1
|
Kończyk J, Myga-Nowak M, Michalski R, Janoszka K. Electromigration Techniques in the Analysis of Selected Cosmetic Ingredients: A Review. Molecules 2025; 30:161. [PMID: 39795217 PMCID: PMC11721023 DOI: 10.3390/molecules30010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
The cosmetics industry is one of the fastest-growing sectors worldwide. The dynamic evolution of this industry results in an increasingly diverse range of products containing various active ingredients. Ensuring the quality of these products is crucial for consumer safety, necessitating the use of advanced analytical methods and adherence to legal regulations. Electrophoretic techniques, particularly capillary electrophoresis and micellar electrokinetic chromatography, facilitate the rapid and precise separation and identification of cosmetic ingredients. A well-chosen technique and optimized analytical conditions ensure high sensitivity, repeatability, and resolution, achieving detection limits that meet legal requirements. Although electromigration techniques are less common in routine laboratory analyses compared to liquid chromatography, they show potential for broader application in analyzing various substances found in cosmetics. This study reviews the possibilities of applying different electrophoretic techniques to analyze selected cosmetic ingredients serving various functions, including preservatives, dyes, exfoliating agents, UV filters, and also contaminants, while considering sample preparation methods, equipment used, and analysis conditions. The compiled data indicate that capillary electrophoresis, when compared to high-performance liquid chromatography and ion chromatography, shows comparable or superior sensitivity and repeatability, with detection limits adequate to meet regulatory standards.
Collapse
Affiliation(s)
- Joanna Kończyk
- Institute of Chemistry, Faculty of Science & Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland
| | - Magdalena Myga-Nowak
- Wladyslaw Bieganski Collegium Medicum, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland;
| | - Rajmund Michalski
- Institute of Environmental Engineering, Polish Academy of Sciences, M. Skłodowskiej-Curie 34, 41-819 Zabrze, Poland; (R.M.); (K.J.)
| | - Katarzyna Janoszka
- Institute of Environmental Engineering, Polish Academy of Sciences, M. Skłodowskiej-Curie 34, 41-819 Zabrze, Poland; (R.M.); (K.J.)
| |
Collapse
|
2
|
Chang WH, Zhang SQ, Yang ZY, Lin CH. Inverted Pyramid Nanostructures Coupled with a Sandwich Immunoassay for SERS Biomarker Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:64. [PMID: 39791822 PMCID: PMC11722957 DOI: 10.3390/nano15010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
Cancer diagnostics often faces challenges, such as invasiveness, high costs, and limited sensitivity for early detection, emphasizing the need for improved approaches. We present a surface-enhanced Raman scattering (SERS)-based platform leveraging inverted pyramid SU-8 nanostructured substrates fabricated via nanoimprint lithography. These substrates, characterized by sharp apices and edges, are further functionalized with (3-aminopropyl)triethoxysilane (APTES), enabling the uniform self-assembly of AuNPs to create a highly favorable configuration for enhanced SERS analysis. Performance testing of the substrates using malachite green (MG) as a model analyte demonstrated excellent detection capabilities, achieving a limit of detection as low as 10-12 M. Building on these results, the SERS platform was adapted for the sensitive and specific detection of hyaluronic acid (HA), a key biomarker associated with inflammation and cancer progression. The system employs a sandwich immunoassay configuration, with substrates functionalized with antibodies to capture HA molecules and 4-MBA-labeled SERS tags for detection. This setup achieved an ultra-sensitive detection limit of 10-11 g/mL for HA. Comprehensive characterization confirmed the uniformity and reproducibility of the SERS substrates, while validation in complex biological matrices demonstrated their robustness and reliability, highlighting their potential in cancer diagnostics and biomarker detection.
