1
|
Ma YJ, Li P, Zhu BW, Du M, Xu XB. Comprehensive determination of fatty acids in real samples without derivatization by DMU-SPME-GC methods. Food Res Int 2024; 195:114986. [PMID: 39277248 DOI: 10.1016/j.foodres.2024.114986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
The comprehensive determination of fatty acids without derivatization, including short-chain fatty acids (SCFAs), medium-chain fatty acids (MCFAs) and long-chain fatty acids (LCFAs), is a big challenge but powerful for lipidomics in biology, food, and environment. Herein, the dual mode unity solid-phase microextraction (DMU-SPME) combined with gas chromatography-flame ionization detector (GC-FID) or mass spectrometry (MS) was proposed as a powerful method for the determination of comprehensive free fatty acids in real samples. Under the optimized DMU-SPME conditions, the proposed method has good linearity (R2 ≥ 0.994) and low limits of determination (0.01-0.14 mg/L). In the stability analysis, the intra-day relative standard deviation was 1.39-12.43 %, and the inter-day relative standard deviation was 2.84-10.79 %. The recoveries of selected 10 fatty acids in real samples ranged from 90.18 % to 110.75 %, indicating that the method has good accuracy. Fatty acids ranging from C2 to C22 were detected in real samples by the untargeted determination method of DMU-SPME combined with gas chromatography-mass spectrometry (GC-MS). The DMU-SPME method proposed in this study can be used for lipid metabolism analysis and free fatty acid determination in the fields of biology, food, and environment.
Collapse
Affiliation(s)
- Yun-Jiao Ma
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Agricultural Vocational and Technical College, Yingkou 115009, China
| | - Ping Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Bei-Wei Zhu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Ming Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xian-Bing Xu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Wang S, Zhao J, Xie J. Targeting Lipid Metabolism in Obese Asthma: Perspectives and Therapeutic Opportunities. Int Arch Allergy Immunol 2024:1-15. [PMID: 39427653 DOI: 10.1159/000540405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/15/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Obese asthma represents a unique phenotype of asthma characterized by severe symptoms, poor medication controls, increased frequency of exacerbations, and an overall diminished quality of life. Numerous factors, including the complex interactions between environment, mechanical processes, inflammatory responses, and metabolites disturbance, contribute to the onset of obese asthma. SUMMARY Notably, multiple metabolomics studies in the last several years have revealed the significant abnormalities in lipid metabolism among obese asthmatic patients. Several bioactive lipid messengers participate in the development of obese asthma has also been observed. Here, we present and discuss the latest advances regarding how bioactive lipid molecules contribute to the pathogenic process and mechanisms underlying obese asthma. The key roles of potentially significant effector cells and the pathways by which they respond to diverse lipid metabolites are also described. We finally summarize current lipid-related therapeutic options for the treatment of obese asthma and discuss their application prospects. KEY MESSAGES This review underscores the impacts of abnormal lipid metabolism in the etiopathogenesis of obese asthma and asks for further investigation to elucidate the intricate correlations among lipids, obesity, and asthma.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Castellaneta A, Höring M, Losito I, Leoni B, Santamaria P, Calvano CD, Cataldi TRI, Matysik S, Liebisch G. Exploration of the Lipid Profile of Edible Oleaginous Microgreens by Mass Spectrometry-Based Lipidomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11438-11451. [PMID: 38728027 DOI: 10.1021/acs.jafc.3c09347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The spreading awareness of the health benefits associated with the consumption of plant-based foods is fueling the market of innovative vegetable products, including microgreens, recognized as a promising source of bioactive compounds. To evaluate the potential of oleaginous plant microgreens as a source of bioactive fatty acids, gas chromatography-mass spectrometry was exploited to characterize the total fatty acid content of five microgreens, namely, chia, flax, soy, sunflower, and rapeseed (canola). Chia and flax microgreens appeared as interesting sources of α-linolenic acid (ALA), with total concentrations of 2.6 and 2.9 g/100 g of dried weight (DW), respectively. Based on these amounts, approximately 15% of the ALA daily intake recommended by the European Food Safety Authority can be provided by 100 g of the corresponding fresh products. Flow injection analysis with high-resolution Fourier transform single and tandem mass spectrometry enabled a semi-quantitative profiling of triacylglycerols (TGs) and sterol esters (SEs) in the examined microgreen crops, confirming their role as additional sources of fatty acids like ALA and linoleic acid (LA), along with glycerophospholipids. The highest amounts of TGs and SEs were observed in rapeseed and sunflower microgreens (ca. 50 and 4-5 μmol/g of DW, respectively), followed by flax (ca. 20 and 3 μmol/g DW). TG 54:9, 54:8, and 54:7 prevailed in the case of flax and chia, whereas TG 54:3, 54:4, and 54:5 were the most abundant TGs in the case of rapeseed. β-Sitosteryl linoleate and linolenate were generally prevailing in the SE profiles, although campesteryl oleate, linoleate, and linolenate exhibited a comparable amount in the case of rapeseed microgreens.
