1
|
Xie T, Huang J, Wu J, Zhang Q. Evaluation of supercritical fluid chromatography coupled to tandem mass spectrometry for the analysis of pesticide residues in grain. J Sep Sci 2024; 47:e2300623. [PMID: 38066396 DOI: 10.1002/jssc.202300623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024]
Abstract
A supercritical fluid chromatography-tandem mass spectrometry (SFC-MS/MS) technique was developed for the rapid and simultaneous detection of nine pesticides (carbendazim, isoprocarb, paclobutrazol, isoprothiolane, flusilazole, quinalphos, piperonylbutoxide, propargite, and bioresmethrin) in rice, wheat, and maize. The cereal samples were extracted with a solution of 0.5% acetic acid in acetonitrile and purified using quick, easy, cheap, effective, rugged, and safe method. The samples were characterized using multi-reaction monitoring and quantified with the external standard method. Excellent linearities (R2 > 0.9991) and limits of quantification (0.4-40.0 μg/kg) were established for all nine pesticides. Satisfactory pesticide recovery rates (62.2%-107.4%) were obtained at three standard concentrations (50, 100, and 200 μg/kg), with relative standard deviations in the range of 2.1%-14.3%. The results confirmed that the proposed method was suitable for the routine detection of these pesticides in grain samples. Compared with high-performance liquid chromatography-MS/MS, the overall test run time and the amount of solvent required were reduced by 66% and 90%, respectively, when SFC-MS/MS was applied. Therefore, the use of SFC-MS/MS permits a shorter run time and affords greater analytical efficiency, such that it is both economical and environmentally sustainable.
Collapse
Affiliation(s)
- Tingting Xie
- Institute of Grain and Oil Quality Supervision and Test of Fujian Province, Fuzhou, China
| | - Jianli Huang
- Institute of Grain and Oil Quality Supervision and Test of Fujian Province, Fuzhou, China
| | - Jiaqi Wu
- College of Jinshan, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingling Zhang
- Institute of Grain and Oil Quality Supervision and Test of Fujian Province, Fuzhou, China
| |
Collapse
|
2
|
Lan F, Jiang F, Zang H, Wang Z. Saturated brine dissolution and liquid-liquid extraction combined with UPLC-MS/MS for the detection of typical Alternaria toxins in pear paste. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6861-6870. [PMID: 37288717 DOI: 10.1002/jsfa.12770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/26/2023] [Accepted: 06/08/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Alternaria can infest pears to produce metabolites, which can contaminate pears and their processed products. Pear paste, one of the most important pear-based products, is popular among Chinese consumers especially for its cough relieving and phlegm removal properties. Although people are concerned about the risk of Alternaria toxins in many agro-foods and their products, little is known about the toxins in pear paste. RESULTS A method was developed for the determination of tenuazonic acid, alternariol, alternariol menomethyl ether, altenuene and tentoxin in pear paste by ultra-performance liquid chromatography tandem mass spectrometry with saturated sodium sulphate dissolution and acidified acetonitrile extraction. The mean recoveries of the five toxins were 75.3-113.8% with relative standard deviations of 2.8-12.2% at spiked levels of 1.0-100 μg kg-1 . Alternaria toxins were detected in 53 out of 76 samples, with a detection rate of 71.4%. Tenuazonic acid (67.1%), alternariol (35.5%), tentoxin (23.7%) and alternariol monomethyl ether (7.9%) were detected in all samples at concentrations of < limit of quantification (LOQ)-105.0 μg kg-1 , < LOQ-32.1 μg kg-1 , < LOQ-74.2 μg kg-1 and < LOQ-15.1 μg kg-1 , respectively. Altenuene was never found in pear paste samples. Tenuazonic acid, alternariol, tentoxin and alternariol menomethyl ether should be focused on due to their toxicity and detection rates. CONCLUSION To the best of our knowledge, this is the first report on the detection method and residue levels of Alternaria toxins in pear paste. The proposed method and research data can provide technical support for the Chinese government to continuously monitor and control Alternaria toxins in pear paste, especially tenuazonic acid. It can also provide a useful reference for related researchers. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Feng Lan
- Yantai Key Laboratory of Quality Safety and Nutrition of Characteristic Fruits, Quality Inspection Center, Yantai Academy of Agricultural Sciences in Shandong Province, Yantai, P. R. China
| | - Fudong Jiang
- Yantai Key Laboratory of Quality Safety and Nutrition of Characteristic Fruits, Quality Inspection Center, Yantai Academy of Agricultural Sciences in Shandong Province, Yantai, P. R. China
| | - Hongwei Zang
- Yantai Key Laboratory of Quality Safety and Nutrition of Characteristic Fruits, Quality Inspection Center, Yantai Academy of Agricultural Sciences in Shandong Province, Yantai, P. R. China
| | - Zhixin Wang
- Yantai Key Laboratory of Quality Safety and Nutrition of Characteristic Fruits, Quality Inspection Center, Yantai Academy of Agricultural Sciences in Shandong Province, Yantai, P. R. China
| |
Collapse
|
3
|
Carbonell-Rozas L, Lara FJ, García-Campaña AM. Analytical Methods Based on Liquid Chromatography and Capillary Electrophoresis to Determine Neonicotinoid Residues in Complex Matrices. A Comprehensive Review. Crit Rev Anal Chem 2023; 54:2554-2582. [PMID: 36940156 DOI: 10.1080/10408347.2023.2186700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Neonicotinoids (NNIs) are neuro-active and systemic insecticides widely used to protect crops from pest attack. During the last decades, there has been an increase concern about their uses and toxic effects, especially to beneficial and non-target insects such as pollinators. To assess potential health hazards and the environmental impacts derived from NNIs uses, a great variety of analytical procedures for the determination of their residues and their metabolites at trace level in environmental, biological and food samples have been reported. Due to the complexity of the samples, efficient sample pretreatment methods have been developed, which include mostly clean-up and preconcentration steps. On the other hand, among the analytical techniques used for their determination, high-performance liquid chromatography (HPLC) coupled to ultraviolet (UV) or mass spectrometry (MS) detection is the most widely used, although capillary electrophoresis (CE) has also been employed in the last years, considering some improvements in sensitivity when coupling with new MS detectors. In this review, we present a critical overview of analytical methods based on HPLC and CE reported in the last decade, discussing relevant and innovative sample treatments for the analysis of environmental, food and biological samples.
