1
|
Ribeiro M, Bianchi IN, Silva WDM, Cavasani JPS, Santos ÍG, Dias L, Colodel EM, Furlan FH. Subacute and chronic toxic hepatopathy in cattle grazing pasture with Crotalaria spectabilis. Vet Pathol 2025; 62:82-86. [PMID: 39327680 DOI: 10.1177/03009858241281899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
This report describes subacute and chronic toxic hepatopathy in cattle due to Crotalaria spectabilis poisoning. A total of 200 male Nellore cattle were introduced into a paddock contaminated with C. spectabilis. After spending 20 days grazing in this area, 6 cattle became ill and died. The remaining 194 cattle were moved to non-contaminated pasture in a nearby farm and, 45 days after arrival, 15 cattle became ill and died. Three affected cattle were necropsied. The main clinical changes consisted of anorexia, isolation from the herd, weight loss, jaundice, recumbency, and death. The primary lesions were observed in the liver. Subacutely poisoned cattle had slightly firm livers with an accentuated lobular pattern. Histologically, hepatocyte loss with dilated sinusoids, hepatomegalocytosis, and fibrosis was observed. Cattle with chronic disease had small, pale, firm livers with an irregular hepatic capsular surface. Microscopic changes included hepatocyte loss, hepatomegalocytosis, bile duct proliferation, and fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Luana Dias
- Universidade Federal de Mato Grosso, Cuiaba, Brazil
| | | | | |
Collapse
|
2
|
Lis-Cieplak A, Trześniowska K, Stolarczyk K, Stolarczyk EU. Pyrrolizidine Alkaloids as Hazardous Toxins in Natural Products: Current Analytical Methods and Latest Legal Regulations. Molecules 2024; 29:3269. [PMID: 39064851 PMCID: PMC11279032 DOI: 10.3390/molecules29143269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) are toxic compounds that occur naturally in certain plants, however, there are many secondary pathways causing PA contamination of other plants, including medicinal herbs and plant-based food products, which pose a risk of human intoxication. It is proven that chronic exposure to PAs causes serious adverse health consequences resulting from their cytotoxicity and genotoxicity. This review briefly presents PA occurrence, structures, chemistry, and toxicity, as well as a set of analytical methods. Recently developed sensitive electrochemical and chromatographic methods for the determination of PAs in honey, teas, herbs, and spices were summarized. The main strategies for improving the analytical efficiency of PA determination are related to the use of mass spectrometric (MS) detection; therefore, this review focuses on advances in MS-based methods. Raising awareness of the potential health risks associated with the presence of PAs in food and herbal medicines requires ongoing research in this area, including the development of sensitive methods for PA determination and rigorous legal regulations of PA intake from herbal products. The maximum levels of PAs in certain products are regulated by the European Commission; however, the precise knowledge about which products contain trace but significant amounts of these alkaloids is still insufficient.
Collapse
Affiliation(s)
- Agnieszka Lis-Cieplak
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.L.-C.); (K.T.)
| | - Katarzyna Trześniowska
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.L.-C.); (K.T.)
| | | | - Elżbieta U. Stolarczyk
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.L.-C.); (K.T.)
| |
Collapse
|
3
|
Chen Y, Li L, Xu J, Liu Y, Xie Y, Xiong A, Wang Z, Yang L. Mass spectrometric analysis strategies for pyrrolizidine alkaloids. Food Chem 2024; 445:138748. [PMID: 38422865 DOI: 10.1016/j.foodchem.2024.138748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 03/02/2024]
Abstract
Pyrrolizidine alkaloids (PAs) in food and natural preparations have received widespread attention due to their hepatotoxicity, genotoxicity, and embryotoxicity. Mass spectrometry (MS), as a high resolution, high sensitive, and high throughput detection tool, has been the most commonly used technique for the determination of PAs. The continuous advancement of new technologies, methods, and strategies in the field of MS has contributed to the improvement of the analytical efficiency and methodological enhancement of PAs. This paper provides an overview of the structure, toxicity properties and commonly employed analytical methods, focusing on the concepts, advances, and novel techniques and applications of MS-based methods for the analysis of PAs. Additionally, the remaining challenges, future perspectives, and trends for PA detection are discussed. This review provides a reference for toxicological studies of PAs, content monitoring, and the establishment of quality control and safety standards for herbal and food products.
