1
|
Wang L, Yan X, Chen X, Li Y, Wu D. Magnetic polyimide nanocomposite for analysis of parabens in cooking wine by magnetic solid-phase extraction coupled with gas chromatography - Mass spectrometry. J Chromatogr A 2024; 1720:464814. [PMID: 38490140 DOI: 10.1016/j.chroma.2024.464814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
A magnetic polyimide (PI) nanocomposite has been synthesized by phase inversion of PI and simultaneous encapsulation of Fe3O4 nanoparticles. The Fe3O4/PI nanocomposite was characterized by a variety of characterization techniques, including infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption isotherms, and vibrating sample magnetometry. The results showed that the prepared nanocomposite had a homogeneous structure, adequate specific surface area (76.1 m2/g) and high saturation magnetization (42.9 emu/g). Using parabens as model analytes, the performance of the Fe3O4/PI nanocomposite as an adsorbent for magnetic solid-phase extraction (MSPE) was evaluated. The extracted parabens were desorbed and determined by gas chromatography-mass spectrometry (GC-MS). The parameters affecting the extraction and desorption efficiency of parabens were optimized. Under the optimal conditions, the developed MSPE/GC-MS method was successfully applied to the determination of parabens in cooking wine. The MSPE/GC-MS method exhibited broad linearity (0.2-100 µg/L), low detection limits (0.04-0.05 µg/L), and satisfactory extraction recoveries (79.2 %-113.3 %) with relative standard deviations (RSDs) ranging from 0.7 % to 10.4 %. For real cooking wine samples, the spiked recoveries ranged from 91.7 % to 118.7 % with RSDs of 1.0 %-11.2 %. The results demonstrated that the Fe3O4/PI nanocomposite was an effective adsorbent, and this work provides a novel reference for the easy preparation of magnetic adsorbent materials.
Collapse
Affiliation(s)
- Liuxin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaohui Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Xianzhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yanshuo Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Dapeng Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
2
|
Jullakan S, Rattanakunsong N, Płotka-Wasylka J, Bunkoed O. A magnetic stir bar sorbent of metal organic frameworks, carbon foam decorated zinc oxide and cryogel to enrich and extract parabens and bisphenols from food samples. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1232:123970. [PMID: 38128167 DOI: 10.1016/j.jchromb.2023.123970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
A porous composite magnetic stir bar adsorbent was fabricated for the extraction and enrichment of parabens and bisphenols from selected beverage samples. The adsorbent comprised a metal organic framework, carbon foam decorated zinc oxide and magnetic nanoparticles embedded in polyvinyl alcohol cryogel. The porous composite stir bar adsorbent could adsorb parabens and bisphenols via hydrogen bonding, π-π and hydrophobic interactions. In the best conditions, linearity was good from 5.0 to 200.0 µg/L for methyl paraben, ethyl paraben and bisphenol A and from 10.0 to 200.0 µg/L for bisphenol B and butyl paraben. Limits of detection ranged from 1.5 to 3.0 µg/L. The developed composite stir bar was successfully applied to extract and determine parabens and bisphenols in fruit juice, beer and milk. Recoveries ranged from 89.5 to 99.5 % with RSDs lower than 6 %. The developed sorbent and new methodology were evaluated in terms of its green character with satisfactory results.