Collapse
Affiliation(s)
- Laura Carbonell-Rozas
- Department of de Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Francisco J Lara
- Department of de Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Ana M García-Campaña
- Department of de Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| |
Collapse
|
4
|
Wang Y, Zhang M, Bu T, Bai F, Zhao S, Cao Y, He K, Wu H, Xi J, Wang L. Immunochromatographic Assay based on Sc-TCPP 3D MOF for the rapid detection of imidacloprid in food samples. Food Chem 2023; 401:134131. [PMID: 36103740 DOI: 10.1016/j.foodchem.2022.134131] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 12/29/2022]
Abstract
In this work, a highly sensitive immunochromatographic test strip (ITS) based on Scandium-Tetrakis (4-carboxyphenyl) porphyrin (TCPP) metal-organic framework nanocubes (ScTMNs) was developed for ultrasensitive and facile visual determination of imidacloprid (IDP). TCPP as the porphyrin-based planar ligand and Sc3+ as the metal center were applied to form the ScTMNs via coordination chelation. Giving the credit to its excellent optical characteristics, strong affinity with monoclonal antibodies, and favorable biocompatibility, the ScTMNs was selected as a signal tag. Under optimized conditions, the ITS exhibited a great liner relationship in the range of 0.04-3 ng/mL and the detection limit was 0.04 ng/mL for the IDP detection. Additionally, IDP was successfully detected in tomatoes, millet, corn and carrot samples with satisfied recoveries. To the best of our knowledge, this is the first time that ScTMNs have been used in immunochromatography which are expected to have potential applications in detection of other substances.
Collapse
Affiliation(s)
- Ying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Meng Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Feier Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kunyi He
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haiyu Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia Xi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
5
|
Zhu JJ, Guo T, Zhang ZW, Qian H, Tian P, Yu KY, Wu WJ, Zhang JW. Design, Synthesis, Insecticidal Activities and Molecular Docking of Sulfonamide Derivatives Containing Propargyloxy or Pyridine Groups. Chem Biodivers 2023; 20:e202201020. [PMID: 36536172 DOI: 10.1002/cbdv.202201020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The discovery of new highly active molecules from natural products is a common method to create new pesticides. Celangulin V targeting Mythimna separate (M. separate) midgut V-ATPase H subunit, has received considerable attention for its excellent insecticidal activity and unique mechanism of action. Therefore, combined with our preliminary work, thirty-seven sulfonamide derivatives bearing propargyloxy or pyridine groups were systematically synthesized to search for insecticidal candidate compounds with low cost and high efficiency on the H subunit of V-ATPase. Bioactive results showed that compounds A2-A4 and A6-A7 exhibited a better bioactivity with median effective concentration (LC50 ) values (2.78, 3.11, 3.34, 3.54 and 2.48 mg/mL, respectively) against third-instar larvae of M. separate than Celangulin V (LC50 =18.1 mg/mL). Additionally, molecular docking experiments indicated that these molecules may act on the H subunit of V-ATPase. Based on the above results, these compounds provide new ideas for the discovery of insecticides.
Collapse
Affiliation(s)
- Jian-Jun Zhu
- College of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, China
| | - Tao Guo
- College of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, China
| | - Zi-Wei Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, China
| | - Hao Qian
- College of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, China
| | - Peng Tian
- College of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, China
| | - Ke-Yin Yu
- College of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, China
| | - Wen-Jun Wu
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, 712100, China
| | - Ji-Wen Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, China.,Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, 712100, China
| |
Collapse
|
6
|
Development of dispersive micro solid phase extraction method based on using Fe3O4@UiO-66-NH2@MIP nanocomposite as an efficient and selective sorbent for the extraction of imidacloprid from fruit juice samples. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Xu ZH, Liu J, Li B, Wang JK, Zeng X, Chen ZJ, Hongsibsong S, Huang W, Lei HT, Sun YM, Xu ZL. The Simultaneous Determination of Chlorpyrifos-Ethyl and -Methyl with a New Format of Fluorescence-Based Immunochromatographic Assay. BIOSENSORS 2022; 12:1006. [PMID: 36421124 PMCID: PMC9688337 DOI: 10.3390/bios12111006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The improper and excessive use in agriculture of chlorpyrifos-methyl (CPSM) and chlorpyrifos-ethyl (CPSE) may affect the health of human beings. Herein, a fluorescence-based immunochromatographic assay (FICA) was developed for the simultaneous determination of CPSM and CPSE. A monoclonal antibody (mAb) with equal recognition of CPSM and CPSE was generated by the careful designing of haptens and screening of hybridoma cells. Instead of labeling fluorescence with mAb, the probe was labeled with goat-anti-mouse IgG (GAM-IgG) and pre-incubated with mAb in the sample. The complex could compete with CPS by coating antigen in the test line. The new format of FICA used goat-anti-rabbit IgG (GAR-IgG) conjugated with rabbit IgG labeled with fluorescence microspheres as an independent quality control line (C line). The novel strategy significantly reduced nonspecific reactions and increased assay sensitivity. Under the optimal conditions, the proposed FICA showed a linear range of 0.015-64 mg/L and limit of detection (LOD) of 0.015 mg/L for both CPSE and CPSM. The average recoveries of CPS from spiked food samples by FICA were 82.0-110.0%. The accuracy was similar to the gas chromatography-tandem mass spectrometry (GC-MS/MS) results. The developed FICA was an ideal on-site tool for rapid screening of CPS residues in foods.