Collapse
Affiliation(s)
- Wen-Huei Chang
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Shao-Quan Zhang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Zi-Yi Yang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chun-Hung Lin
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
- Meta-nanoPhotonics Center, National Cheng Kung University, Tainan 70101, Taiwan
- Program on Key Materials, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
3
|
Wu Y, Zhao S, Wang J, Chen Y, Li H, Li JP, Kan Y, Zhang T. Methods for determining the structure and physicochemical properties of hyaluronic acid and its derivatives: A review. Int J Biol Macromol 2024; 282:137603. [PMID: 39542327 DOI: 10.1016/j.ijbiomac.2024.137603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/10/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Hyaluronic acid (HA) is a linear high molecular weight polymer ubiquitously distributed in humans and animals. The D-glucuronic acid and N-acetyl-D-glucosamine repeating disaccharide backbone along with variable secondary and tertiary structures endows HA with unique rheological characteristics as well as diverse biological functions such as maintaining tissue homeostasis and mediating cell functions. Due to its excellent biocompatibility, biodegradability, viscoelasticity and moisturizing properties, natural HA and its chemically modified derivatives are widely used in medical, pharmaceutical, food and cosmetic industries. For broad application purposes, abundant HA-based biochemical products have been developed, including the methodologies for characterization of these products. This review provides an overview focusing on the methods used for determining HA structure as well as the strategies for constructing its derivatives. Apart from the analytical approaches for defining the physicochemical properties of HA (e.g., molecular weight, rheology and swelling capacity), quantitative methods for assessing the purity of HA-based materials are discussed. In addition, the biological functions and potential applications of HA and its derivatives are briefly embarked and perspectives in methodological development are discussed.
Collapse
Affiliation(s)
- Yiyang Wu
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Siran Zhao
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Jiandong Wang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Yujuan Chen
- Bloomage Biotechnology Corporation Limited, Jinan, China
| | - Hongmei Li
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Jin-Ping Li
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China; Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden.
| | - Ying Kan
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China.
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China.
| |
Collapse
|
4
|
Serb AF, Georgescu M, Onulov R, Novaconi CR, Sisu E, Bolocan A, Sandu RE. Mass-Spectrometry-Based Research of Cosmetic Ingredients. Molecules 2024; 29:1336. [PMID: 38542972 PMCID: PMC10974329 DOI: 10.3390/molecules29061336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 11/12/2024] Open
Abstract
Cosmetic products are chemical substances or mixtures used on the skin, hair, nails, teeth, and the mucous membranes of the oral cavity, whose use is intended to clean, protect, correct body odor, perfume, keep in good condition, or change appearance. The analysis of cosmetic ingredients is often challenging because of their huge complexity and their adulteration. Among various analytical tools, mass spectrometry (MS) has been largely used for compound detection, ingredient screening, quality control, detection of product authenticity, and health risk evaluation. This work is focused on the MS applications in detecting and quantification of some common cosmetic ingredients, i.e., preservatives, dyes, heavy metals, allergens, and bioconjugates in various matrices (leave-on or rinse-off cosmetic products). As a global view, MS-based analysis of bioconjugates is a narrow field, and LC- and GC/GC×GC-MS are widely used for the investigation of preservatives, dyes, and fragrances, while inductively coupled plasma (ICP)-MS is ideal for comprehensive analysis of heavy metals. Ambient ionization approaches and advanced separation methods (i.e., convergence chromatography (UPC2)) coupled to MS have been proven to be an excellent choice for the analysis of scented allergens. At the same time, the current paper explores the challenges of MS-based analysis for cosmetic safety studies.
Collapse
Affiliation(s)
- Alina Florina Serb
- Biochemistry Discipline, Biochemistry and Pharmacology Department, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No.2, 300041 Timisoara, Romania
| | - Marius Georgescu
- Physiology Discipline, Functional Sciences Department, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No.2, 300041 Timisoara, Romania
- Center of Immuno-Physiology and Biotechnologies (CIFBIOTEH), "Victor Babeș" University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Robert Onulov
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No.2, 300041 Timisoara, Romania
| | - Cristina Ramona Novaconi
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No.2, 300041 Timisoara, Romania
| | - Eugen Sisu
- Biochemistry Discipline, Biochemistry and Pharmacology Department, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No.2, 300041 Timisoara, Romania
| | - Alexandru Bolocan
- Physiology Discipline, Functional Sciences Department, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No.2, 300041 Timisoara, Romania
| | - Raluca Elena Sandu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania
| |
Collapse
|
5
|
Shang Y, Meng X, Liu J, Song N, Zheng H, Han C, Ma Q. Applications of mass spectrometry in cosmetic analysis: An overview. J Chromatogr A 2023; 1705:464175. [PMID: 37406420 DOI: 10.1016/j.chroma.2023.464175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Mass spectrometry (MS) is a crucial tool in cosmetic analysis. It is widely used for ingredient screening, quality control, risk monitoring, authenticity verification, and efficacy evaluation. However, due to the diversity of cosmetic products and the rapid development of MS-based analytical methods, the relevant literature needs a more systematic collation of information on this subject to unravel the true potential of MS in cosmetic analysis. Herein, an overview of the role of MS in cosmetic analysis over the past two decades is presented. The currently used sample preparation methods, ionization techniques, and types of mass analyzers are demonstrated in detail. In addition, a brief perspective on the future development of MS for cosmetic analysis is provided.