Collapse
Affiliation(s)
- Sirintorn Jullakan
- Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Natnaree Rattanakunsong
- Office of Scientific Instrument and Testing, Prince of Songkla University, Hat Yai, Songkhla, 90110 Thailand
| | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland
| | - Opas Bunkoed
- Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
3
|
Jakavula S, Nqombolo A, Mpupa A, Ren J, Nomngongo PN. Hybrid porous material supported in a cellulose acetate polymeric membrane for the direct immersion thin-film microextraction of parabens in water. J Chromatogr A 2023; 1705:464187. [PMID: 37419016 DOI: 10.1016/j.chroma.2023.464187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
A simple and sensitive direct immersion thin-film microextraction (DI-TFME) method based on MIL-101(Cr) modified with carbon nanofibers supported in cellulose acetate (CA-MIL-101(Cr)@CNFs) polymeric membrane was developed for the extraction and preconcentration of parabens in environmental water samples. A high-performance liquid chromatography-diode array detector (HPLC-DAD) was used for the determination and quantification of methylparaben (MP) and propylparaben (PP). The factors affecting the DI-TFME performance were investigated using central composite design (CCD). The linearity of the DI-TFME/HPLC-DAD method obtained under optimal conditions was 0.04-0.04-500 µg/L with a correlation coefficient (R2) greater than 0.99, respectively. The limits of detection (LOD) and quantification (LOQ) for methylparaben were 11 ng/L and 37 ng/L; for propylparaben, they were 13 ng/L and 43 ng/L, respectively. The enrichment factors were 93.7 and 123 for methylparaben and propylparaben. The intraday (repeatability) and interday (reproducibility) precisions expressed as relative standard deviations (%RSD) were less than 5%. Furthermore, the DI-TFME/HPLC-DAD method was validated using real water samples spiked with known concentrations of the analytes. The recoveries ranged from 91.5 to 99.8%, and intraday and interday trueness values were less than ±15%. The DI-TFME/HPLC-DAD approach was effectively used for the preconcentration and quantification of parabens in river water and wastewater samples.
Collapse
Affiliation(s)
- Silindokuhle Jakavula
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Azile Nqombolo
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice 5700, South Africa
| | - Anele Mpupa
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Jianwei Ren
- Department of Mechanical Engineering Science, University of Johannesburg, Cnr Kingsway and University Roads, Auckland Park, Johannesburg 2092, South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa; Department of Science and Innovation /Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
4
|
Liu Q, Wei L, Chen X, Gao X, Zhao J. Self-collected 3D nano-adsorbent GR@p(POSS-co-DMAEMA) applied to the dispersive solid-phase microextraction in parabens detection of condiments. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
5
|
Tahmasebi E, Sattari R. Development of a new strategy for the synthesis of graphene oxide-alumina nanocomposite as an efficient adsorbent for dispersive solid-phase extraction of parabens. J Sep Sci 2023; 46:e2200698. [PMID: 36333934 DOI: 10.1002/jssc.202200698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
The present study investigates the synthesis and application of the graphene oxide-alumina nanocomposite as a new adsorbent for the dispersive solid-phase extraction of three parabens and their determination using high-performance liquid chromatography-ultraviolet detection. The characterization of the synthesized material was accomplished and its size, morphology, chemical composition, porosity, and thermal stability were studied. Application of the proposed strategy for the synthesis of the nanocomposite resulted in the incorporation of Al2 O3 nanoparticles into graphene oxide nanosheets, further resulting in the exfoliation of graphene oxide nanosheets increasing their surface area. An orthogonal rotatable central composite design was used to optimize the extraction. Under the optimum conditions, the analytical performance of the method showed a suitable linear dynamic range (0.2-100.0 μg/L), reasonable limits of detection (0.03-0.05 μg/L), and preconcentration factors ranging from 128 to 173. Finally, the new validated method was applied for the determination of parabens in some real samples including wastewater, cream, toothpaste, and juice samples with satisfactory recoveries (88%-109%), and relative standard deviations less than 8.7% (n = 3). Results demonstrated that inserting alumina nanoparticles into graphene oxide nanosheets improved the extraction efficiency of parabens, as polar acidic compounds, by providing additional efficient interactions including hydrogen bonding, dipole-dipole, and Brønsted and Lewis acid-base interactions.