Collapse
Affiliation(s)
- Yilin Chen
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jie Xu
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yamin Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanqiao Xie
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Aizhen Xiong
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Yi Y, Lu Y, Liu H, Wang Z, Li S, Huang X, Chai Y, Zhang X, Li Z, Chen H. Insight into pyrrolizidine alkaloids degradation and the chemical structures of their degradation products using ultra high performance liquid chromatography and Q-Exactive Orbitrap mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134260. [PMID: 38678722 DOI: 10.1016/j.jhazmat.2024.134260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024]
Abstract
Pyrrolizidine alkaloids (PAs), released into the environment by donor plants, are absorbed by crops or transported by animals, posing a global food safety concern. Photolysis is an effective way to eliminate harmful substances in the environment or food. Photolysis happens as PAs move among plants, environment and crops. In this study, we first investigated the photolysis and hydrolysis of 15 PAs and identified their degradation products via ultra-high performance liquid chromatography and Q-Exactive Orbitrap mass spectrometry. PAs were degraded under UV radiation but minimally affected by visible light from a xenon lamp, and solvent pH had little impact on their photolysis. PAs were stable in neutral and acidic solutions but degraded by 50% within 24 h in alkaline conditions. The degradation products of PAs were mainly PAs/PANOs isomers and some minor byproducts. Cytotoxicity and computational analysis revealed isomers had similar toxicity, with minor products being less toxic. This study is a precursor for revealing the potential PAs degradation dynamics in the environment and food products, providing a reference for systematic evaluations of potential health and ecological risks of their degradation products.
Collapse
Affiliation(s)
- Yuexing Yi
- College of Chemical and Engineering, Zhejiang University of Technology, Hangzhou 310008, China; Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuting Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongxia Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ziqi Wang
- College of Chemical and Engineering, Zhejiang University of Technology, Hangzhou 310008, China; Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Shiqi Li
- College of Chemical and Engineering, Zhejiang University of Technology, Hangzhou 310008, China; Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xuchen Huang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunfeng Chai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, PR China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, PR China
| | - Zuguang Li
- College of Chemical and Engineering, Zhejiang University of Technology, Hangzhou 310008, China.
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, PR China.
| |
Collapse
|
5
|
Jayawickreme K, Świstak D, Ozimek E, Reszczyńska E, Rysiak A, Makuch-Kocka A, Hanaka A. Pyrrolizidine Alkaloids-Pros and Cons for Pharmaceutical and Medical Applications. Int J Mol Sci 2023; 24:16972. [PMID: 38069294 PMCID: PMC10706944 DOI: 10.3390/ijms242316972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Heterocyclic organic compounds named pyrrolizidine alkaloids (PAs) belong to a group of alkaloids and are synthesized by either plants or microorganisms. Therefore, they are naturally occurring secondary metabolites. They are found in species applied in the pharmaceutical and food industries, thus a thorough knowledge of their pharmacological properties and toxicology to humans is of great importance for their further safe employment. This review is original because it synthesizes knowledge of plant and microbial PAs, which is unusual in the scientific literature. We have focused on the Boraginaceae family, which is unique due to the exceptional richness and diversity of its PAs in plant species. We have also presented the microbial sources of PAs, both from fungi and bacteria. The structure and metabolism of PAs have been discussed. Our main aim was to summarize the effects of PAs on humans, including both negative, toxic ones, mainly concerning hepatotoxicity and carcinogenicity, as well as potentially positive ones for pharmacological and medical applications. We have collected the results of studies on the anticancer activity of PAs from plant and microbial sources (mainly Streptomyces strains) and on the antimicrobial activity of PAs on different strains of microorganisms (bacteria and fungi). Finally, we have suggested potential applications and future perspectives.