Collapse
Affiliation(s)
- Zi-Hong Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Jia Liu
- Guangzhou Institute of Food Inspection, Guangzhou 510410, China
| | - Bin Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- Guangdong Dayuanlvzhou Food Safety Technology Co., Ltd., Guangzhou 510530, China
| | - Jun-Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Xi Zeng
- Guangzhou Institute of Food Inspection, Guangzhou 510410, China
| | - Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Surat Hongsibsong
- School of Health Sciences Research, Research Institute for Health Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wei Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Yuan-Ming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Liu J, Zhang Y, Dong F, Wu X, Pan X, Xu J, Zheng Y. Trace determination of imidacloprid and its major metabolites in wheat-soil system. J Sep Sci 2022; 45:3567-3581. [PMID: 35894251 DOI: 10.1002/jssc.202200187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/12/2022]
Abstract
Trace analysis method is a reliable basis for studying the translocation and metabolism of imidacloprid used as an insecticide in wheat, and it clarifies whether biologically active metabolites including residual imidacloprid, have long-lasting insecticidal potency against wheat aphids under seed treatment during the entire growth period. In this study, a highly sensitive analytical method was established to determine the residues of imidacloprid and its six metabolites (5-hydroxy imidacloprid, imidacloprid olefin, imidacloprid guanidine, imidacloprid urea, 6-chloronicotinic acid and imidacloprid nitrosimine) in wheat-soil systems, such as in wheat leaves, wheat ears, wheat grains, roots and soil. All the compounds were extracted using an ACN:water (8:2, v/v) mixture and purified by dispersive solid-phase extraction. The average recoveries ranged from 74.4 to 109.5% for all matrices, with intra- and inter-day variations of less than 14.9%. The limit of quantitation was in the range of 0.001 to 0.005 mg/kg. The method is demonstrated to be sensitive and accurate for monitoring imidacloprid and its metabolites at trace levels during the entire growth period under field conditions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jiayue Liu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Yunhui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Yongquan Zheng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
9
|
Silveri F, Della Pelle F, Scroccarello A, Ain Bukhari QU, Del Carlo M, Compagnone D. Modular graphene mediator film-based electrochemical pocket device for chlorpyrifos determination. Talanta 2022; 240:123212. [PMID: 35026635 DOI: 10.1016/j.talanta.2022.123212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/01/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
In this work, a redox-graphene (Rx-Gr) film with electron-mediating ability has been integrated into a modular flexible pocket device, giving rise to a reusable biosensing platform. The Rx-Gr has been obtained in water from graphite taking advantage of catechin, a redox-antioxidant, able to assist the sonochemical layered-material exfoliation, conferring electron mediating feature. A film composed exclusively of Rx-Gr has been transferred via thermal rolling onto a flexible PET-support that was used as the biosensor base. The biosensing platform, composed of office-grade materials, was then fabricated using a cutter-plotter and assembled by thermal lamination; an interchangeable paper-based strip was used to host the enzymatic reaction and drive the capillary flow. An acetylcholinesterase-based inhibition assay has been optimized onboard the pocket device to determine chlorpyriphos, a widespread environmental pesticide. The proposed set-up allows the determination of chlorpyriphos at low overpotential (0.2 V) with satisfactory sensitivity (LOD = 0.2 ppb), thanks to the straightforward electroactivity of the Rx-Gr film towards thiocholine (enzymatic product). The modular design allows 5 consecutive complete inhibition assays (control + inhibition measure) retaining the performance (RSD = 5.4%; n = 5). The coupling of bench-top technologies and a new functional graphene film resulted in the development of a cost-effective, reusable, transportable, and within everyone's reach biosensing platform.
Collapse
Affiliation(s)
- Filippo Silveri
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy
| | - Flavio Della Pelle
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy.
| | - Annalisa Scroccarello
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy
| | - Qurat Ul Ain Bukhari
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy
| | - Michele Del Carlo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy
| | - Dario Compagnone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy.
| |
Collapse
|
10
|
MIL-101(Cr) based d-SPE/UPLC-MS/MS for determination of neonicotinoid insecticides in beverages. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Xie W, Ju Y, Zhang J, Yang Y, Zeng Y, Wang H, Li L. Highly sensitive and specific determination of imidacloprid pesticide by a novel Fe3O4@SiO2@MIPIL fluorescent sensor. Anal Chim Acta 2022; 1195:339449. [DOI: 10.1016/j.aca.2022.339449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 12/01/2022]
|
12
|
Tang F, Hua Q, Wang X, Luan F, Wang L, Li Y, Zhuang X, Tian C. A novel electrochemiluminescence sensor based on a molecular imprinting technique and UCNPs@ZIF-8 nanocomposites for sensitive determination of imidacloprid. Analyst 2022; 147:3917-3923. [DOI: 10.1039/d2an01005d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An MIT-ECL sensor for IM detection based on UCNPs@ZIF-8 nanocomposites.