Collapse
Affiliation(s)
- Yuhan Shang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Xianshuang Meng
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Juan Liu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Naining Song
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Hongyan Zheng
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Chao Han
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
6
|
KITAGAWA F, SOMA Y. Recent Applications of Dynamic On-Line Sample Preconcentration Techniques in Capillary Electrophoresis. CHROMATOGRAPHY 2022. [DOI: 10.15583/jpchrom.2022.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fumihiko KITAGAWA
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University
| | - Yuta SOMA
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University
| |
Collapse
|
7
|
Cheng CW, Kou HS, Wu SM, Wang CC. A chemometric experimental design with three-step stacking capillary electrophoresis for analysis of five tobacco-specific nitrosamines in cigarette products. J Chromatogr A 2022; 1677:463283. [PMID: 35810639 DOI: 10.1016/j.chroma.2022.463283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
Tobacco-specific nitrosamines (TSNAs) as carcinogens endanger our health and life from cigarette products. However, the safe range of TSNAs levels in commercial cigarette products has not yet been established. For the purpose of safety and supervision, a three-step stacking approach including field amplified sample injection (FASI), sweeping, and analyte focusing by micelle collapse (AFMC), was developed for the simultaneous determination of five TSNAs levels in cigarette products. This approach also involved aspects of chemometric experimental design, including fractional factorial design and central composite design. After the multilevel optimization of the experimental design, the five TSNAs were well separated. The LOD (S/N = 3) values of the N´-nitrosonornicotine (NNN), N´-nitrosoanatabine (NAT), N´-nitrosoanabasine (NAB), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in the FASI-sweeping-AFMC CE approach were 1.000 ng/mL, 0.500 ng/mL, 0.125 ng/mL, 1.000 ng/mL, and 0.500 ng/mL respectively. The results of relative standard deviation (RSD) and relative error (RE) were all less than 3.35%, demonstrating good precision and accuracy. Finally, this novel approach was further applied to monitor three commercial cigarette products, and a range of 250.1-336.6 ng/g for NNN, 481.6-526.7 ng/g for NAT, 82.2-247.6 ng/g for NAB, 167.7-473.7 ng/g for NNAL, and 39.4-246.7 ng/g for NNK could be observed among these. Based on these results, the novel CE stacking strategy was successfully applied for the analysis of five TSNAs levels in cigarette products and could serve as a tool for assays of quality control of nitrosamines.
Collapse
Affiliation(s)
- Cheng-Wei Cheng
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Hwang-Shang Kou
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Shou-Mei Wu
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC; Taiwan Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan, ROC.
| | - Chun-Chi Wang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC; Drug Development and Value Creation Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC.
| |
Collapse
|
8
|
Screening of the Chemical Composition and Identification of Hyaluronic Acid in Food Supplements by Fractionation and Fourier-Transform Infrared Spectroscopy. Polymers (Basel) 2021; 13:polym13224002. [PMID: 34833306 PMCID: PMC8620353 DOI: 10.3390/polym13224002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 01/19/2023] Open
Abstract
Hyaluronic acid, together with collagen, vitamins or plant extracts, is a part of many cosmetic and food preparations. For example, this polysaccharide is used in formulation of many food supplements due to its protective effects on human health. In this work, the screening of the chemical composition of three chosen dietary supplements (powder, tablets and capsules) containing hyaluronic acid was carried out using Fourier-transform infrared spectroscopy. Because of the low amount of analyte in all these samples, it was isolated or concentrated prior to the analysis using a suitable sequential fractionation protocol. Individual isolation procedures were established for each sample based on their declared composition. Firstly, the major components such as collagen or vitamins were removed to obtain polysaccharide fractions by the enzymatic treatment and/or washing out with the appropriate solvents. In some cases, the water insoluble part was removed from the rest dissolved in water. Then, hyaluronic acid was precipitated with copper(II) cations and thus separated from the other polysaccharides. Finally, the analyte was identified in the enriched fractions by the characteristic vibrational bands. The amount of hyaluronic acid in the purified fractions was determined in three ways: gravimetrically, spectrophotometrically, and using isotachophoresis. The combination of the appropriate preparative and analytical steps led to the successful evaluation of chemical composition, finding and quantification of hyaluronic acid in all the studied samples.