Collapse
Affiliation(s)
- Kavindi Jayawickreme
- Student Scientific Club of Phytochemists, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| | - Dawid Świstak
- Student Scientific Club of Phytochemists, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| | - Ewa Ozimek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| | - Emilia Reszczyńska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki St. 1, 20-093 Lublin, Poland
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| | - Anna Rysiak
- Department of Botany, Mycology, and Ecology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| | - Anna Makuch-Kocka
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska St. 11, 20-080 Lublin, Poland
| | - Agnieszka Hanaka
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| |
Collapse
|
6
|
Gumus ZP. Assessment of Toxic Pyrrolizidine and Tropane Alkaloids in Herbal Teas and Culinary Herbs Using LC-Q-ToF/MS. Foods 2023; 12:3572. [PMID: 37835225 PMCID: PMC10572649 DOI: 10.3390/foods12193572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Pyrrolizidine alkaloids are secondary metabolites produced by plants as a defense against insects. These can cause acute or chronic toxicity in humans. Therefore, avoiding potential poisoning from the consumption of tea and culinary plants contaminated with pyrrolizidine alkaloids (PAs), pyrrolizidine alkaloids N-oxides (PANOs), and tropane alkaloids (TAs) is important for human health and food safety. Therefore, it is important to determine the levels of these substances with reliable and highly accurate methods. In this study, the PAs, PANOs, and TAs in herbal teas and culinary herbs sold in Turkish markets were identified and their levels were determined. Thus, the general profiles of herbal teas and culinary herbs in Turkey were revealed, and the compliance of the total amounts of PA and TA with the regulations was examined. The identification and quantification of 25 PAs and N-oxides and 2 TAs (atropine and scopolamine) in the samples was performed with a liquid chromatography-quadrupole time-of-flight tandem mass spectrometer (LC-Q-ToF/MS). At least a few of these substances were detected in all of the tested herbal teas and culinary herbs. The total contents of the black tea, green tea, mixed tea, flavored tea, chamomile tea, sage tea, linden tea, fennel tea, rosehip tea, peppermint, and thyme samples ranged from 4.6 ng g-1 to 1054.5 ng g-1. The results obtained shed light on the importance of analyzing the total dehydro PA, PANO, and TA amounts in plant-based products consumed in diets with sensitive and accurate methods, and they highlight the necessity of performing these analyses routinely in terms of food safety.
Collapse
Affiliation(s)
- Zinar Pinar Gumus
- Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), Ege University, 35100 Izmir, Turkey
| |
Collapse
|
7
|
Sousa AC, Ribeiro C, Gonçalves VMF, Pádua I, Leal S. Chromatographic Methods for Detection and Quantification of Pyrrolizidine Alkaloids in Flora, Herbal Medicines, and Food: An Overview. Crit Rev Anal Chem 2023; 54:2915-2939. [PMID: 37300809 DOI: 10.1080/10408347.2023.2218476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are natural toxins produced by some plants that gained special interest due to their potential hazardous effects in humans and animals. These substances have been found in wild flora, herbal medicines and food products raising health concerns. Recently, maximum concentration levels of PAs were established for some food products; however, maximum daily intake frequently surpasses the upper limit set by the competent authorities posing a health risk. Given the scarcity or absence of occurrence data on PAs in many products, there is an urgent need to measure their levels and establish safety intake levels. Analytical methods have been reported to detect and quantify PAs in different matrices. The commonly used chromatographic methodologies provides accurate and reliable results. Analytical methods include diverse steps as extraction and sample preparation procedures that are critical for sensitivity and selectivity of the analytical method. Great efforts have been directed toward optimization of extraction procedures, clean up and chromatographic conditions to improve recovery, reduce matrix effects, and achieve low limits of detection and quantification. Therefore, this paper aims to give a general overview about the occurrence of PAs in flora, herbal medicines, and foodstuff; and discuss the different chromatographic methodologies used for PAs analysis, namely extraction and sample preparation procedures and chromatographic conditions.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Cláudia Ribeiro
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Virgínia M F Gonçalves
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
| | - Inês Pádua