Collapse
Affiliation(s)
- Feiyan Tang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Qing Hua
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiaobin Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Li Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yanhong Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Chunyuan Tian
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
13
|
Azar İ, Kumral NA. Validation of LC-MS/MS method for simultaneous determination of chlorpyrifos, deltamethrin, imidacloprid and some of their metabolites in maize silage. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:125-132. [PMID: 35060839 DOI: 10.1080/03601234.2022.2029275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In this study, a validation of a multi-residue analysis method was performed for the simultaneous analysis of chlorpyrifos (CHL), deltamethrin (DEL) and Imidacloprid (IMI) residues and some of their metabolites in maize silage, by LC MS/MS. Extraction was conducted with acetonitrile acidified with 1% acetic acid. To avoid the matrix effect, a matrix matched calibration was used. The method was validated according to the SANTE/12682/2019 Guidelines. Selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), trueness (recovery %) and precision (intra-day and inter-day) parameters were evaluated in line with the SANTE document. The linearities of all compounds were quite confident (R2≥ 0.98) and no interference was observed. The LOD and LOQ values were between 2.76 µg kg-1 to 53.61 µg kg-1 and 9.19 µg kg-1 to 178.71 µg kg-1, respectively. The recovery, repeatability RDSr and reproducibility RDSR values of compounds were calculated between 93.7-109.2%, 1-15%, and 1-13%, respectively. Consequently, results obtained with the evaluation of all parameters were found to be compatible with the SANTE validation criteria, so the method was reliable, effective and easy to use for the detection of insecticides and metabolites in maize silage with LC MS/MS.
Collapse
Affiliation(s)
- İsmail Azar
- Central Research Institute for Food and Feed Control, Bursa, Turkey
- Division of Plant Protection, Graduate School of Natural and Applied Science, Bursa Uludag University, Bursa, Turkey
| | - Nabi Alper Kumral
- Department of Plant Protection, Faculty of Agriculture, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
14
|
Zhou J, Dong C, An W, Zhao Q, Zhang Y, Li Z, Jiao B. Dissipation of imidacloprid and its metabolites in Chinese prickly ash (Zanthoxylum) and their dietary risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112719. [PMID: 34478976 DOI: 10.1016/j.ecoenv.2021.112719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Dissipation of imidacloprid (IMI) and its metabolites (urea, olefin, 5-hydroxy, guanidine, 6-chloronicotinic acid) in Chinese prickly ash (CPA) was investigated using QuEChERS combined with UPLC-MS/MS. Good linearity (r2 ≥0.9963), accuracy (recoveries of 71.8-104.3%), precision (relative standard deviations of 0.9-9.4%), and sensitivity (limit of quantification ≤0.05 mg kg-1) were obtained. After application of IMI at dosage of 467 mg a.i. L-1 for three times with interval of 7 d, the dissipation dynamics of IMI in CPA followed first-order kinetics, with half-life of 6.48-7.29 d. IMI was the main compound in CPA, followed by urea and guanidine with small amounts of olefin, 5-hydroxy, and 6-chloronicotinic acid. The terminal residues of total IMI and its metabolites at PHI of 14-21 d were 0.16-7.80 mg kg-1 in fresh CPA and 0.41-10.44 mg kg-1 in dried CPA, with the median processing factor of 3.62. Risk assessment showed the acute (RQa) and chronic dietary risk quotients (RQc) of IMI in CPA were 0.020-0.083% and 0.052-0.334%, respectively. Based on the dietary structures of different genders and ages of Chinese people, the whole dietary risk assessment indicated that RQc was less than 100% for the general population except for 2- to 7-year-old children (RQc of 109.9%), implying the long-term risks of IMI were acceptable to common consumers except for children.
Collapse
Affiliation(s)
- Jie Zhou
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China
| | - Chao Dong
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China
| | - Wenjing An
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China
| | - Qiyang Zhao
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China
| | - Yaohai Zhang
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China
| | - Zhixia Li
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China
| | - Bining Jiao
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China.
| |
Collapse
|
15
|
Yin F, Xu F, Zhang K, Yuan M, Cao H, Ye T, Wu X, Xu F. Synthesis and evaluation of mesoporous silica/mesoporous molecularly imprinted nanoparticles as adsorbents for detection and selective removal of imidacloprid in food samples. Food Chem 2021; 364:130216. [PMID: 34237619 DOI: 10.1016/j.foodchem.2021.130216] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/07/2021] [Accepted: 05/17/2021] [Indexed: 11/18/2022]
Abstract
The double-mesoporous-layer imprinted polymer of mesoporous silica/mesoporous molecularly imprinted nanoparticles (MIP), with high specific surface area, rich porosity, excellent mass transfer rate and selectivity, were synthesized using imidacloprid (IDP) as a template. Under the optimal conditions of pH, contact time, concentration and temperature, MIP showed high adsorption capacity of 13.86 μg·mg-1 toward IDP and the imprinting factor reached 3.5. The adsorption process model including binding isotherm and kinetics was investigated. MIP exhibited excellent regeneration and its adsorption and selectivity were outstanding among its structurally pesticide analogues. The recovery of spiked IDP for MIP in fortified real samples can reach 96.0 ± 8.5% for cabbage and 105.0 ± 9.9% for apple. The limit of detection of the enrichment method can be as low as 0.037 μg·mL-1 with a good linear relationship (R2 = 0.996) from 0.30 to 10.0 μg·mL-1. The results indicated that the proposed method allowed class-specific detection of IDP in food samples.