Collapse
Affiliation(s)
- Andrea Castellaneta
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Marcus Höring
- Institut für Klinische Chemie und Laboratoriumsmedizin, Universitätsklinikum Regensburg, 93053 Regensburg, Germany
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Beniamino Leoni
- Dipartimento di Scienze del Suolo e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Pietro Santamaria
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
- Dipartimento di Scienze del Suolo e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Cosima Damiana Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Silke Matysik
- Institut für Klinische Chemie und Laboratoriumsmedizin, Universitätsklinikum Regensburg, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- Institut für Klinische Chemie und Laboratoriumsmedizin, Universitätsklinikum Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Kirchhoff H, Vance L. Evaluation of Lipids for the Study of Photosynthetic Membranes. Methods Mol Biol 2024; 2790:427-438. [PMID: 38649585 DOI: 10.1007/978-1-0716-3790-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The biological role of lipids goes far beyond the formation of a structural membrane bilayer platform for membrane proteins and controlling fluxes across the membranes. For example, in photosynthetic thylakoid membranes, lipids occupy well-defined binding niches within protein complexes and determine the structural organization of membrane proteins and their function by controlling generic physicochemical membrane properties. In this chapter, two-dimensional thin-layer chromatography (2D TLC) and gas chromatography (GC) techniques are presented for quantitative analysis of lipid classes and fatty acids in thylakoid membranes. In addition, lipid extraction methods from isolated thylakoid membranes and leaves are described together with a procedure for the derivatization of fatty acids to fatty acid methyl esters (FAME) that is required for GC analysis.
Collapse
Affiliation(s)
- Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA.
| | - Liam Vance
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| |
Collapse
|
5
|
Mohana AA, Roddick F, Maniam S, Gao L, Pramanik BK. Component analysis of fat, oil and grease in wastewater: challenges and opportunities. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5112-5128. [PMID: 37791457 DOI: 10.1039/d3ay01222k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The presence of fat, oil and grease can lead to blockages in sewer lines, pumps, and treatment plant operations, thereby creating health risks and environmental hazards. These deposits primarily consist of fatty acids, triglycerides and soap, among other components. These three main components are hydrophobic and insoluble in water. The composition of FOG can vary significantly depending on the source, such as food service establishments, households, or industrial processes. Several analytical methods, such as chromatographic, gravimetric, chemical and spectroscopic analysis, are used to measure different FOG components. AOAC, Gerber and APHA are the most commonly utilized standardized analytical methods for measuring FOG components. The AOAC and Gerber methods, which use gas chromatography, tend to provide more accurate results compared to other methods. This can be attributed to GC's ability to measure individual fatty acids in FOG samples by separating and quantifying each compound based on its unique chemical properties, such as volatility, polarity and molecular weight. Similarly, high-performance liquid chromatography is capable of measuring glycerides by separating and quantifying them based on their polarity and molecular weight. This article delves into the challenge of accurately measuring FOG concentrations and evaluates various FOG measurement technologies. The study also discusses the need for standardized methods for FOG measurement, highlighting the importance of understanding FOG deposits and the performance of grease interceptors.
Collapse
Affiliation(s)
- Anika Amir Mohana
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia.
| | - Felicity Roddick
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia.
