1
|
Nowacka-Kozak E, Gajda A, Gbylik-Sikorska M. Simultaneous determination of 68 antimicrobial compounds in pigs oral fluid by ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2024; 1729:465053. [PMID: 38852267 DOI: 10.1016/j.chroma.2024.465053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Improper use of antimicrobials in veterinary medicine can lead to residues in food of animal origin. Post-mortem monitoring of antibiotics in animal products is carried out as part of official EU programmes on food safety and consumer health. Oral fluid testing is a promising surveillance method to monitor appropriate treatment in pigs and to avoid residues in edible tissues. Oral fluid analysis can be implemented in an antibiotic residue control programme, thus preventing economic losses due to meat disposal as a result of drug detection in tissues after the withdrawal period. An analytical method was developed for the analysis of 68 compounds from 12 groups (penicillins, cephalosporins, sulfonamides, macrolides, fluoroquinolones, tetracyclines, aminoglycosides, pleuromutilins, diaminopyrimidines, lincosamides, polypeptides and sulfones) in pig oral fluid. Extraction of antibacterials was performed with 0.5 % formic acid. Analyses were carried out by ultra-high performance liquid chromatography with triple quadrupole mass spectrometry (UHPLC-MS/MS) detection. The chromatographic separation was achieved on a Zorbax analytical column (2.1 × 50 mm) with a mobile phase consisting of acetonitrile and heptafluorobutyric acid (HFBA). The total run time was 7 min. The method was validated as a confirmatory method according to the Commission Implementing Regulation (EU) 2021/808. The reliability of the method was verified by testing real samples from pig farms.
Collapse
Affiliation(s)
- Ewelina Nowacka-Kozak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantów 57, 24-100 Puławy, Poland.
| | - Anna Gajda
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantów 57, 24-100 Puławy, Poland
| | - Małgorzata Gbylik-Sikorska
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantów 57, 24-100 Puławy, Poland
| |
Collapse
|
2
|
Herrero-Hernández E, García-Gómez D, Ramírez Pérez I, Rodríguez-Gonzalo E, Pérez Pavón JL. Determination of Aminoglycosides by Ion-Pair Liquid Chromatography with UV Detection: Application to Pharmaceutical Formulations and Human Serum Samples. Molecules 2024; 29:3210. [PMID: 38999161 PMCID: PMC11243544 DOI: 10.3390/molecules29133210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Aminoglycosides (AGs) represent a prominent class of antibiotics widely employed for the treatment of various bacterial infections. Their widespread use has led to the emergence of antibiotic-resistant strains of bacteria, highlighting the need for analytical methods that allow the simple and reliable determination of these drugs in pharmaceutical formulations and biological samples. In this study, a simple, robust and easy-to-use analytical method for the simultaneous determination of five common aminoglycosides was developed with the aim to be widely applicable in routine laboratories. With this purpose, different approaches based on liquid chromatography with direct UV spectrophotometric detection methods were investigated: on the one hand, the use of stationary phases based on hydrophilic interactions (HILIC); on the other hand, the use of reversed-phases in the presence of an ion-pairing reagent (IP-LC). The results obtained by HILIC did not allow for an effective separation of aminoglycosides suitable for subsequent spectrophotometric UV detection. However, the use of IP-LC with a C18 stationary phase and a mobile phase based on tetraborate buffer at pH 9.0 in the presence of octanesulfonate, as an ion-pair reagent, provided adequate separation for all five aminoglycosides while facilitating the use of UV spectrophotometric detection. The method thus developed, IP-LC-UV, was optimized and applied to the quality control of pharmaceutical formulations with two or more aminoglycosides. Furthermore, it is demonstrated here that this methodology is also suitable for more complex matrices, such as serum, which expands its field of application to therapeutic drug monitoring, which is crucial for aminoglycosides, with a therapeutic index ca. 50%.