Collapse
Affiliation(s)
- Elham Tahmasebi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Rasoul Sattari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| |
Collapse
|
6
|
Pacyga DC, Chiang C, Li Z, Strakovsky RS, Ziv-Gal A. Parabens and Menopause-Related Health Outcomes in Midlife Women: A Pilot Study. J Womens Health (Larchmt) 2022; 31:1645-1654. [PMID: 35787012 PMCID: PMC10024061 DOI: 10.1089/jwh.2022.0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Parabens are antimicrobial agents prevalently found in daily-use products that can interfere with the endocrine and reproductive systems. In this study, we examined the cross-sectional associations of parabens with hot flashes, hormone concentrations, and ovarian volume in a subsample of 101 nonsmoking, non-Hispanic 45- to 54-year-old women from the Midlife Women's Health Study. Materials and Methods: Women self-reported their hot flash history and underwent a transvaginal ultrasound to measure ovarian volume. Participants provided blood for quantification of serum hormones (by enzyme-linked immunosorbent assay or radioimmunoassay) and urine samples for measurements of urinary paraben biomarker levels (by high-performance liquid chromatography negative-ion electrospray ionization-tandem mass spectrometry). Linear or logistic regression models evaluated associations of specific gravity-adjusted paraben biomarker concentrations with hot flashes, hormone concentrations, and ovarian volume. Results: We observed marginal associations of propylparaben, methylparaben, and ∑parabens biomarkers (molar sum of four parabens) with hot flashes and follicle-stimulating hormone (FSH) concentrations, and of these paraben biomarkers and ethylparaben with ovarian volume. For example, women tended to have 32% (95% confidence intervals [CI]: 0.9 to 1.81), 40% (95% CI: 1.0 to 1.95), and 40% (95% CI: 0.98 to 2.01) higher odds of having recent, monthly, and mild hot flashes, respectively, for every two-fold increase in ∑parabens. Similarly, women tended to have 14.54% (95% CI: -0.10 to 31.32) higher FSH concentrations, but 5.67% (95% CI: -12.54 to 1.75) reduced ovarian volume for every two-fold increase in ∑parabens Conclusions: Overall, our preliminary findings suggest that urinary paraben biomarkers may be associated with menopause-related outcomes in midlife women. Additional studies in larger and diverse populations are needed to expand on these findings.
Collapse
Affiliation(s)
- Diana C. Pacyga
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Catheryne Chiang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zhong Li
- Metabolomics Lab, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rita S. Strakovsky
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Ayelet Ziv-Gal
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
7
|
Disposable screen-printed carbon-based electrodes in amperometric detection for simultaneous determination of parabens in complex-matrix personal care products by HPLC. Talanta 2022; 245:123459. [DOI: 10.1016/j.talanta.2022.123459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/31/2022] [Accepted: 04/03/2022] [Indexed: 01/02/2023]
|
8
|
Wang X, Wang H, Wu X, Lu Y. Characterization and determination of Benvitimod, an unknown risk substance in cosmetics, using nuclear magnetic resonance spectroscopy and HPLC-MS/MS. J Sep Sci 2022; 45:3652-3662. [PMID: 35822938 DOI: 10.1002/jssc.202200388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/27/2022] [Accepted: 07/09/2022] [Indexed: 11/06/2022]
Abstract
Ultra-high performance liquid chromatography-tandem high-resolution mass spectrometry, combined with preparative chromatography and nuclear magnetic resonance spectroscopy, a new method for identifying unknown risk substances structure in cosmetics has been established. Moreover, HPLC-MS/MS was developed for the determination of benvitimod in cosmetics. The sample was collected in Ultra-high performance liquid chromatography-tandem high-resolution mass spectrometry, the molecular formula of the unknown was obtained as C17 H18 O2 . After preparative chromatography enrichment and purification, the enriched compound was scanned by nuclear magnetic resonance spectroscopy, and the chemical structure of the unknown was confirmed as benvitimod. Subsequently, the separation was determined in multiple reaction monitoring mode. The results showed that the linearity of benvitimod was good in the range of 1∼100 μg/L with the correlation coefficient r2 >0.999; the limit of detection and quantification were 0.02 mg/kg and 0.067 mg/kg; the precision and stability were good; the average recoveries were 104.2%, 108.2% and 108.7% for low, medium and high spiked concentrations. Forty batches of cosmetics were screened, of which two batches were detected with illegal addition of benvitimod at 2.48 g/kg and 3.13 g/kg. The method effectively solved the loopholes in regulation and provided a research basis for the qualitative identification of structurally unknown compounds in cosmetics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xinran Wang