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- Epidemiology Unit - Institute of Public Health of University of Porto (ISPUP), Porto, Portugal
| | - Sandra Leal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- CINTESIS-RISE, MEDCIDS, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
8
|
Andriamanantena M, Pithon S, Dijoux M, Hoareau M, Fontaine C, Ferrard J, Lavergne C, Petit T, Caro Y. A survey on the potential contribution of Reunion Island dye plant species diversity to the market demand for bioactive plant-based dyes and pigments. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2023; 19:8. [PMID: 36964580 PMCID: PMC10039506 DOI: 10.1186/s13002-023-00580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Proven toxicity and environmental burdens caused by artificial dyes have motivated dyeing industries to turn to natural alternatives. Plant-based dyestuffs are an interesting group of alternative crops. Reunion Island located in the Indian Ocean is the only European region in the southern hemisphere. It has a great number of assets to find new molecules in the abundant plant biodiversity. However, the dye-producing plants diversity in this island had not been documented to date. METHODOLOGY The assessment of the Reunion Island's plant biodiversity through the "PLANTIN" project allowed us to establish here the first ethnobotanical inventory of plants growing on Reunion Island which may have promising properties as a new alternative source of dyes or colorants for the industries. First, an ethnobotanical survey focused on the uses of plants traditionally used in dyeing was conducted on local stakeholders. Then, the importance of different criteria (e.g., endemicity, accessibility and cultivability, plant organs used for the extraction, industrial interests of the species, etc.) has been considered to establish a classification method of the species, to finally select the most interesting plants which have been further harvested and investigated for their coloring property and dyeing application on natural fibers. RESULTS The results showed that local people have accumulated traditional knowledge of dyeing plants, but that this approach had been discontinued in Reunion. The uses of 194 plant species potentially rich in dyes or pigments, belonging to 72 different families, with diverse botanical status (endemic, native, introduced or alien-invasive species) have been recorded. Then, 43 species were harvested and their coloring property were investigated. It demonstrated that dyes extracted from promising species, e.g., Terminalia bentzoe, Weinmannia tinctoria, Thespesia populnea, Erythroxylum laurifolium, Morinda citrifolia, Leea guinensis, Ochrosia borbonica, Danais fragrans, Terminalia cattapa, Casuarina equisetifolia, and Coccoloba uvifera, amongst others, could be used as new textile dyes. Their efficacy in the wool and cotton dyeing has been successfully demonstrated here. CONCLUSION These plant-based dyestuffs showed promising coloring properties with different shades that could meet industrial application requirement. It's an area that could promote local cultural inheritance, create opportunity for business and farmers, and that can make a significant contribution to preserving endangered native species by supporting reforestation schemes. Additional researches are in progress to evaluate the safety of these plant-based colored extracts, their chemical composition and biological activities.
Collapse
Affiliation(s)
- Mahery Andriamanantena
- Laboratoire de Chimie et Biotechnologie des Produits Naturels (CHEMBIOPRO), Université de La Réunion, La Réunion, France.
| | - Shamsia Pithon
- Laboratoire de Chimie et Biotechnologie des Produits Naturels (CHEMBIOPRO), Université de La Réunion, La Réunion, France
| | - Manon Dijoux
- Laboratoire de Chimie et Biotechnologie des Produits Naturels (CHEMBIOPRO), Université de La Réunion, La Réunion, France
| | - Marine Hoareau
- Conservatoire Botanique des Mascarins, Saint Leu, La Réunion, France
| | | | - Johnny Ferrard
- Conservatoire Botanique des Mascarins, Saint Leu, La Réunion, France
| | | | - Thomas Petit
- Laboratoire de Chimie et Biotechnologie des Produits Naturels (CHEMBIOPRO), Université de La Réunion, La Réunion, France
- Département Hygiène Sécurité Environnement (HSE), IUT de La Réunion, Université de La Réunion, La Réunion, France
| | - Yanis Caro
- Laboratoire de Chimie et Biotechnologie des Produits Naturels (CHEMBIOPRO), Université de La Réunion, La Réunion, France
- Département Hygiène Sécurité Environnement (HSE), IUT de La Réunion, Université de La Réunion, La Réunion, France
| |
Collapse
|
9
|