| | - Subashani Maniam
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Li Gao
- South East Water, Frankston, Victoria 3199, Australia
| | | |
Collapse
|
6
|
Doyle M, Barnes A, Larson NR, Liu H, Yi L. Development of UPLC-UV-ELSD Method for Fatty Acid Profiling in Polysorbate 80 and Confirmation of the Presence of Conjugated Fatty Acids by Mass Spectrometry, UV Absorbance and Proton Nuclear Magnetic Resonance Spectroscopy. J Pharm Sci 2023; 112:2393-2403. [PMID: 37295606 DOI: 10.1016/j.xphs.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Polysorbate 80 (PS80), a chemical substance composed of sorbitol, ethylene glycol, and fatty acids, is commonly used in pharmaceutical drug products to stabilize formulations. However, recent studies have demonstrated that PS80 may hydrolyze over time and the released free fatty acids (FFAs) may lead to particle formation. Naming conventions of fatty acids in current pharmacopeia and in products' certificates of analysis (CoA) of PS80 do not typically distinguish between isomeric species of fatty acids in PS80. Thus, methods to fully characterize the fatty acid species present in PS80 raw materials are needed to enhance quality control strategies of pharmaceuticals using PS80. Here, extended effort is taken to characterize fatty acids in hydrolyzed PS80 raw materials and elucidate the identities of isomeric fatty acid species. In this work, a method was developed and optimized for separation and detection of fatty acids in alkaline hydrolyzed PS80 raw materials using ultra performance liquid chromatography (UPLC) with ultra-violet (UV) detection and evaporative light scattering detection (ELSD). Fatty acids not specified in the current pharmacopeias were detected in PS80 raw material by the developed LC-UV-ELSD method including conjugated forms of linoleic and linolenic fatty acid species. Their identities were orthogonally confirmed by retention time agreement with analytical standards, accurate mass by high resolution mass spectrometry, UV absorbance, and proton nuclear magnetic resonance spectroscopy. The detected conjugated fatty acids are theoretically more hydrophobic and less soluble than their unconjugated counterparts and may increase the propensity of PS80 to form particles upon hydrolysis. This work highlights the need for better quality control of PS80 raw material, as it may eventually play a critical role in product quality of therapeutic proteins.
Collapse
Affiliation(s)
- Michael Doyle
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC, 27709, United States of America
| | - Adam Barnes
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC, 27709, United States of America
| | - Nicholas R Larson
- Analytical Development, Biogen Inc., 225 Binney Street, Cambridge, MA, 02142, United States of America
| | - Haiyan Liu
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC, 27709, United States of America
| | - Linda Yi
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC, 27709, United States of America.
| |
Collapse
|
7
|
Morano C, Dei Cas M, Bergamaschi RF, Palmisano E, Pallavicini M, Bolchi C, Roda G, Casati S. Fractioning and Compared 1H NMR and GC-MS Analyses of Lanolin Acid Components. Molecules 2023; 28:molecules28041635. [PMID: 36838621 PMCID: PMC9964252 DOI: 10.3390/molecules28041635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The management of food and food-related wastes represents a growing global issue, as they are hard to recycle and dispose of. Foremost, waste can serve as an important source of biomasses. Particularly, fat-enriched biomasses are receiving more and more attention for their role in the manufacturing of biofuels. Nonetheless, many biomasses have been set aside over the years. Wool wax, also known as lanolin, has a huge potential for becoming a source of typical and atypical fatty acids. The main aim of this work was to evaluate and assess a protocol for the fractioning of fatty acids from lanolin, a natural by-product of the shearing of sheep, alongside the design of a new and rapid quantitative GC-MS method for the derivatization of free fatty acids in fat mixtures, using MethElute™. As the acid portion of lanolin is characterized by the presence of both aliphatic and hydroxylated fatty acids, we also evaluated a procedure for the parting of these two species, by using NMR spectroscopy, benefitting of the different solubilities of the components in organic solvents. At last, we evaluated and quantified the fatty acids and the α-hydroxy fatty acids present in each attained portion, employing both analytical and synthetic standards. The performed analyses, both qualitative and quantitative, showed a good performance in the parting of the different acid components, and GC-MS allowed to speculate that the majority of α-hydroxylated fatty acids is formed of linear saturated carbon chains, while the totality of properly said fatty acids has a much more complex profile.