- National Institutes for Food and Drug Control/NMPA Key Laboratory for Researching and Evaluation of Cosmetics, Beijing, 100050, China
| | - Haiyan Wang
- National Institutes for Food and Drug Control/NMPA Key Laboratory for Researching and Evaluation of Cosmetics, Beijing, 100050, China
| | - Xianfu Wu
- National Institutes for Food and Drug Control/NMPA Key Laboratory for Researching and Evaluation of Cosmetics, Beijing, 100050, China
| | - Yong Lu
- National Institutes for Food and Drug Control/NMPA Key Laboratory for Researching and Evaluation of Cosmetics, Beijing, 100050, China
| |
Collapse
|
9
|
Ning T, Yang H, Shi C, Yu J, Yu H, Chen P, Di S, Wang J, Zhu S. An in vitro assessment for human skin exposure to parabens using magnetic solid phase extraction coupled with HPLC. CHEMOSPHERE 2022; 286:131593. [PMID: 34293573 DOI: 10.1016/j.chemosphere.2021.131593] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Skin contact was a significant source of human exposure to parabens during the use of personal care products. In this study, a novel and simple in vitro evaluation method for human skin exposure to parabens was established for the first time. Firstly, magnetic porous carbon (MPC) derived from discarded cigarette butts was prepared as an adsorbent of magnetic solid-phase extraction (MSPE), which provided a fast and efficient sample preparation method with satisfactory extraction performance for parabens in cosmetics and was easy to couple with high performance liquid chromatography. Secondly, the extraction conditions were optimized including the etching ratio of KOH, amount of MPC, extraction time, pH, salt concentration, desorption solvent volume and desorption time. Under the optimized conditions, the limits of detection were between 0.25 and 0.34 ng mL-1 and the spiked recoveries were in the range of 85.8-112.6%. Thirdly, the developed method was successfully employed to determine five typical parabens in real unspiked cosmetic samples, and two parabens were detected at a relatively high level. Then, the developed method was applied to in vitro assays. The absorbable dose of parabens in cream was investigated and in vitro experiments were further designed with agarose-simulated skin to demonstrate the penetration ability of parabens. In conclusion, these results indicated that parabens did have the risk of entering the body through the skin and the exposure was preferably no more than 3 h with skin contact.
Collapse
Affiliation(s)
- Tao Ning
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Hucheng Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Chunxiang Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Jing Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Gemmological Institute, China University of Geosciences, Wuhan, 430074, China
| | - Hao Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Pin Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Jiahao Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
10
|
An Improved Stir Fabric-Phase Sorptive Extraction Combined with Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry Analysis for the Determination of 48 Pesticide Residues in Vegetable Samples. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Li J, Jiang Y, Sun Y, Wang X, Ma P, Song D, Fei Q. Extraction of parabens by melamine sponge with determination by high-performance liquid chromatography. J Sep Sci 2021; 45:697-705. [PMID: 34817924 DOI: 10.1002/jssc.202100817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 01/18/2023]
Abstract
In the present study, we propose a novel method for the extraction of parabens in personal care products. A new, simple adsorptive material was obtained by combining metal-organic frameworks and melamine sponges using the adhesive property of polyvinylidene fluoride. This new material, metal-organic frameworks/melamine sponges, was found to be particularly suitable for solid-phase extraction. The structural characteristics of metal-organic frameworks/melamine sponges were first analyzed by scanning electron microscopy. Subsequently, solid-phase extraction was performed on sample solutions, and the extracted substances were then analyzed by high-performance liquid chromatography. Following optimization of important experimental conditions, excellent recovery rates were obtained. Our novel method was then applied to the extraction of four parabens (methylparahydroxybenzoates, ethylparahydroxybenzoates, propylparahydroxybenzoates, and butylparahydroxybenzoates) from real samples. The results yielded LODs of 0.26-0.41 ng/mL. The inter- and intra-day recoveries were 104.0-109.7% and 91.2-98.1%, respectively (relative standard deviation, <13.8%).