Yin M, Hu Y, Fan H, Wang Q, Wang M, Wang W, Shi C. Method for trace determination of N-nitrosamines impurities in metronidazole benzoate using high-performance liquid chromatography coupled with atmospheric-pressure chemical ionization tandem mass spectrometry. J Sep Sci 2023; 46:e2200225. [PMID: 36562102 DOI: 10.1002/jssc.202200225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Genotoxic impurity control has been a great concern in the pharmaceutical industry since the recall of the large round of sartans worldwide in 2018. In these sartans, N-nitrosamines were the main contaminants in active pharmaceutical ingredients and formulations. Numerous analytical methods have been developed to detect N-nitrosamines in food, drugs, and environmental samples. In this study, a sensitive method is developed for the trace determination of N-nitrosamine impurities in metronidazole benzoate pharmaceuticals using high-performance liquid chromatography/atmospheric-pressure chemical ionization tandem mass spectrometry in the multiple reaction monitoring mode. The method was validated regarding system suitability, selectivity, linearity, accuracy, precision, sensitivity, solution stability, and robustness. The method showed good linearity with R2 ≥ 0.999 and FMandel < Ftab(95%) ranging from 0.33 to 8.00 ng/ml. The low limits of detection of N-nitrosamines were in the range of 0.22-0.80 ng/ml (0.0014-0.0050 ppm). The low limits of quantification were in the range of 0.33-1.20 ng/ml (0.0021-0.0075 ppm), which were lower than the acceptable limits in metronidazole benzoate pharmaceuticals and indicated the high sensitivity of the method. The recoveries of N-nitrosamines ranged from 84% to 97%. Thus, this method exhibits good selectivity, sensitivity, and accuracy. Moreover, it is a simple, convenient, and scientific strategy for detecting N-nitrosamine impurities in pharmaceuticals to support the development of the pharmaceutical industry.
Collapse
Affiliation(s)
- Mingxing Yin
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yinuo Hu
- Hubei Hongyuan Pharmaceutical Technology Ltd., Huanggang, P. R. China
| | - Huajun Fan
- ICAS Testing Technology Service (Shanghai) Ltd., Shanghai, P. R. China
| | - Qiulan Wang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Mengdie Wang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Wenqing Wang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Chunyang Shi
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
10
|
Profiling of pyrrolizidine alkaloids using a retronecine-based untargeted metabolomics approach coupled to the quantitation of the retronecine-core in medicinal plants using UHPLC-QTOF. J Pharm Biomed Anal 2023; 224:115171. [PMID: 36459765 DOI: 10.1016/j.jpba.2022.115171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Pyrrolizidine alkaloids (PA) are secondary metabolites of high toxicological relevance. Several PA quantitative methodologies were developed based on a limited number of certified standards, including time consuming solid phase extraction (SPE) purification steps. Herein, we shed light on the variability of PA in herbal extracts and propose a quantification methodology based on ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS) for the evaluation of the total PA content as retronecine-equivalents (RE) directly from crude matrices. Particularly in the focus of the investigation were Alkanna spp. (Boraginaceae), which possess a wide range of pharmaceutical properties. In addition, a comparative PA screening of crude and SPE enriched extracts was performed and PA-containing plants from Fabaceae and Compositae families were included to demonstrate universal applicability. In total, 105 PA were identified using HRMSe experiments, specific MS/MS fragmentation PA patterns, a customized in-house library and literature data. Among them, 18 glycosidic PA derivatives were reported for the first time in literature. Using a hierarchical clustering approach, PA distribution in herbal extracts was shown to be family-dependent and significantly different among species. This was further supported by the results of the total PA concentrations, obtained using a retronecine/heliotridine/internal standard-based targeted UHPLC-HRMS quantification method, which varied from 8.64 ± 0.08-3096.28 ± 273.72 μg RE/g extract dry weight in shoots extracts of Alkanna spp. and leaves extracts of Crotalaria retusa L. respectively. Worth mentioning is that the procedure allowed to quantify PA in Alkanna spp. If the procedure based on 35 specific PA recommended by European regulations had been used, results would have been equal to zero for the four species since none were observed in Alkanna spp. Finally, by combining the RE results with the corresponding dereplication results, a customized correction factor for each extract (ranging from 2.12 to 2.48) was assessed leading to a more accurate estimate of the PA content regardless of the molecular weight of each PA. The present methodology will facilitate PA quantification directly from crude extracts and avoid the underestimation the real PA content due to limited availabilty of authentic reference compounds in botanical extracts used in phytomedicines or food supplements/cosmetics.