Collapse
Affiliation(s)
- Camillo Morano
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy
| | - Roberta F. Bergamaschi
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Erika Palmisano
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marco Pallavicini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Cristiano Bolchi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Gabriella Roda
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Sara Casati
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20133 Milan, Italy
- Correspondence:
| |
Collapse
|
8
|
Bora S, Adole PS, Vinod KV, Pillai AA. A validated and optimized method for separation and quantification of total fatty acids by gas chromatography-ion trap mass spectrometry in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1210:123473. [PMID: 36155260 DOI: 10.1016/j.jchromb.2022.123473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
Fatty acids (FAs) are associated with many physiological functions of tissues, and their alteration has been linked with tissue-specific or systemic diseases. The current situation warrants us to have a sensitive and specific method for analysis of total FAs simultaneously from the biological fluid so that the risk prediction, diagnosis or prognosis of the disease can be made effectively. Because of greater sensitivity and resolution, a method of gas chromatography-ion trap mass spectrometry (GC-IT/MS) has been optimized and validated to quantify simultaneously 19 total FAs levels in plasma and compared with GC-triple quadrupole mass spectrometry. FAs have been transesterified by methanolic acetyl chloride to fatty acid methyl esters (FAMEs). A 65 min GC method separated all 19 FAMEs. The calibration curve had good linearity up to 313-922 μM with a correlation coefficient between 0.9882 and 0.9998. The LODs and LOQs of FAMEs were in the range of 0.63 to 9.55 and 2.12 to 31.8 μM, respectively. The method has recovery up to 144 %, stability at 4 °C for 48 h and one freeze-thaw cycle, and good intra-day and inter-day precision. The optimized method has been used to quantify plasma total FAs in type 2 diabetes mellitus patients with and without acute coronary syndrome. Though a significant difference has been found between IT/MS and triple quadrupole mass spectrometry, the GC-IT/MS can help to quantify total FAs in the clinical setting.
Collapse
Affiliation(s)
- Sushmita Bora
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| | - Prashant S Adole
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India.
| | - Kolar V Vinod
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| | - Ajith A Pillai
- Department of Cardiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| |
Collapse
|
9
|
Zotov VA, Bessonov VV, Risnik DV. Methodological Aspects of the Analysis of Fatty Acids in Biological Samples. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822010112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Zhao X, He Y, Chen J, Zhang J, Chen L, Wang B, Wu C, Yuan Y. Identification and direct determination of fatty acids profile in oleic acid by HPLC-CAD and MS-IT-TOF. J Pharm Biomed Anal 2021; 204:114238. [PMID: 34273659 DOI: 10.1016/j.jpba.2021.114238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/17/2021] [Accepted: 06/29/2021] [Indexed: 01/27/2023]
Abstract
Oleic acid is a pharmaceutical excipient and has been widely used in many dosage forms. It remains unclear in terms of the fatty acids (FAs) profile. In this study, a sensitive and direct method based on high-performance liquid chromatography coupled with charged aerosol detector (HPLC-CAD) was developed to study the compositions of oleic acid. The chromatographic conditions were optimized to achieve good separation and high sensitivity. The components of oleic acid were identified by ion trap/time of flight mass spectrometry (MS-IT-TOF). Twenty-seven FAs were identified based on the exact mass-to-charge ratio and fragments, among which 13 FAs were confirmed with the reference standards. Nine FAs in the oleic acid samples including oleic acid, linolenic acid, myristic acid, palmitoleic acid, linoleic acid, palmitic acid, stearic acid, arachidic acid and behenic acid were simultaneously determined by the developed HPLC-CAD, which showed good linearity with r2>0.999. The limit of detection (LOD) and limit of quantification (LOQ) of 9 FAs were 0.006-0.1 μg mL-1 and 0.032-0.22 μg mL-1, respectively. The components with concentration level not less than 0.03 % (referring to the sample concentration of 1.0 mg mL-1) can be quantified. The mean recovery values of 9 FAs ranged from 96.5%-103.6% at three concentration levels of 80 %, 100 % and 120 %. The repeatability and intermediate precision were less than 5.0 % for oleic acid and components with concentration levels more than 0.05 %. In contrast to the conventional pre-column derivatization gas chromatography (GC), HPLC-CAD could unbiasedly and directly detect more components, especially the FAs with long carbon chains. Overall, the developed novel HPLC-CAD method can ameliorate the deficiency of the indirect GC method recorded in current pharmacopeias, thus having great potential for the comprehensive understanding and quality control of oleic acid.