Collapse
Affiliation(s)
- Jingkang Li
- Department of Analytical Chemistry, College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, P. R. China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
| | - Ying Sun
- Department of Analytical Chemistry, College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, P. R. China
| | - Xinghua Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, P. R. China
| | - Pinyi Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, P. R. China
| | - Daqian Song
- Department of Analytical Chemistry, College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, P. R. China
| | - Qiang Fei
- Department of Analytical Chemistry, College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, P. R. China
| |
Collapse
|
12
|
Azizi Nezami R, Saber Tehrani M, Faraji H, Waqif Husain S, Aberoomand Azar P. Strategies to improve the challenges of classic dispersive liquid-liquid microextraction for determination of the parabens in personal care products-One step closer to green analytical chemistry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1183:122973. [PMID: 34666891 DOI: 10.1016/j.jchromb.2021.122973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 01/20/2023]
Abstract
Gas flow-assisted dispersive liquid-phase microextraction based on deep eutectic solvent was used to determine parabens in personal care products such as mouthwash, lidocaine gel, aloe vera gel, and skin tonic. A homemade extraction device was innovated, in which by passing the stream of gas bubbles through the deep eutectic solvent a thin layer of the extraction phase is coated on the surface of the bubbles. The extraction is finally achieved when the bubbles are going up through the sample. The single-factor experiments and response surface methodology were applied to optimize the independent variables. The linear range of the method was 0.5 to 1000 µg L-1, the coefficient of determination for the goal analytes was higher than 0.9989, the instrumental limit of detections were in the range 0.2-0.3 μg L-1, and the instrumental limit of quantifications were in the range 0.5-1.1 μg L-1, the relative standard deviations were <5.2% for repeatability and <11.2% for intermediate precision, and the enrichment factors were 66 to 87 obtained under the optimized conditions. A spiking approach by means of standard material was used to estimate accuracy. The relative recoveries were in the range 95.8-105.2%. By using mentioned strategies, the organic waste and energy consumption reduced, toxic reagents replaced with safer ones, and operator safety enhanced. Accordingly, these benefits have been simultaneously attained and, the proposed method was one step closer to automation and sustainable analytical chemistry.
Collapse
Affiliation(s)
- Razieh Azizi Nezami
- Department of Chemistry, Science and Research Branche, Islamic Azad University, Iran
| | | | - Hakim Faraji
- Department of Chemistry, Varamin-Pishva Branch, Islamic Azad University, Varamin 338177489, Iran.
| | - Syed Waqif Husain
- Department of Chemistry, Science and Research Branche, Islamic Azad University, Iran
| | | |
Collapse
|
13
|
Recent Advances in Sample Preparation for Cosmetics and Personal Care Products Analysis. Molecules 2021; 26:molecules26164900. [PMID: 34443488 PMCID: PMC8399500 DOI: 10.3390/molecules26164900] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022] Open
Abstract
The use of cosmetics and personal care products is increasing worldwide. Their high matrix complexity, together with the wide range of products currently marketed under different forms imply a challenge for their analysis, most of them requiring a sample pre-treatment step before analysis. Classical sample preparation methodologies involve large amounts of organic solvents as well as multiple steps resulting in large time consumption. Therefore, in recent years, the trends have been moved towards the development of simple, sustainable, and environmentally friendly methodologies in two ways: (i) the miniaturization of conventional procedures allowing a reduction in the consumption of solvents and reagents; and (ii) the development and application of sorbent- and liquid-based microextraction technologies to obtain a high analyte enrichment, avoiding or significantly reducing the use of organic solvents. This review provides an overview of analytical methodology during the last ten years, placing special emphasis on sample preparation to analyse cosmetics and personal care products. The use of liquid–liquid and solid–liquid extraction (LLE, SLE), ultrasound-assisted extraction (UAE), solid-phase extraction (SPE), pressurized liquid extraction (PLE), matrix solid-phase extraction (MSPD), and liquid- and sorbent-based microextraction techniques will be reviewed. The most recent advances and future trends including the development of new materials and green solvents will be also addressed.
