Center of Advanced Analysis and Computational Science, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, PR China.
| |
Collapse
|