1
|
Kong S, Liao Q, Liu Y, Luo Y, Fu S, Lin L, Li H. Prenylated Flavonoids in Sophora flavescens: A Systematic Review of Their Phytochemistry and Pharmacology. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1087-1135. [PMID: 38864547 DOI: 10.1142/s0192415x24500447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Sophora flavescens has been widely used in traditional Chinese medicine for over 1700 years. This plant is known for its heat-clearing, damp-drying, insecticidal, and diuretic properties. Phytochemical research has identified prenylated flavonoids as a unique class of bioactive compounds in S. flavescens. Recent pharmacological studies reveal that the prenylated flavonoids from S. flavescens (PFS) exhibit potent antitumor, anti-inflammatory, and glycolipid metabolism-regulating activities, offering significant therapeutic benefits for various diseases. However, the pharmacokinetics and toxicological profiles of PFS have not been systematically studied. Despite the diverse biological effects of prenylated flavonoid compounds against similar diseases, their structure-activity relationship is not yet fully understood. This review aims to summarize the latest findings regarding the chemical composition, drug metabolism, pharmacological properties, toxicity, and structure-activity relationship of prenylated flavonoids from S. flavescens. It seeks to highlight their potential for clinical use and suggest directions for future related studies.
Collapse
Affiliation(s)
- Shasha Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
| | - Qian Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
| | - Yuting Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
| | - Sai Fu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, 330006 Jiangxi, P. R. China
| |
Collapse
|
2
|
Zhao Y, Hu JJ, Bai XL, Liu HP, Qi XW, Liao X. Fast screening of tyrosinase inhibitors from traditional Chinese medicinal plants by ligand fishing in combination with in situ fluorescent assay. Anal Bioanal Chem 2022; 414:2265-2273. [PMID: 34982177 DOI: 10.1007/s00216-021-03864-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/26/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022]
Abstract
A simple and rapid method for screening of tyrosinase (TYR) inhibitors present in traditional Chinese medicines (TCMs) was developed by combining ligand fishing and the fluorescent enzymatic assay based on dopamine-functionalized carbon quantum dots (CQDs-Dopa). Ligands of the enzyme present in the TCM extractions were firstly adsorbed on the enzyme-modified magnetic beads, and then the beads were magnetically separated and subjected directly to the CQDs-Dopa-based fluorescent assay. Finally, compounds were desorbed from the "active" beads and identified with ultra-performance liquid chromatography-triple quadrupole mass spectrometry. A known natural TYR inhibitor quercetin was selected to assess the feasibility and quantification performance of this method, and good linearity in the range of 0.01-0.16 mM (R2 = 0.992) with a low detection limit of 0.004 mM was obtained. This method was then applied to screen TYR inhibitors present in Scutellaria baicalensis and Sophora flavescens. Six TYR inhibitors including baicalin (1), baicalein (2), wogonin (3), oroxylin A (4), kurarinone (5), and sophoraflavanone G (6) were found, among which 1-4 were firstly discovered in this work. This is the first report on the in situ assessment of the target compounds obtained by ligand fishing in the form of a mixture, which exhibited the combined advantages of specific extraction ability of ligand fishing and the high sensitivity of CQDs-based fluorescent assay, showing great potential for fast screening of enzyme inhibitors from TCMs.
Collapse
Affiliation(s)
- Yan Zhao
- School of Science, Xihua University, Chengdu, 610039, China
| | - Jin-Jie Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Lin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao-Peng Liu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Xu-Wei Qi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
3
|
Shao J, Li Z, Gao Y, Zhao K, Lin M, Li Y, Wang S, Liu Y, Chen L. Construction of a "Bacteria-Metabolites" Co-Expression Network to Clarify the Anti-Ulcerative Colitis Effect of Flavonoids of Sophora flavescens Aiton by Regulating the "Host-Microbe" Interaction. Front Pharmacol 2021; 12:710052. [PMID: 34721011 PMCID: PMC8553221 DOI: 10.3389/fphar.2021.710052] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
Ulcerative colitis (UC) is considered an immune disease, which is related to the dysbiosis of intestinal microbiota and disorders of the host immune system and metabolism. Sophora flavescens Aiton has been used for the clinical treatment of UC in China and East Asia for thousands of years. It has many traditional prescriptions and modern preparations, and its curative effects are definite. We are the first to report that the flavonoids in Sophora flavescens (S. flavescens) Aiton EtOAc extract (SFE) could potentially attenuate the dextran sodium sulfate–induced UC in mice, which changed the current understanding of considering alkaloids as the only anti-UC pharmacological substances of S. flavescens Aiton. Based on the 16S rRNA gene sequencing and metabolomic analysis, it was found that the anti-UC effects of SFE were due to the regulation of gut microbiota, reversing the abnormal metabolisms, and regulation of the short-chain fatty acids synthesis. Notably, according to the interaction networks of specific bacteria and “bacteria and metabolites” co-expression network, the SFE could enrich the abundance of the commensal bacterium Lactobacillus, Roseburia, norank_f__Muribaculaceae, Anaerotruncus, Candidatus_Saccharimona, and Parasutterella, which are proposed as potentially beneficial bacteria, thereby playing vital roles in the treatment of UC.