Collapse
|
9
|
Puthongkham P, Wirojsaengthong S, Suea-Ngam A. Machine learning and chemometrics for electrochemical sensors: moving forward to the future of analytical chemistry. Analyst 2021; 146:6351-6364. [PMID: 34585185 DOI: 10.1039/d1an01148k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electrochemical sensors and biosensors have been successfully used in a wide range of applications, but systematic optimization and nonlinear relationships have been compromised for electrode fabrication and data analysis. Machine learning and experimental designs are chemometric tools that have been proved to be useful in method development and data analysis. This minireview summarizes recent applications of machine learning and experimental designs in electroanalytical chemistry. First, experimental designs, e.g., full factorial, central composite, and Box-Behnken are discussed as systematic approaches to optimize electrode fabrication to consider the effects from individual variables and their interactions. Then, the principles of machine learning algorithms, including linear and logistic regressions, neural network, and support vector machine, are introduced. These machine learning models have been implemented to extract complex relationships between chemical structures and their electrochemical properties and to analyze complicated electrochemical data to improve calibration and analyte classification, such as in electronic tongues. Lastly, the future of machine learning and experimental designs in electrochemical sensors is outlined. These chemometric strategies will accelerate the development and enhance the performance of electrochemical devices for point-of-care diagnostics and commercialization.
Collapse
Affiliation(s)
- Pumidech Puthongkham
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand. .,Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Chulalongkorn University, Bangkok 10330, Thailand.,Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supacha Wirojsaengthong
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Akkapol Suea-Ngam
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
10
|
Chang WH, Liu PY, Lin MH, Lu CJ, Chou HY, Nian CY, Jiang YT, Hsu YHH. Applications of Hyaluronic Acid in Ophthalmology and Contact Lenses. Molecules 2021; 26:molecules26092485. [PMID: 33923222 PMCID: PMC8123179 DOI: 10.3390/molecules26092485] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Hyaluronic acid (HA) is a glycosaminoglycan that was first isolated and identified from the vitreous body of a bull’s eye. HA is ubiquitous in the soft connective tissues of animals and therefore has high tissue compatibility for use in medication. Because of HA’s biological safety and water retention properties, it has many ophthalmology-related applications, such as in intravitreal injection, dry eye treatment, and contact lenses. Due to its broad range of applications, the identification and quantification of HA is a critical topic. This review article discusses current methods for analyzing HA. Contact lenses have become a widely used medical device, with HA commonly used as an additive to their production material, surface coating, and multipurpose solution. HA molecules on contact lenses retain moisture and increase the wearer’s comfort. HA absorbed by contact lenses can also gradually release to the anterior segment of the eyes to treat dry eye. This review discusses applications of HA in ophthalmology.
Collapse
Affiliation(s)
- Wan-Hsin Chang
- Research and Development Center, Yung Sheng Optical Company, Daya District, Taichung 42881, Taiwan; (W.-H.C.); (P.-Y.L.); (M.-H.L.); (C.-J.L.); (H.-Y.C.); (C.-Y.N.)
| | - Pei-Yi Liu
- Research and Development Center, Yung Sheng Optical Company, Daya District, Taichung 42881, Taiwan; (W.-H.C.); (P.-Y.L.); (M.-H.L.); (C.-J.L.); (H.-Y.C.); (C.-Y.N.)
| | - Min-Hsuan Lin
- Research and Development Center, Yung Sheng Optical Company, Daya District, Taichung 42881, Taiwan; (W.-H.C.); (P.-Y.L.); (M.-H.L.); (C.-J.L.); (H.-Y.C.); (C.-Y.N.)
| | - Chien-Ju Lu
- Research and Development Center, Yung Sheng Optical Company, Daya District, Taichung 42881, Taiwan; (W.-H.C.); (P.-Y.L.); (M.-H.L.); (C.-J.L.); (H.-Y.C.); (C.-Y.N.)
| | - Hsuan-Yi Chou
- Research and Development Center, Yung Sheng Optical Company, Daya District, Taichung 42881, Taiwan; (W.-H.C.); (P.-Y.L.); (M.-H.L.); (C.-J.L.); (H.-Y.C.); (C.-Y.N.)
| | - Chih-Yu Nian
- Research and Development Center, Yung Sheng Optical Company, Daya District, Taichung 42881, Taiwan; (W.-H.C.); (P.-Y.L.); (M.-H.L.); (C.-J.L.); (H.-Y.C.); (C.-Y.N.)
| | - Yuan-Ting Jiang
- Research and Development Center, Yung Sheng Optical Company, Daya District, Taichung 42881, Taiwan; (W.-H.C.); (P.-Y.L.); (M.-H.L.); (C.-J.L.); (H.-Y.C.); (C.-Y.N.)