Collapse
Affiliation(s)
- Fengqin Yin
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Feng Xu
- College of Science, University of Shanghai for Science and Technology, Shanghai, China
| | - Kun Zhang
- College of Science, University of Shanghai for Science and Technology, Shanghai, China
| | - Min Yuan
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Cao
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Tai Ye
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiuxiu Wu
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Fei Xu
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China; College of Science, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
16
|
Song S, Zhang T, Huang Y, Zhang B, Guo Y, He Y, Huang X, Bai X, Kannan K. Correction to "Urinary Metabolites of Neonicotinoid Insecticides: Levels and Recommendations for Future Biomonitoring Studies in China". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6521-6523. [PMID: 33877821 DOI: 10.1021/acs.est.1c01093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
|
17
|
Liu Z, Chen D, Han J, Chen Y, Zhang K. Stereoselective degradation behavior of the novel chiral antifungal agrochemical penthiopyrad in soil. ENVIRONMENTAL RESEARCH 2021; 194:110680. [PMID: 33385389 DOI: 10.1016/j.envres.2020.110680] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Penthiopyrad is a chiral carboxamide fungicide with a broad spectrum of fungicidal activity. However, there is no report on the analysis of the enantiomers of penthiopyrad and their environmental behavior. Soil is an important carrier for pesticides to affect the environment. Therefore, this study aimed to investigate the absolute configuration, stereoselective degradation, configuration stability and potential metabolites of this agrochemical in soil under different laboratory conditions. R-(-)-penthiopyrad and S-(+)-penthiopyrad were identified by the electronic circular dichroism method. Regarding the racemic analyte, the degradation half-lives of the stereoisomers ranged from 38.9 to 97.6 days, the S-(+)-stereoisomer degraded preferentially in four types of Chinese soil. However, enantiopure R-(-)-penthiopyrad degraded faster than its antipode, a finding that might be related to the microbial activity in soil. The organic matter (OM) content influenced the stereoselective degradation of rac-penthiopyrad. No configuration conversion was observed in both enantiopure analyte degradation processes. One possible metabolite, 753-A-OH, was detected in the treated soil samples, and the degradation pathway might be a hydroxylation reaction. This is the first report of the absolute configuration of penthiopyrad stereoisomers and the first comprehensive evaluation of the stereoselective degradation of penthiopyrad in Chinese soil. Stereoselective degradation of rac-penthiopyrad was observed in the four types of soil. And the stereoselectivity might be inhibited by OM. This study provides more accurate data to investigate the environmental behavior of penthiopyrad at the stereoisomer level.
Collapse
Affiliation(s)
- Zhengyi Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Dan Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Jiahua Han
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Ye Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Kankan Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
18
|
Song S, Zhang T, Zhang B, Huang Y, Guo Y, He Y, Huang X, Bai X, Kannan K. Response to Comments on "Urinary Metabolites of Neonicotinoid Insecticides: Levels and Recommendations for Future Biomonitoring Studies in China". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2166-2168. [PMID: 33434010 DOI: 10.1021/acs.est.0c05827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Shiming Song
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Bo Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yingyan Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuankai Guo
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Yuan He
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiongfei Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xueyuan Bai
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, New York 10016, United States
| |
Collapse
|
19
|
Käfferlein HU, Koch HM, Bury D, Wrobel SA, Gilsing HD, Ospina M, Baker SE. Comment on "Urinary Metabolites of Neonicotinoid Insecticides: Levels and Recommendations for Future Biomonitoring Studies in China": Quantification of 5-Hydroxyimidacloprid and Biomonitoring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2163-2164. [PMID: 33417428 PMCID: PMC10150789 DOI: 10.1021/acs.est.0c03723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Heiko U Käfferlein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Daniel Bury
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Sonja A Wrobel
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Hans-Detlev Gilsing
- Institute for Thin Film Technology and Microsensoric Technology (IDM), Kantstraße 55, 14513 Teltow, Germany
| | - Maria Ospina
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS F17, Atlanta, Georgia 30341, United States
| | - Samuel E Baker
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS F17, Atlanta, Georgia 30341, United States
| |
Collapse
|
20
|
Carbonell-Rozas L, Lara FJ, del Olmo Iruela M, García-Campaña AM. A novel approach based on capillary liquid chromatography for the simultaneous determination of neonicotinoid residues in cereal samples. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Li C, Chen Z, Qin D, Liu R, Li L, Li W, He Y, Yuan L. Simultaneous determination of the herbicide bixlozone and its metabolites in plant and animal samples by liquid chromatography-tandem mass spectrometry. J Sep Sci 2021; 44:822-832. [PMID: 33289303 DOI: 10.1002/jssc.202000992] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/31/2022]
Abstract
Tracing the herbicide bixlozone and its metabolites in food is necessary to assess their risks to human health. In the study, a rapid and effective analytical method using the quick, easy, cheap, effective, rugged, and safe method for the simultaneous determination of bixlozone and its metabolites (2,4-dichlorobenzoic acid, 3-hydroxy-propanamide-bixlozone, and 5'-hydroxy-bixlozone) in plant and animal samples (tomato, cucumber, apple, wheat flour, meat, milk, and egg) was developed based on ultra high performance liquid chromatography-tandem mass spectrometry. The method was validated based on the linearity (R2 > 0.99), sensitivity (limit of quantification = 0.01 mg/kg), recovery (70.2-115.1%), and precision (intraday 1.2-17.6%, interday 0.3-16.0%). Detection was achieved within 6.0 min. The method is reliable for the determination of four target compounds in all seven matrices. The satisfactory validation criteria and successful application show that the proposed methodology is suitable for the detection of four target compounds in real matrices.