Collapse
Affiliation(s)
- Jing Shao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhaocheng Li
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanping Gao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kairui Zhao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minling Lin
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yadi Li
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shumei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Liu
- The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, China.,School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lei Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
4
|
Kumar S, Prajapati KS, Shuaib M, Kushwaha PP, Tuli HS, Singh AK. Five-Decade Update on Chemopreventive and Other Pharmacological Potential of Kurarinone: a Natural Flavanone. Front Pharmacol 2021; 12:737137. [PMID: 34646138 PMCID: PMC8502857 DOI: 10.3389/fphar.2021.737137] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023] Open
Abstract
In the present article we present an update on the role of chemoprevention and other pharmacological activities reported on kurarinone, a natural flavanone (from 1970 to 2021). To the best of our knowledge this is the first and exhaustive review of kurarinone. The literature was obtained from different search engine platforms including PubMed. Kurarinone possesses anticancer potential against cervical, lung (non-small and small), hepatic, esophageal, breast, gastric, cervical, and prostate cancer cells. In vivo anticancer potential of kurarinone has been extensively studied in lungs (non-small and small) using experimental xenograft models. In in vitro anticancer studies, kurarinone showed IC50 in the range of 2–62 µM while in vivo efficacy was studied in the range of 20–500 mg/kg body weight of the experimental organism. The phytochemical showed higher selectivity toward cancer cells in comparison to respective normal cells. kurarinone inhibits cell cycle progression in G2/M and Sub-G1 phase in a cancer-specific context. It induces apoptosis in cancer cells by modulating molecular players involved in apoptosis/anti-apoptotic processes such as NF-κB, caspase 3/8/9/12, Bcl2, Bcl-XL, etc. The phytochemical inhibits metastasis in cancer cells by modulating the protein expression of Vimentin, N-cadherin, E-cadherin, MMP2, MMP3, and MMP9. It produces a cytostatic effect by modulating p21, p27, Cyclin D1, and Cyclin A proteins in cancer cells. Kurarinone possesses stress-mediated anticancer activity and modulates STAT3 and Akt pathways. Besides, the literature showed that kurarinone possesses anti-inflammatory, anti-drug resistance, anti-microbial (fungal, yeast, bacteria, and Coronavirus), channel and transporter modulation, neuroprotection, and estrogenic activities as well as tyrosinase/diacylglycerol acyltransferase/glucosidase/aldose reductase/human carboxylesterases 2 inhibitory potential. Kurarinone also showed therapeutic potential in the clinical study. Further, we also discussed the isolation, bioavailability, metabolism, and toxicity of Kurarinone in experimental models.
Collapse
Affiliation(s)
- Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, India
| | - Kumari Sunita Prajapati
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, India
| | - Mohd Shuaib
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, India
| | - Prem Prakash Kushwaha
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Atul Kumar Singh
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, India
| |
Collapse
|
5
|
Dong Y, Jia G, Hu J, Liu H, Wu T, Yang S, Li Y, Cai T. Determination of Alkaloids and Flavonoids in Sophora flavescens by UHPLC-Q-TOF/MS. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:9915027. [PMID: 34367714 PMCID: PMC8337118 DOI: 10.1155/2021/9915027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/12/2021] [Indexed: 05/05/2023]
Abstract
This study is based on UHPLC-Q-TOF/MS and fragment ions to achieve classification and identification of alkaloids and flavonoids in Sophora flavescens. By reviewing the available and relevant literature, the mass fragmentation rules of alkaloids and flavonoids were summarized. 0.1% formic acid water (A) and acetonitrile (B) were used as mobile phases. 37 chemical constituents were identified, including 13 alkaloids and 24 flavonoids. This research method offers a complete strategy based on the fragmentation information of characteristic fragment ions and neutral loss obtained by MS/MS to characterize the chemical composition of Sophora flavescens.