Collapse
Affiliation(s)
| | | | | | | | - José Luis Pérez Pavón
- Department of Analytical Chemistry, Nutrition and Food Science, University of Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain; (E.H.-H.); (D.G.-G.); (I.R.P.); (E.R.-G.)
| |
Collapse
|
3
|
Junlu B, Pengfei H, Junjie Z, Xiaojun Z, Yi F, Peipei L. Residue analysis of 10 aminoglycoside antibiotics in aquatic products by multiwalled carbon nanotubes combined with mixed-mode ion exchange liquid chromatography-tandem mass spectrometry. J Sep Sci 2023; 46:e2300118. [PMID: 37271928 DOI: 10.1002/jssc.202300118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
An ultra-high-performance liquid chromatography-tandem mass spectrometry method was developed for simultaneous determination of 10 kinds of aminoglycosides in edible parts of aquatic products. The samples were extracted with 10 mmol/L potassium dihydrogen phosphate buffer solution, then the pH value of the extract was adjusted to neutral by sodium hydroxide. Half volume of the extract was loaded onto multiwalled carbon nanotubes cartridge. All the target compounds were separated on a mixed-mode ion exchange column and detected by ultra-high-performance liquid chromatography-tandem mass spectrometry with electrospray in the positive ionization mode. Under optimized conditions, this method had a good linearity with a squared correlation coefficient > 0.999. For neomycin, the limit of detection and limit of quantification were 5.0 μg/kg and 10.0 μg/kg, respectively; for hygromycin B and apramycin, values were 2.0 μg/kg and 5.0 μg/kg, respectively; for the other seven kinds of aminoglycosides, values were 1.0 μg/kg and 2.0 μg/kg, respectively. The average recoveries presented 75.8%-107.2% with intra- and interday reproducibility ranging between 3.8% and 12.5%. The method was rapid with good separation and sharp peak shapes, had the characteristicsis of high accuracy and good precision, and was suitable for simultaneous determination of 10 kinds of aminoglycosides in aquatic products.
Collapse
Affiliation(s)
- Bai Junlu
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, P. R. China
| | - He Pengfei
- Zhejiang Marine Fisheries Research Institute, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan, P. R. China
| | - Zeng Junjie
- Zhejiang Marine Fisheries Research Institute, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan, P. R. China
| | - Zhang Xiaojun
- Zhejiang Marine Fisheries Research Institute, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan, P. R. China
| | - Fang Yi
- Zhejiang Marine Fisheries Research Institute, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan, P. R. China
| | - Ll Peipei
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, P. R. China
| |
Collapse
|
4
|
Nowacka-Kozak E, Gajda A, Gbylik-Sikorska M. Analysis of Aminoglycoside Antibiotics: A Challenge in Food Control. Molecules 2023; 28:4595. [PMID: 37375150 DOI: 10.3390/molecules28124595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Aminoglycosides are a widely used group of antibiotics in veterinary medicine. However, misuse and abuse of these drugs can lead to residues in the edible tissues of animals. Due to the toxicity of aminoglycosides and the exposure of consumers to the emergence of drug resistance, new methods are being sought to determine aminoglycosides in food. The method presented in this manuscript describes the determination of twelve aminoglycosides (streptomycin, dihydrostreptomycin, spectinomycin, neomycin, gentamicin, hygromycin, paromomycin, kanamycin, tobramycin, amikacin, apramycin, and sisomycin) in thirteen matrices (muscle, kidney, liver, fat, sausages, shrimps, fish honey, milk, eggs, whey powder, sour cream, and curd). Aminoglycosides were isolated from samples with extraction buffer (10 mM NH4OOCH3, 0.4 mM Na2EDTA, 1% NaCl, 2% TCA). For the clean-up purpose, HLB cartridges were used. Analysis was performed using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) with a Poroshell analytical column and a mobile phase of acetonitrile and heptafluorobutyric acid. The method was validated according to Commission Regulation (EU) 2021/808 requirements. Good performance characteristics were obtained for recovery, linearity, precision, specificity, and decision limits (CCα). This simple and high-sensitivity method can determine multi-aminoglycosides in various food samples for confirmatory analysis.
Collapse
Affiliation(s)
- Ewelina Nowacka-Kozak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantów 57, 24-100 Puławy, Poland
| | - Anna Gajda
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantów 57, 24-100 Puławy, Poland
| | - Małgorzata Gbylik-Sikorska
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantów 57, 24-100 Puławy, Poland
| |
Collapse
|
5
|
Yang J, Rainville P. Liquid Chromatography-Tandem Mass Spectrometry Analysis of Aminoglycosides in Foods Using an Ethylene-Bridged Hybrid Zwitterionic Stationary Phase and Hydrophilic-Lipophilic-Balanced Solid-Phase Extraction Cartridges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7593-7603. [PMID: 37139986 DOI: 10.1021/acs.jafc.3c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This work aimed to develop an analytical method for the screening of multiple aminoglycoside residues in foods of animal origin using an ethylene-bridged hybrid (BEH) particle-based sulfoalkylbetaine stationary phase. The effects of chromatographic conditions on the separation of 17 aminoglycosides have been systematically investigated. Sample preparation and mass spectrometry detection have also been investigated and optimized. In contrast to high buffer concentrations in the mobile phase required for silica-based sulfoalkylbetaine stationary phases, a moderate buffer concentration (20 mM) provided the optimal separation of 17 aminoglycosides with the BEH sulfoalkylbetaine stationary phase. The developed method has been evaluated in milk, beef, pork, liver, and honey samples with good performance for retention, selectivity, sensitivity, linearity, precision, and accuracy. The majority of the limit of quantitation estimated with the matrix was less than 25 μg/kg. The overall accuracy across five matrices was in the range from 96 to 111%, with standard deviations of less than 19%.