Collapse
Affiliation(s)
- Xun Zhao
- Chemical Laboratory Second Laboratory, Jiangsu Institute for Drug and Food Control, Nanjing, China; NMPA Key Laboratory for Impurity Profile of Chemical Drugs, National Medical Products Administration, Beijing, China
| | - Yuanzi He
- China Pharmaceutical University, Nanjing, China
| | - Jungen Chen
- China Pharmaceutical University, Nanjing, China
| | | | - Lei Chen
- Chinese Pharmacopoeia Commission, Beijing, China
| | - Baocheng Wang
- Nanjing Well Pharmaceutical Co., LTD., Nanjing, China
| | - Chunyong Wu
- China Pharmaceutical University, Nanjing, China.
| | - Yaozuo Yuan
- Chemical Laboratory Second Laboratory, Jiangsu Institute for Drug and Food Control, Nanjing, China; NMPA Key Laboratory for Impurity Profile of Chemical Drugs, National Medical Products Administration, Beijing, China.
| |
Collapse
|
11
|
Conde TA, Neves BF, Couto D, Melo T, Neves B, Costa M, Silva J, Domingues P, Domingues MR. Microalgae as Sustainable Bio-Factories of Healthy Lipids: Evaluating Fatty Acid Content and Antioxidant Activity. Mar Drugs 2021; 19:md19070357. [PMID: 34201621 PMCID: PMC8307217 DOI: 10.3390/md19070357] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022] Open
Abstract
The demand for sustainable and environmentally friendly food sources and food ingredients is increasing, and microalgae are promoted as a sustainable source of essential and bioactive lipids, with high levels of omega-3 fatty acids (ω-3 FA), comparable to those of fish. However, most FA screening studies on algae are scattered or use different methodologies, preventing a true comparison of its content between microalgae. In this work, we used gas-chromatography mass-spectrometry (GC-MS) to characterize the FA profile of seven different commercial microalgae with biotechnological applications (Chlorella vulgaris, Chlorococcum amblystomatis, Scenedesmus obliquus, Tetraselmis chui, Phaeodactylum tricornutum, Spirulina sp., and Nannochloropsis oceanica). Screening for antioxidant activity was also performed to understand the relationship between FA profile and bioactivity. Microalgae exhibited specific FA profiles with a different composition, namely in the ω-3 FA profile, but with species of the same phylum showing similar tendencies. The different lipid extracts showed similar antioxidant activities, but with a low activity of the extracts of Nannochloropsis oceanica. Overall, this study provides a direct comparison of FA profiles between microalgae species, supporting the role of these species as alternative, sustainable, and healthy sources of essential lipids.
Collapse
Affiliation(s)
- Tiago A. Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Bruna F. Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Daniela Couto
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Bruno Neves
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Margarida Costa
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Joana Silva
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
| | - M. Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
12
|
Han Y, Lee S, Lee JH, Yoo HJ. Potential Mechanisms of Improved Activity of Natural Killer Cells Induced by the Consumption of F-MRP for 8 weeks. Mol Nutr Food Res 2021; 65:e2100337. [PMID: 33966345 DOI: 10.1002/mnfr.202100337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/28/2021] [Indexed: 12/20/2022]
Abstract
SCOPE The authors used metabolomics to investigate the nutritional modulatory effect of fermented Maillard-reactive whey protein (F-MRP) on the activity of natural killer (NK) cells. METHODS AND RESULTS Fifty subjects who had participated in our previous intervention study were included in the present study in the test (n = 20) and placebo groups (n = 30). Additional analyses using ultra performance liquid chromatography-mass spectrometry (UPLC-MS) and gas chromatography (GC)-MS were conducted to identify relevant metabolic features. After 8 weeks, the activity of lipoprotein-associated phospholipase A2 (Lp-PLA₂) (p = 0.021), levels of interleukin (IL)-1β (p = 0.001), and activity of NK cells were considerably increased in the test group compared with those in the placebo group. Based on the metabolites discovered by UPLC-MS, ten altered metabolic pathways were observed in the test group after 8 weeks of F-MRP consumption. Specific pathways with most pronounced associations with immune-enhancing effect of F-MRP included aminoacyl-tRNA biosynthesis, glycine/serine/threonine metabolism, arginine/proline metabolism, and sphingolipid metabolism. CONCLUSIONS The present study demonstrated the effects of 8 weeks of F-MRP supplementation on the metabolic status manifested as changes in the Lp-PLA2 activity, IL-1β level, and activity of NK cells. Intermediate metabolites of the identified metabolic pathways can be used to confirm the immune-enhancing efficacy of short-term supplementation.