Collapse
Affiliation(s)
- Yaqian Dong
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Guoxiang Jia
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Jingwen Hu
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Hui Liu
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Tingting Wu
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Shenshen Yang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Yubo Li
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Ting Cai
- Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo 315010, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315010, China
| |
Collapse
|
6
|
Integrated metabolomics and network pharmacology strategy for ascertaining the quality marker of flavonoids for Sophora flavescens. J Pharm Biomed Anal 2020; 186:113297. [PMID: 32325403 DOI: 10.1016/j.jpba.2020.113297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/22/2020] [Accepted: 04/01/2020] [Indexed: 12/20/2022]
Abstract
Traditional Chinese medicines (TCMs) have been widely used in Asian countries for thousands of years due to their supreme quality and good clinical efficacy. However, the increasing demand for TCMs in recent decades warrants effective quality control methodology to avoid clinical problems. Therefore, comprehensive quality evaluation systems should be established for ensuring TCM's quality, in terms of chemical components, as well as bioactivity for identifying quality markers in TCM and developing suitable analytical methods for quality control. In this study, we selected Sophora flavescens (S. flavescens) as the research object and developed a novel integrated strategy combining metabolomics and network pharmacology to explore the quality markers. Firstly, we determined the targeted metabolomic profiles of seventy-four batches of S. flavescens (aged from 1 to 6 years) by UHPLC/QE-MS. Six potential markers were successfully screened, quantified and reverse-verified as the most influential effective compounds by UHPLC/QE-MS and multivariate statistical analysis. Secondly, the network of "components-targets-pathways" was constructed, and the pharmacological activities of six potential markers were predicted. Finally, we determined the anti-tumor activity of six flavonoids (kurarinone, norkurarinone, kuraridin, kushenol N, trifolirhizin, and genistein) as the quality markers for Sophora flavescens, evaluated their pharmacokinetic profiles and reviewed their existing pharmacological researches. Thus, integrated metabolomics and network pharmacology technology were applied for the effective discovery of quality markers of Chinese material medica.
Collapse
|
7
|
Dong X, Li X, Li N, Zhao H, GuLa A, Zhang X, Zhang P, Bao B. A target-group-change couple with mass defect filtering strategy to identify the metabolites of "Dogel ebs" in rats plasma, urine and bile. J Sep Sci 2019; 42:3382-3389. [PMID: 31503388 DOI: 10.1002/jssc.201900466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022]
Abstract
"Dogel ebs" was known as Sophora flavescens Ait., a classical traditional Chinese Mongolian herbal medicine, which had the effects on damp-heat dysentery, scrofula, and syndrome of accumulated dampness toxicity. Although the chemical constituents have been clarified by our previous studies, the metabolic transformation of "Dogel ebs" in vivo was still unclear. To explore the mechanism of "Dogel ebs," the metabolites in plasma, bile, and urine samples were investigated. A fast positive and negative ion switching technology was used for the simultaneous determination of flavonoids and alkaloids in "Dogel ebs" in a single run. And a target-group-change coupled with mass defect filtering strategy was utilized to analyze the collected data. 89 parent compounds and 82 metabolites were characterized by high-performance liquid chromatography with quadrupole exactive Orbitrap mass spectrometry. Both phase I and phase II metabolites were observed and the metabolic pathways involved in oxidation, demethylation, acetylation, and glucuronidation. 69 metabolites of "Dogel ebs," including three hydroxyls bonding xanthohumol, formononetin-7-O-glucuronide, 2'-hydroxyl-isoxanthohumol decarboxylation metabolite, oxysophocarpine dehydrogen, 9α-hydroxysophoramine-O-glucuronide, etc. were reported for the first time.
Collapse
Affiliation(s)
- Xin Dong
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, P. R. China
| | - XiaoNa Li
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, P. R. China
| | - Na Li
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, P. R. China
| | - HongMei Zhao
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, P. R. China
| | - A GuLa
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, P. R. China
| | - Xuan Zhang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, P. R. China
| | - Ping Zhang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, P. R. China
| | - BaoQuan Bao
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, P. R. China
| |
Collapse
|
8
|
Yang Z, Wang Y, Cheng J, Shan B, Wang Y, Wang R, Hou L. Solid self-microemulsifying drug delivery system of Sophoraflavanone G: Prescription optimization and pharmacokinetic evaluation. Eur J Pharm Sci 2019; 136:104953. [DOI: 10.1016/j.ejps.2019.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 05/08/2019] [Accepted: 06/04/2019] [Indexed: 01/02/2023]
|
9
|
Shi P, Lin X, Yao H. A comprehensive review of recent studies on pharmacokinetics of traditional Chinese medicines (2014–2017) and perspectives. Drug Metab Rev 2017; 50:161-192. [DOI: 10.1080/03602532.2017.1417424] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, Bee Science College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|