Collapse
Affiliation(s)
- Jinchuan Yang
- Waters Corporation, Milford, Massachusetts 01757, United States
| | - Paul Rainville
- Waters Corporation, Milford, Massachusetts 01757, United States
| |
Collapse
|
6
|
Li Z, Liu Y, Chen X, Wang Y, Niu H, Li F, Gao H, Yu H, Yuan Y, Yin Y, Li D. Affinity-Based Analysis Methods for the Detection of Aminoglycoside Antibiotic Residues in Animal-Derived Foods: A Review. Foods 2023; 12:foods12081587. [PMID: 37107381 PMCID: PMC10137665 DOI: 10.3390/foods12081587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
With the increasingly serious problem of aminoglycoside antibiotic residues, it is imperative to develop rapid, sensitive and efficient detection methods. This article reviews the detection methods of aminoglycoside antibiotics in animal-derived foods, including enzyme-linked immunosorbent assay, fluorescent immunoassay, chemical immunoassay, affinity sensing assay, lateral flow immunochromatography and molecular imprinted immunoassay. After evaluating the performance of these methods, the advantages and disadvantages were analyzed and compared. Furthermore, development prospects and research trends were proposed and summarized. This review can serve as a basis for further research and provide helpful references and new insights for the analysis of aminoglycoside residues. Accordingly, the in-depth investigation and analysis will certainly make great contributions to food safety, public hygiene and human health.
Collapse
Affiliation(s)
- Zhaozhou Li
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yanyan Liu
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Xiujin Chen
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yao Wang
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Huawei Niu
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Fang Li
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Hongli Gao
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Huichun Yu
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yunxia Yuan
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yong Yin
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Daomin Li
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
7
|
Li X, Ji W, Wang R, Zhang L, Miao R, Wang S. Imprinted covalent organic frameworks prepared by thiol-ene click reaction for selective solid-phase microextraction of aminoglycosides from milk and honey. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Emir Akyıldız İ, Acar S, Kök Yetimoğlu E, Raday S, Erdem Ö, Uzunöner D, Damarlı E. Single Pot In situ Aqueous Derivatization and Subsequent Determination of Streptomycin and Dihydrostreptomycin Residues in Honey by Means of Mass Spectrometry. Food Chem 2022; 405:134826. [DOI: 10.1016/j.foodchem.2022.134826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
9
|
Rapid determination of multiple aminoglycoside antibiotics in veterinary formulations by ion-pair chromatography coupled with evaporative light scattering detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Li YM, Zhang Y, Zhou Y, Liu ZF, Meng Q, Feng XS. Aminoglycosides in Food: Recent Updates on the Pretreatment and Analysis Methods. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1952423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yi-ming Li
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- (Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-fei Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Qiang Meng
- Department of Anorectal Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xue-song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
11
|
|
12
|
Contin MD, Quinsaat JE, Negri RM, Tripodi VP, Opris D, D Accorso NB. Development of carbohydrate functionalized magnetic nanoparticles for aminoglycosides magnetic solid phase extraction. Anal Chim Acta 2019; 1082:37-48. [PMID: 31472711 DOI: 10.1016/j.aca.2019.07.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 01/07/2023]
Abstract
Magnetic nanoparticles decorated with d-galactose and galactitol (Fe3O4@SiN-galactose and Fe3O4@SiN-galactitol) were synthesized and employed as sorbent in a magnetic solid phase extraction (MSPE) procedure prior the analysis of aminoglycosides (AGs) in honey samples by LC-MS/MS. AGs are broad spectrum antibiotics, characterized by aminosugars, widespread used in therapeutic and veterinary applications. AGs can be found in the environment and food of animal origin. Fe3O4@SiN-galactose and Fe3O4@SiN-galactitol were synthesized via copper catalyzed alkyne azide cycloaddition and the synthesis was efficiently followed by infrared spectroscopy. They were characterized by electron microscopy, thermogravimetric analysis and magnetization curves. The nature of the loading (acetonitrile:water, 50:50 v/v) and elution solution (formic acid 190 mM) were studied in order to optimize the MSPE. Quantitative difference between MSPE with Fe3O4@SiN-galactose and MSPE with Fe3O4@SiN-galactitol in terms of recovery was found. The final optimized method using Fe3O4@SiN-galactose and Fe3O4@SiN-galactitol was applied in the determination of AGs in honey. The MSPE performance of Fe3O4@SiN-galactitol was found to be superior to that of MSPE with Fe3O4@SiN-galactose. The limits of quantification were between 2 and 19 μg kg-1 for amikacin, dihydrostreptomycin, tobramicyn and gentamycin. A good correlation between predicted and nominal values of AGs in honey was found (trueness from 84% to 109%). This MSPE procedure not only requires a minimum amount of sorbent (1 mg) and sample (0.2 g), but it can also be accomplish in a rather short time.