Collapse
Affiliation(s)
- Youngmin Han
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Soyeon Lee
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jong Ho Lee
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, 03722, Republic of Korea.,Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hye Jin Yoo
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, 03722, Republic of Korea.,Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
13
|
Liu XM, Zhang Y, Zhou Y, Li GH, Zeng BQ, Zhang JW, Feng XS. Progress in Pretreatment and Analysis of Fatty Acids in Foods: An Update since 2012. SEPARATION & PURIFICATION REVIEWS 2021. [DOI: 10.1080/15422119.2019.1673776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiao-Min Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo-Hui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ben-Qing Zeng
- Department of Pharmacy, The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Jian-Wei Zhang
- Department of Abdominal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
14
|
Ma H, Pan H, Pan D, Ni H, Feng X, Liu X, Chen Y, Wu Y, Luo N. Rapid monitoring approaches for concentration process of lanqin oral solution by near-infrared spectroscopy and chemometric models. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118792. [PMID: 32805551 DOI: 10.1016/j.saa.2020.118792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Qualitative and quantitative detection methods based on near-infrared spectroscopy (NIRs) have been proposed in the process analysis of traditional Chinese medicine in recent years. In this study, rapid monitoring methods were developed for quality control of concentration process of lanqin oral solution (LOS). Partial least squares regression (PLSR) method was adopted to construct quantitative models for epigoitrin, geniposide, baicalin, berberine hydrochloride and density. Simultaneously, the genetic algorithm joint extreme learning machine (GA-ELM) was first applied in qualitative analysis of NIRs to distinguish end point of concentration process. Results of PLSR models were satisfactory with the relative standard error of calibration valued at 3.80%, 3.75%, 3.79%, 11.5% and 1.22% for epigoitrin, geniposide, baicalin, berberine hydrochloride and density respectively, and the residual predictive deviation values were higher than 3. For qualitative analysis, the GA-ELM model obtained 100% prediction accuracy. The PLSR quantitative models and the end point discrimination model constructed by GA-ELM correspond with the requirements of practical applications. The results indicate that NIRs in combination with chemometrics has great potential in improving the efficiency in production.
Collapse
Affiliation(s)
- Hui Ma
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongye Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongyue Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongfei Ni
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuejing Feng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuesong Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yongjiang Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Niu Luo
- Suzhou ZeDaXingBang Pharmaceutical Co., Ltd., Suzhou 215000, China
| |
Collapse
|
15
|
Lillja J, Duncan KD, Lanekoff I. Determination of Monounsaturated Fatty Acid Isomers in Biological Systems by Modeling MS 3 Product Ion Patterns. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2479-2487. [PMID: 32677833 DOI: 10.1021/jasms.0c00194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Unsaturated free fatty acids are natively present in biological samples as isomers, where double bonds can be situated on different carbons in the acyl chain. While these isomers can have different actions and impacts on biological systems, they are inherently difficult to identify and differentiate by mass spectrometry alone. To address this challenge, several techniques for derivatization of the double bond or metal cationization at the carboxylic group have yielded diagnostic product ions for the respective isomer in tandem mass spectrometry. However, diagnostic product ions do not necessarily reflect quantitative isomeric ratios since fatty acid isomers have different ionization and fragmentation efficiencies. Here, we introduce a simple and rapid approach to predict the quantitative ratio of isomeric monounsaturated fatty acids. Specifically, empirically derived MS3 product ion patterns from fatty acid silver adducts are modeled using a stepwise linear model. This model is then applied to predict the proportion oleic and vaccenic acid in chemically complex samples at individual concentrations between 0.45 and 5.25 μM, with an average accuracy and precision below 2 and 5 mol %, respectively. We show that by simply including silver ions in the electrospray solvent, isomeric ratios are rapidly predicted in neat standards, rodent plasma, and tissue extract. Furthermore, we use the method to directly map isomeric ratios in tissue sections using nanospray desorption electrospray ionization MS3 imaging without any sample preparation or modification to the instrumental setup. Ultimately, this approach provides a simple and rapid solution to differentiate monounsaturated fatty acids using commonly available commercial mass spectrometers without any instrumental modifications.