Collapse
Affiliation(s)
- Congdi Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Dongmei Qin
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Rong Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Li Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Wei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Yujian He
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Longfei Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
22
|
Yang Q, Ai X, Dong J, Liu Y, Zhou S, Yang Y, Xu N. A QuEChERS-HPLC-MS/MS Method with Matrix Matching Calibration Strategy for Determination of Imidacloprid and Its Metabolites in Procambarus clarkii (Crayfish) Tissues. Molecules 2021; 26:molecules26020274. [PMID: 33430495 PMCID: PMC7827598 DOI: 10.3390/molecules26020274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
We developed a method for determination of imidacloprid and its metabolites 5-hydroxy imidacloprid, olefin imidacloprid, imidacloprid urea and 6-chloronicotinic acid in Procambarus clarkii (crayfish) tissues using quick, easy, cheap, effective, rugged, and safe (QuEChERS) and high-performance liquid chromatography-triple quadrupole mass spectrometry. Samples (plasma, cephalothorax, hepatopancrea, gill, intestine, and muscle) were extracted with acetonitrile containing 0.1% acetic acid and cleaned up using a neutral alumina column containing a primary secondary amine. The prepared samples were separated using reverse phase chromatography and scanned in the positive and negative ion multiple reaction-monitoring modes. Under the optimum experimental conditions, spiked recoveries for these compounds in P. clarkii samples ranged from 80.6 to 112.7% with relative standard deviations of 4.2 to 12.6%. The limits of detection were 0.02-0.5 μg·L-1, the limits of quantification were 0.05-2.0 μg·L-1 and the method of quantification was 0.05-2.0 μg·kg-1. The method is rapid, simple, sensitive and suitable for rapid determination and analysis of imidacloprid and its metabolites in P. clarkii tissues.
Collapse
Affiliation(s)
- Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.D.); (Y.L.); (S.Z.); (Y.Y.); (N.X.)
- Correspondence: (Q.Y.); (X.A.)
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.D.); (Y.L.); (S.Z.); (Y.Y.); (N.X.)
- Chinese Academy of Fishery Sciences, Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing 100141, China
- Correspondence: (Q.Y.); (X.A.)
| | - Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.D.); (Y.L.); (S.Z.); (Y.Y.); (N.X.)
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.D.); (Y.L.); (S.Z.); (Y.Y.); (N.X.)
- Chinese Academy of Fishery Sciences, Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing 100141, China
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.D.); (Y.L.); (S.Z.); (Y.Y.); (N.X.)
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.D.); (Y.L.); (S.Z.); (Y.Y.); (N.X.)
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.D.); (Y.L.); (S.Z.); (Y.Y.); (N.X.)
| |
Collapse
|
23
|
Chen Y, Nie E, Huang L, Lu Y, Gao X, Akhtar K, Ye Q, Wang H. Translocation and metabolism of imidacloprid in cabbage: Application of 14C-labelling and LC-QTOF-MS. CHEMOSPHERE 2021; 263:127928. [PMID: 32835975 DOI: 10.1016/j.chemosphere.2020.127928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Imidacloprid (IMI) is a widely used neonicotinoid insecticide effective against sucking and some chewing insects. Translocation and metabolism of IMI in plants are related to food safety. In this study, 14C-labeled IMI was used to investigate its translocation, transformation, radioactive IMI metabolites and possible metabolic pathways in cabbage. The amount of IMI accumulated in the edible part of cabbage accounted for 80.3-95.4% of the applied amounts by foliar application. There was a tendency to transport from edible parts to inedible parts. The proportions of extractable IMI decreased gradually from 92.4% to 83.0% in edible parts, greater than that in inedible parts over the experiment (0-19 days), while the bound residues showed an opposite trend. The half-life of IMI was determined as 33.0 and 63.0 days in the edible parts and whole plant, respectively. Five radioactive components including the parent IMI were detected by HPLC-LSC. The relative content of M1 was less than 0.01 mg kg-1, which was not required to identify according to the metabolic scheme proposed by the US Environmental Protection Agency. The metabolites N-nitro(1-6-chloro-3-pyridylmethyl)-4,5-dihydroxyimidazol-2-imine (M2), N-nitro(1-6-chloro-3-pyridylmethyl)-4/5-hydroxyimidazole-2-imine (M3) and 1/3-(1-6-chloro-3-pyridylmethyl)-2,4-imidazodione (M4) were identified by LC-QTOF-MS. The primary metabolism of IMI in cabbage included hydrolysis and oxidation. The residue level and daily intake values of IMI in cabbage were estimated to be 0.033-0.078 mg kg-1 and 9.56-20.01 ng d-1 kg-1, respectively, which were far below the maximum residue level and allowable daily intake values.