Collapse
|
14
|
Interference-free analysis of multi-class preservatives in cosmetic products using alternating trilinear decomposition modeling of liquid chromatography diode array detection data. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Abad-Gil L, Lucas-Sánchez S, Gismera MJ, Sevilla MT, Procopio JR. Determination of paraben-, isothiazolinone- and alcohol-type preservatives in personal care products by HPLC with dual (diode-array and fluorescence) detection. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Khesina ZB, Iartsev SD, Revelsky AI, Buryak AK. Microextraction by packed sorbent optimized by statistical design of experiment as an approach to increase the sensitivity and selectivity of HPLC-UV determination of parabens in cosmetics. J Pharm Biomed Anal 2020; 195:113843. [PMID: 33358620 DOI: 10.1016/j.jpba.2020.113843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 11/25/2022]
Abstract
A new approach to the quantitative analysis of parabens (PBs) in cosmetics, based on microextraction by packed sorbent (MEPS) followed by HPLC-UV detection is proposed. The development of optimal conditions for the sample preparation step was carried out in two stages. The potentially important factors that could influence the extraction were screened using the Plackett-Burman design approach, as a result of which, three statistically significant factors were selected from the nine studied. Thereafter, the selected variables were optimized by response surface methodology using a Central Composite Design. Under optimal conditions, the linear ranges for PBs analysis in cosmetic samples were 0.05-4 μg/mL with excellent precision. Limits of detection (LOD) of PBs in cosmetic samples were 2-5 ng/mL, and the extraction recovery ranged from 89 to 105 %. By comparing the chromatograms of the diluted shampoo sample before and after MEPS, the benefits of developed approach were shown. Then it was applied to the analysis of PBs in commercial hair cosmetic products: parabens were determined in all samples in which they were indicated on the package and in 1 of 12 samples labeled "paraben-free". Finally, the proposed method was compared with other analytical HPLC-UV methods with various sample pretreatment techniques for PBs analysis in cosmetics described in recent articles. Its sensitivity turned out to be one of the highest, while it is express, automated, meets the principles of green chemistry.
Collapse
Affiliation(s)
- Zoya B Khesina
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect, 31-4, GSP-1, 119071, Moscow, Russia.
| | - Stepan D Iartsev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect, 31-4, GSP-1, 119071, Moscow, Russia
| | - Alexander I Revelsky
- Laboratory of Mass Spectrometry, Chemistry Department, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 1-3, 119991, Moscow, Russia
| | - Alexey K Buryak
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect, 31-4, GSP-1, 119071, Moscow, Russia
| |
Collapse
|
17
|
Simultaneous Determination of Isothiazolinones and Parabens in Cosmetic Products Using Solid-Phase Extraction and Ultra-High Performance Liquid Chromatography/Diode Array Detector. Pharmaceuticals (Basel) 2020; 13:ph13110412. [PMID: 33266462 PMCID: PMC7700590 DOI: 10.3390/ph13110412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/25/2022] Open
Abstract
Isothiazolinones methylisothiazolinone (MI) and methylchloroisothiazolinone (MCI), and parabens methylparaben (MP), ethylparaben (EP), propylparaben (PP) and butylparaben (BP) are the most common synthetic preservatives. They are all known to be potential skin allergens that lead to contact dermatitis. Thus, the identification of these unsafe chemicals in cosmetic products is of high importance. In the present study, solid-phase extraction (SPE) based on HyperSep reversed-phase C8/benzene sulfonic acid ion exchanger (HyperSep C8/BSAIE) and Sep-Pak C18 sorbents, and ultra-high performance liquid chromatography/diode array detector (UHPLC/DAD) were optimized for the simultaneous determination of MI, MCI, MP, EP, PP and BP in cosmetic products. HyperSep C8/BSAIE and UHPLC/DAD with the eluting solvent mixture (acetonitrile/methanol, 2:1, v/v) and detection wavelength (255 nm) were found to be the optimal conditions, respectively. The method illustrates the excellent linearity range (0.008–20 μg/mL) with coefficient of determination (R2, 0.997–0.999), limits of detection (LOD, 0.001–0.002 μg/mL), precision in terms of relative standard deviation (RSD < 3%, intra-day and <6%, inter-day) when examining a standard mixture at low (0.07 µg/mL), medium (3 µg/mL) and high (15 µg/mL) concentrations. A total of 31 cosmetic samples were studied, achieving concentrations (MI, not detected (nd)-0.89 µg/g), (MCI, nd-0.62 µg/g), (MP, nd-6.53 µg/g), (EP, nd-0.90 µg/g), (PP, nd-9.69 µg/g) and (BP, nd-17.80 µg/g). Recovery values ranged from 92.33 to 101.43% depending on the types of sample. To our knowledge, this is the first specific method which covers the theme and describes background amounts of such preservatives in cosmetics.
Collapse
|