Collapse
Affiliation(s)
- Johan Lillja
- Department of Chemistry - BMC, Uppsala University, 751 24 Uppsala, Sweden
| | - Kyle D Duncan
- Department of Chemistry - BMC, Uppsala University, 751 24 Uppsala, Sweden
| | - Ingela Lanekoff
- Department of Chemistry - BMC, Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
16
|
Enantiomeric separation of triacylglycerols containing fatty acids with a ring (cyclofatty acids). J Chromatogr A 2020; 1622:461103. [DOI: 10.1016/j.chroma.2020.461103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/05/2020] [Accepted: 04/02/2020] [Indexed: 01/09/2023]
|
17
|
Pinault M, Guimaraes C, Ben Hassen C, Gutierrez-Pajares JL, Chevalier S, Goupille C, Bernard-Savary P, Frank PG. Development of a Novel High-Performance Thin Layer Chromatography-Based Method for the Simultaneous Quantification of Clinically Relevant Lipids from Cells and Tissue Extracts. Lipids 2020; 55:403-412. [PMID: 32424826 DOI: 10.1002/lipd.12245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/10/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
Abstract
Lipids such as cholesterol, triacylglycerols, and fatty acids play important roles in the regulation of cellular metabolism and cellular signaling pathways and, as a consequence, in the development of various diseases. It is therefore important to understand how their metabolism is regulated to better define the components involved in the development of various human diseases. In the present work, we describe the development and validation of a high-performance thin layer chromatography (HPTLC) method allowing the separation and quantification of free cholesterol, cholesteryl esters, nonesterified fatty acids, and triacylglycerols. This method will be of interest as the quantification of these lipids in one single assay is difficult to perform.
Collapse
Affiliation(s)
| | | | | | | | | | - Caroline Goupille
- INSERM N2C UMR1069, University of Tours, 37032 Tours, France.,Department of Gynecology, CHRU Hôpital Bretonneau, boulevard Tonnellé, 37044 Tours, France
| | | | | |
Collapse
|
18
|
Kirchhoff H, Yarbrough R. Evaluation of Lipids for the Study of Photosynthetic Membranes. Methods Mol Biol 2019; 1770:305-316. [PMID: 29978410 DOI: 10.1007/978-1-4939-7786-4_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The biological role of lipids goes far beyond the formation of a structural membrane bilayer platform for membrane proteins and controlling fluxes across the membranes. For example, in photosynthetic thylakoid membranes, lipids occupy well-defined binding niches within protein complexes and determine the structural organization of membrane proteins and their function by controlling generic physicochemical membrane properties. In this chapter, two-dimensional thin-layer chromatography (2D TLC) and gas chromatography (GC) techniques are presented for quantitative analysis of lipid classes and fatty acids in thylakoid membranes. In addition, lipid extraction methods from isolated thylakoid membranes and leaves are described together with a procedure for derivatization of fatty acids to fatty acid methyl esters (FAME) that is required for GC analysis.
Collapse
Affiliation(s)
- Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA.
| | - Robert Yarbrough
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| |
Collapse
|
19
|
Azab S, Ly R, Britz-McKibbin P. Robust Method for High-Throughput Screening of Fatty Acids by Multisegment Injection-Nonaqueous Capillary Electrophoresis–Mass Spectrometry with Stringent Quality Control. Anal Chem 2018; 91:2329-2336. [DOI: 10.1021/acs.analchem.8b05054] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sandi Azab
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, L8S 4M1, Canada
| | - Ritchie Ly
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, L8S 4M1, Canada
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, L8S 4M1, Canada
| |
Collapse
|
20
|
del Caño‐Ochoa S, Ruiz‐Aracama A, Guillén Lorén MD. Potential of Nuclear Magnetic Resonance for a Discriminant Characterization of PDO VOOs. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sofía del Caño‐Ochoa
- Food TechnologyFaculty of PharmacyLascaray Research CenterUniversity of the Basque Country (UPV/EHU)Paseo de la Universidad n° 701006VitoriaSpain
| | - Ainhoa Ruiz‐Aracama
- Food TechnologyFaculty of PharmacyLascaray Research CenterUniversity of the Basque Country (UPV/EHU)Paseo de la Universidad n° 701006VitoriaSpain
| | - María D. Guillén Lorén
- Food TechnologyFaculty of PharmacyLascaray Research CenterUniversity of the Basque Country (UPV/EHU)Paseo de la Universidad n° 701006VitoriaSpain
| |
Collapse
|
21
|
Influence of charged aerosol detector instrument settings on the ultra-high-performance liquid chromatography analysis of fatty acids in polysorbate 80. J Chromatogr A 2018; 1576:58-66. [DOI: 10.1016/j.chroma.2018.09.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/07/2018] [Accepted: 09/15/2018] [Indexed: 01/07/2023]
|
22
|
|
23
|