Collapse
Affiliation(s)
- Mario Daniel Contin
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Química Analítica, Junín 956, Buenos Aires, C1113AAD, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas, CONICET, Argentina.
| | - Jose Enrico Quinsaat
- Swiss Federal Laboratories for Materials Science and Technology Empa, Laboratory for Functional Polymers, Überlandstr. 129, Dübendorf, CH-8600, Switzerland
| | - R Martín Negri
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Intendente Güiraldes, 2160, Buenos Aires, PC:1428, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE-), Intendente Güiraldes, 2160, Buenos Aires, PC:1428, Argentina
| | - Valeria Paula Tripodi
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, CONICET, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmaceutica, Junín 956, Buenos Aires, Argentina
| | - Dorina Opris
- Swiss Federal Laboratories for Materials Science and Technology Empa, Laboratory for Functional Polymers, Überlandstr. 129, Dübendorf, CH-8600, Switzerland
| | - Norma Beatriz D Accorso
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Intendente Güiraldes, 2160, Buenos Aires, PC:1428, Argentina; CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Intendente Güiraldes, 2160, Buenos Aires PC:1428, Argentina.
| |
Collapse
|
13
|
Mohammadi Toudeshki R, Haji Shabani AM, Dadfarnia S. Hollow fiber reinforced with molecularly imprinted polymer supported on multiwalled carbon nanotubes for microextraction of furazolidone in real samples prior to its spectrophotometric determination. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01671-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Modulated Preparation of Capillary Monolithic HILIC Column by Target-Analogues of Matrine and Oxymatrine and Applied for Extracted Analysis of Sophorae flavescentis radix. ChemistrySelect 2019. [DOI: 10.1002/slct.201803254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Perkons I, Pugajeva I, Bartkevics V. Simultaneous screening and quantification of aminoglycoside antibiotics in honey using mixed-mode liquid chromatography with quadrupole time-of-flight mass spectroscopy with heated electrospray ionization. J Sep Sci 2018; 41:3186-3194. [DOI: 10.1002/jssc.201800230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Ingus Perkons
- Institute of Food Safety; Animal Health and Environment "BIOR"; Riga Latvia
- Department of Chemistry; University of Latvia; Riga Latvia
| | - Iveta Pugajeva
- Institute of Food Safety; Animal Health and Environment "BIOR"; Riga Latvia
| | - Vadims Bartkevics
- Institute of Food Safety; Animal Health and Environment "BIOR"; Riga Latvia
- Department of Chemistry; University of Latvia; Riga Latvia
| |
Collapse
|
16
|
Chen L, Wang L, Song D, Xu Z. Reduced graphene oxide aerogel with packaged TiO 2
nanoparticles as a promising adsorbent for the separation of DNA from human whole blood. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201700044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Lei Chen
- Research Center for Analytical Sciences; Northeastern University; Shenyang China
| | - Lei Wang
- Research Center for Analytical Sciences; Northeastern University; Shenyang China
| | - Dan Song
- Research Center for Analytical Sciences; Northeastern University; Shenyang China
| | - Zhangrun Xu
- Research Center for Analytical Sciences; Northeastern University; Shenyang China
| |
Collapse
|