- Correspondence: (Y.-T.J.); (Y.-H.H.H.); Tel.: +886-4-25658384 (ext. 3706) (Y.-T.J.); +886-4-23590121 (ext. 32238) (Y.-H.H.H.)
| | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, Xitun District, Taichung 40704, Taiwan
- Correspondence: (Y.-T.J.); (Y.-H.H.H.); Tel.: +886-4-25658384 (ext. 3706) (Y.-T.J.); +886-4-23590121 (ext. 32238) (Y.-H.H.H.)
| |
Collapse
|
11
|
Gong J, Zhou G, Wu Y, Zhang S, Liu X. Offline Selective Extraction Combined with Online Enrichment for Sensitive Analysis of Chondroitin Sulfate by Capillary Electrophoresis. J Chromatogr Sci 2020; 58:868-874. [DOI: 10.1093/chromsci/bmaa052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/26/2020] [Accepted: 07/23/2020] [Indexed: 11/13/2022]
Abstract
AbstractA capillary electrophoresis (CE) method combined with online and offline enrichment for improving the detection sensitivity of chondroitin sulfate (CS) is established. The online enrichment method is based on the field-amplified sample stacking and large volume electrokinetic injection, and offline enrichment is based on the association between cetyltrimethylammonium chloride and CS. Experimental parameters affecting CE method such as the type and pH of background electrolyte, the injection mode and time and the steps of offline enrichment were optimized. Under optimum conditions, the calibration plot between CS concentration and peak area was linear in the range of 1 ~ 100 μg/mL. The enrichment factor was 130 times and the limit of detection was 50 ng/mL. The average recovery was 103.5% and the relative standard deviation of peak area was <2.0%. The method was successfully applied to the quantitative analysis of CS in drugs.
Collapse
Affiliation(s)
- Jie Gong
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Guanglian Zhou
- School of Chemistry and Chemical Engineering, Qilu University of Technology, Jinan 250353, China
| | - Yuanhong Wu
- Obstetrics and Gynecology Department, Jinan Shizhong People’s Hospital, Jinan 250002, China
| | - Siying Zhang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiumei Liu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
12
|
Xiao J, Hao X, Miao C, Li F, Huang J, Lin X, Chen M, Wu X, Weng S. Determination of chondroitin sulfate in synovial fluid and drug by ratiometric fluorescence strategy based on carbon dots quenched FAM-labeled ssDNA. Colloids Surf B Biointerfaces 2020; 192:111030. [PMID: 32353709 DOI: 10.1016/j.colsurfb.2020.111030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022]
Abstract
Chondroitin sulfate (CS) plays an increasingly important role in clinical settings and pharmacy quality control. However, sensitive and simple methods for CS detection remain limited. In this work, positively charged nitrogen doped carbon dots (P-NCDs) with internal luminescence and quenching property to FAM-labeled random-sequence ssDNA (F-ssDNA) were prepared by a simple heating method. P-NCDs attached and quenched F-ssDNA through electrostatic interaction to form the system of P-NCDs and F-ssDNA (P-NCDs/F-ssDNA) with retained fluorescence intensity of P-NCDs. The highly negatively charged CS reacted electrostatically with P-NCDs and then replaced F-ssDNA in P-NCDs/F-ssDNA to recover the fluorescence intensity of the original quenched F-ssDNA while retaining the internal fluorescence intensity of P-NCDs. Thus, by using restored F-ssDNA as the signal controlled by adding CS to P-NCDs/F-ssDNA, a ratiometric fluorescence strategy based on the retained fluorescence of P-NCDs as reference signal was fabricated through synchronous fluorescence spectrometry for the sensitive detection of CS. Under the optimal experimental conditions, a linear equation for CS was obtained for CS concentration within the range of 0.05-2.0 μg/mL. The method was also successfully applied for the accurate determination of CS in joint fluid samples of arthritic patients, chondroitin sulfate tablets, and chondroitin sulfate eye drops, suggesting its appreciable application potential in the clinic.
Collapse
Affiliation(s)
- Jiecheng Xiao
- Department of Orthopedic Surgery, the Affiliated Hospital of Putian University, Putian 351100, China
| | - Xiaoli Hao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Chenfang Miao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Fenglan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jianyong Huang
- Department of Pharmaceutical, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Min Chen
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| | - Xianwei Wu
- Department of Orthopedic Surgery, the Affiliated Hospital of Putian University, Putian 351100, China.
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|