Collapse
Affiliation(s)
- Yan Chen
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Enguang Nie
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Lei Huang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Yuhui Lu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Xing Gao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Kashif Akhtar
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Haiyan Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
24
|
Lu Y, Wu X, Yuan L, Li Y, Wang P, Yu J, Tian P, Liu W. A rapid liquid chromatography‐electrospray ionization‐ion mobility spectrometry method for monitoring nine representative metabolites in the seedlings of cucumber and wheat. J Sep Sci 2020; 44:709-716. [DOI: 10.1002/jssc.202000811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/10/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Yaling Lu
- Beijing Key Lab of Bioprocess, College of Life Science and Technology Beijing University of Chemical Technology Beijing P. R. China
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Tarim University Alar P. R. China
| | - Xiangping Wu
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Tarim University Alar P. R. China
| | - Lei Yuan
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Tarim University Alar P. R. China
| | - Yingdi Li
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Tarim University Alar P. R. China
| | - Penghui Wang
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Tarim University Alar P. R. China
| | - Jianna Yu
- College of Chemical Engineering Xiangtan University Xiangtan P. R. China
| | - Pingfang Tian
- Beijing Key Lab of Bioprocess, College of Life Science and Technology Beijing University of Chemical Technology Beijing P. R. China
| | - Wenjie Liu
- College of Chemical Engineering Xiangtan University Xiangtan P. R. China
| |
Collapse
|
25
|
Carbonell-Rozas L, Lara FJ, Del Olmo Iruela M, García-Campaña AM. Capillary liquid chromatography as an effective method for the determination of seven neonicotinoid residues in honey samples. J Sep Sci 2020; 43:3847-3855. [PMID: 32840966 DOI: 10.1002/jssc.202000611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/09/2022]
Abstract
A new analytical method based on capillary liquid chromatography with diode array detection has been developed for the simultaneous quantification of seven neonicotinoid insecticides commercially available (imidacloprid, thiacloprid, clothianidin, thiamethoxam, acetamiprid, nitenpyram, and dinotefuran) in honey samples. The separation was achieved in a Zorbax XDB-C18 column (150 × 0.5 mm id, 5 μm), with a mobile phase consisting of ultrapure water (solvent A) and acetonitrile (solvent B) at a flow rate of 10 μL/min. Capillary column was thermostated at 25°C during the analysis and 254 or 270 nm was established as detection wavelength, depending on the analyte. Furthermore, full loop injection mode (8 μL) was selected, using water as injection solvent. Finally, the optimized method was applied to the analysis of neonicotinoid residues in honey of different floral origins using dispersive liquid-liquid microextraction as sample treatment. Variables affecting the extraction efficiency were optimized, choosing methanol and dichloromethane as dispersive and extraction solvents, respectively. The method was characterized in terms of linearity ( R 2 ≥ 0.9948), repeatability, reproducibility (relative standard deviation below 4.5 and 6.3% respectively), and recoveries (≥80.5%). Detection and quantification limits were lower than 6.6 and 22.0 μg/kg for the studied analytes, respectively.
Collapse
Affiliation(s)
- Laura Carbonell-Rozas
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Francisco J Lara
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | | | - Ana M García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| |
Collapse
|
26
|
Farooq S, Nie J, Cheng Y, Bacha SAS, Chang W. Selective extraction of fungicide carbendazim in fruits using β‐cyclodextrin based molecularly imprinted polymers. J Sep Sci 2020; 43:1145-1153. [DOI: 10.1002/jssc.201901029] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Saqib Farooq
- Research Institute of PomologyChinese Academy of Agricultural Sciences (CAAS) Liaoning P. R. China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Xingcheng)Ministry of Agriculture and Rural Affairs P. R. China
- Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng)Ministry of Agriculture and Rural Affairs P. R. China
| | - Jiyun Nie
- Research Institute of PomologyChinese Academy of Agricultural Sciences (CAAS) Liaoning P. R. China
- College of HorticultureQingdao Agricultural University Qingdao P. R. China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Xingcheng)Ministry of Agriculture and Rural Affairs P. R. China
- Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng)Ministry of Agriculture and Rural Affairs P. R. China
| | - Yang Cheng
- Research Institute of PomologyChinese Academy of Agricultural Sciences (CAAS) Liaoning P. R. China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Xingcheng)Ministry of Agriculture and Rural Affairs P. R. China
- Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng)Ministry of Agriculture and Rural Affairs P. R. China
| | - Syed Asim Shah Bacha
- Research Institute of PomologyChinese Academy of Agricultural Sciences (CAAS) Liaoning P. R. China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Xingcheng)Ministry of Agriculture and Rural Affairs P. R. China
- Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng)Ministry of Agriculture and Rural Affairs P. R. China
| | - Weixia Chang
- Research Institute of PomologyChinese Academy of Agricultural Sciences (CAAS) Liaoning P. R. China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Xingcheng)Ministry of Agriculture and Rural Affairs P. R. China
- Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng)Ministry of Agriculture and Rural Affairs P. R. China
| |
Collapse
|
27
|
Huang W, Zhou X, Luan Y, Cao Y, Wang N, Lu Y, Liu T, Xu W. A sensitive electrochemical sensor modified with multi-walled carbon nanotubes doped molecularly imprinted silica nanospheres for detecting chlorpyrifos. J Sep Sci 2019; 43:954-961. [PMID: 31788943 DOI: 10.1002/jssc.201901036] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022]
Abstract
A highly sensitive and convenient electrochemical sensor, based on surface molecularly imprinted polymers and multiwalled carbon nanotubes, was successfully developed to detect chlorpyrifos in real samples. In order to solve the problems like uneven shapes, poor size accessibility, and low imprinting capacity, the layer of the molecularly imprinted polymer was prepared on the surface of silica nanospheres. Moreover, the doping of multiwalled carbon nanotubes greatly improved the electrical properties of developed sensor. Under the optimal conductions, the electrochemical response of the sensor is linearly proportional to the concentration of chlorpyrifos in the range of 5.0 × 10-12 -5.0 × 10-8 mol/L with a low detection limit of 8.1 × 10-13 mol/L. The prepared sensor exhibited multiple advantages such as low cost, simple preparation, convenient use, excellent selectivity, and good reproducibility. Finally, the prepared sensor was successfully used to detect chlorpyrifos in vegetable and fruit.