Yang R, Wu Z, Pu Y, Zhang T, Wang B. Fast and non–derivative method based on high–performance liquid chromatography–charged aerosol detection for the determination of fatty acids from Agastache rugosa (Fisch. et Mey.) O. Ktze. seeds. Nat Prod Res 2018; 33:1969-1974. [DOI: 10.1080/14786419.2018.1479699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rong Yang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine , Shanghai, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | - Zhuona Wu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine , Shanghai, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | - Yiqiong Pu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine , Shanghai, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | - Bing Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine , Shanghai, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| |
Collapse
|
24
|
Tributyl phosphate assisted hollow-fiber liquid-phase microextraction of short-chain fatty acids in microbial degradation fluid using capillary electrophoresis-contactless coupled conductivity detection. J Pharm Biomed Anal 2018; 154:191-197. [PMID: 29550708 DOI: 10.1016/j.jpba.2018.02.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 12/26/2022]
Abstract
A tributyl phosphate assisted hollow-fiber liquid-phase microextraction coupled with capillary electrophoresis-contactless coupled conductivity detection (HF-LPME/CE-C4D) method has been developed for trace analysis of common short-chain fatty acids (SCFAs) without derivatization. Under the optimum conditions, ten SCFAs including a pair of isomers were well separated from their homologous FAs and the main coexisting inorganic anions within 40 min. Tributyl phosphate assisted HF-LPME produced excellent purification and enrichment for the model sample with high-salt matrix, microbial degradation fluid, and the limits of detection could reach 0.072-0.67 ng/mL (S/N = 3). Owing to its high sensitivity, good linearity, and acceptable recovery, this proposed method provided a sensitive and environment-friendly alternative for trace analysis of SCFAs in complicated samples.
Collapse
|
25
|
Sun M, Yan D, Yang X, Xue X, Zhou S, Liang S, Wang S, Meng J. Quality assessment of crude and processed Arecae semen based on colorimeter and HPLC combined with chemometrics methods. J Sep Sci 2017; 40:2151-2160. [DOI: 10.1002/jssc.201700006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/20/2017] [Accepted: 03/15/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Meng Sun
- Department of Traditional Chinese Medicine; Guangdong Pharmaceutical University; Guangzhou China
- The Key Unit of Chinese Medicine Digitalization Quality Evaluation of State Administration of Traditional Chinese Medicine; Guangzhou China
- The Research Center for Quality Engineering Technology of Traditional Chinese Medicine at Guangdong Universities; Guangzhou China
| | - Donghui Yan
- Department of Traditional Chinese Medicine; Guangdong Pharmaceutical University; Guangzhou China
- The Key Unit of Chinese Medicine Digitalization Quality Evaluation of State Administration of Traditional Chinese Medicine; Guangzhou China
- The Research Center for Quality Engineering Technology of Traditional Chinese Medicine at Guangdong Universities; Guangzhou China
| | - Xiaolu Yang
- Department of Traditional Chinese Medicine; Guangdong Pharmaceutical University; Guangzhou China
- The Key Unit of Chinese Medicine Digitalization Quality Evaluation of State Administration of Traditional Chinese Medicine; Guangzhou China
- The Research Center for Quality Engineering Technology of Traditional Chinese Medicine at Guangdong Universities; Guangzhou China
| | - Xingyang Xue
- Guangzhou Medical University Cancer Hospital and Institute; Guangzhou Guangdong China
| | - Sujuan Zhou
- College of Medical Information Engineering; Guangdong Pharmaceutical University; Guangzhou China
| | - Shengwang Liang
- Department of Traditional Chinese Medicine; Guangdong Pharmaceutical University; Guangzhou China
- The Key Unit of Chinese Medicine Digitalization Quality Evaluation of State Administration of Traditional Chinese Medicine; Guangzhou China
- The Research Center for Quality Engineering Technology of Traditional Chinese Medicine at Guangdong Universities; Guangzhou China
| | - Shumei Wang
- Department of Traditional Chinese Medicine; Guangdong Pharmaceutical University; Guangzhou China
- The Key Unit of Chinese Medicine Digitalization Quality Evaluation of State Administration of Traditional Chinese Medicine; Guangzhou China
- The Research Center for Quality Engineering Technology of Traditional Chinese Medicine at Guangdong Universities; Guangzhou China
| | - Jiang Meng
- Department of Traditional Chinese Medicine; Guangdong Pharmaceutical University; Guangzhou China
- The Key Unit of Chinese Medicine Digitalization Quality Evaluation of State Administration of Traditional Chinese Medicine; Guangzhou China
- The Research Center for Quality Engineering Technology of Traditional Chinese Medicine at Guangdong Universities; Guangzhou China
| |
Collapse
|