Collapse
Affiliation(s)
- Weihong Huang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Xiaohua Zhou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Yu Luan
- Zhenjiang Food and Drug Supervision and Inspection Center, Zhenjiang, 212004, P. R. China
| | - Yunfei Cao
- Zhenjiang Food and Drug Supervision and Inspection Center, Zhenjiang, 212004, P. R. China
| | - Ningwei Wang
- Entry-Exit Inspection Quarantine Bureau, Zhenjiang, 212008, P. R. China
| | - Yi Lu
- Entry-Exit Inspection Quarantine Bureau, Zhenjiang, 212008, P. R. China
| | - Tianshu Liu
- Entry-Exit Inspection Quarantine Bureau, Zhenjiang, 212008, P. R. China
| | - Wanzhen Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
28
|
Luo X, Qin X, Liu Z, Chen D, Yu W, Zhang K, Hu D. Determination, residue and risk assessment of trifloxystrobin, trifloxystrobin acid and tebuconazole in Chinese rice consumption. Biomed Chromatogr 2019; 34:e4694. [PMID: 31465553 DOI: 10.1002/bmc.4694] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023]
Abstract
A simple and rapid analytical method for the detection of trifloxystrobin, trifloxystrobin acid and tebuconazole in soil, brown rice, paddy plants and rice hulls was established and validated by liquid chromatography with tandem mass spectrometry. Acceptable linearity (R2 > 0.99), accuracy (average recoveries of 74.3-108.5%) and precision (intra- and inter-day relative standard deviations of 0.9-8.8%) were obtained using the developed determination approach. In the field trial, the half-lives of trifloxystrobin and tebuconazole in paddy plants were 5.7-8.3 days in three locations throughout China, and the terminal residue concentrations of trifloxystrobin and tebuconazole were <100 and 500 μg/kg (maximum residue limits set by China), respectively, at harvest, which indicated that, based on the recommended application procedure, trifloxystrobin and tebuconazole are safe for use on rice. The risk assessment results demonstrated that, owing to risk quotient values of both fungicides being <100%, the potential risk of trifloxystrobin and tebuconazole on rice was acceptable for Chinese consumers. These data could provide supporting information for the proper use and safety evaluation of trifloxystrobin and tebuconazole in rice.
Collapse
Affiliation(s)
- Xiaoshuang Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xinxian Qin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhengyi Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Dan Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Weiwei Yu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Kankan Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
29
|
Farooq S, Nie J, Cheng Y, Yan Z, Bacha SAS, Zhang J, Nahiyoon RA, Hussain Q. Synthesis of core‐shell magnetic molecularly imprinted polymer for the selective determination of imidacloprid in apple samples. J Sep Sci 2019; 42:2455-2465. [DOI: 10.1002/jssc.201900221] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/15/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Saqib Farooq
- Chinese Academy of Agricultural Sciences (CAAS)Research Institute of Pomology Liaoning P. R. China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Xingcheng)Ministry of Agriculture and Rural Affairs, Xingcheng P. R. China
- Quality Inspection and Test Center for Fruit and Nursery StocksMinistry of Agriculture and Rural Affairs, Xingcheng P. R. China
| | - Jiyun Nie
- Chinese Academy of Agricultural Sciences (CAAS)Research Institute of Pomology Liaoning P. R. China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Xingcheng)Ministry of Agriculture and Rural Affairs, Xingcheng P. R. China
- Quality Inspection and Test Center for Fruit and Nursery StocksMinistry of Agriculture and Rural Affairs, Xingcheng P. R. China
| | - Yang Cheng
- Chinese Academy of Agricultural Sciences (CAAS)Research Institute of Pomology Liaoning P. R. China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Xingcheng)Ministry of Agriculture and Rural Affairs, Xingcheng P. R. China
- Quality Inspection and Test Center for Fruit and Nursery StocksMinistry of Agriculture and Rural Affairs, Xingcheng P. R. China
| | - Zhen Yan
- Chinese Academy of Agricultural Sciences (CAAS)Research Institute of Pomology Liaoning P. R. China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Xingcheng)Ministry of Agriculture and Rural Affairs, Xingcheng P. R. China
- Quality Inspection and Test Center for Fruit and Nursery StocksMinistry of Agriculture and Rural Affairs, Xingcheng P. R. China
| | - Syed Asim Shah Bacha
- Chinese Academy of Agricultural Sciences (CAAS)Research Institute of Pomology Liaoning P. R. China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Xingcheng)Ministry of Agriculture and Rural Affairs, Xingcheng P. R. China
- Quality Inspection and Test Center for Fruit and Nursery StocksMinistry of Agriculture and Rural Affairs, Xingcheng P. R. China
| | - Jianyi Zhang
- Chinese Academy of Agricultural Sciences (CAAS)Research Institute of Pomology Liaoning P. R. China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Xingcheng)Ministry of Agriculture and Rural Affairs, Xingcheng P. R. China
- Quality Inspection and Test Center for Fruit and Nursery StocksMinistry of Agriculture and Rural Affairs, Xingcheng P. R. China
| | - Riaz Ali Nahiyoon
- Chinese Academy of Agricultural Sciences (CAAS)Research Institute of Pomology Liaoning P. R. China
| | - Quaid Hussain
- Oil Crops Research Institute of CAAS Wuhan P. R. China
| |
Collapse
|