Collapse
|
11
|
Al-Subaie SF, Alowaifeer AM, Mohamed ME. Pyrrolizidine Alkaloid Extraction and Analysis: Recent Updates. Foods 2022; 11:foods11233873. [PMID: 36496681 PMCID: PMC9740414 DOI: 10.3390/foods11233873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Pyrrolizidine alkaloids are natural secondary metabolites that are mainly produced in plants, bacteria, and fungi as a part of an organism's defense machinery. These compounds constitute the largest class of alkaloids and are produced in nearly 3% of flowering plants, most of which belong to the Asteraceae and Boraginaceae families. Chemically, pyrrolizidine alkaloids are esters of the amino alcohol necine (which consists of two fused five-membered rings including a nitrogen atom) and one or more units of necic acids. Pyrrolizidine alkaloids are toxic to humans and mammals; thus, the ability to detect these alkaloids in food and nutrients is a matter of food security. The latest advances in the extraction and analysis of this class of alkaloids are summarized in this review, with special emphasis on chromatographic-based analysis and determinations in food.
Collapse
Affiliation(s)
- Sarah F. Al-Subaie
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Reference Laboratory for Food Chemistry, Saudi Food and Drug Authority (SFDA), Riyadh 11561, Saudi Arabia
| | - Abdullah M. Alowaifeer
- Reference Laboratory for Food Chemistry, Saudi Food and Drug Authority (SFDA), Riyadh 11561, Saudi Arabia
| | - Maged E. Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: ; Tel.: +966-542990226
| |
Collapse
|
12
|
Cheng S, Sun W, Zhao X, Wang P, Zhang W, Zhang S, Chang X, Ye Z. Simultaneous Determination of 32 Pyrrolizidine Alkaloids in Two Traditional Chinese Medicine Preparations by UPLC-MS/MS. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:7611501. [PMID: 36161105 PMCID: PMC9492412 DOI: 10.1155/2022/7611501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/29/2022] [Indexed: 06/16/2023]
Abstract
Pyrrolizidine alkaloids (PAs) constitute a class of phytotoxin which demonstrates strong hepatotoxicity. In China, many plants containing PAs are used as traditional medicines or medicinal preparations, which could harm human health and safety. Xiaoyao Tablet (XYT) is an antidepressant drug registered in the European Union (EU), Compound Danshen Dropping Pills (CDDP) is a commonly used drug for coronary heart disease, and phase III clinical study is ongoing in the United States. The purpose of this study is to provide data to support the use of Chinese medicine preparations internationally and to establish analytical methods for 32 PAs in XYT and CDDP. The extraction parameters that were optimized include solid-phase extraction (SPE) cartridge, extraction method, and extraction solvent. Then ultra-performance liquid chromatography coupled with triple-quadrupole linear ion-traptandem mass spectrometry (UPLC-MS/MS) was developed to effectively and efficiently quantify the 32 PAs of the XYT and CDDP. The analytical methods for XYT and CDDP were verified respectively. For XYT, the analytical method for 32 PAs was linear, and the correlation coefficient r was greater than 0.994; the recovery (REC%) at 10-2000 μg/kg was 73.3%-118.5%, and the relative standard deviation (RSD%) was 2.1%-15.4%. The CDDP REC% was 71.8%-112.0%, and the RSD% was 2.0%-17.1%. This study provides technical and data support for the registration of Chinese patented medicines in the EU, controls quality and ensures safety, and is committed to the internationalization and standardization of Chinese patented medicines.
Collapse
Affiliation(s)
- Shi Cheng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Wei Sun
- International Industry Center, Tasly Pharmaceutical Group Co. Ltd., Tianjin 300410, China
| | - Xiaoning Zhao
- International Industry Center, Tasly Pharmaceutical Group Co. Ltd., Tianjin 300410, China
| | - Ping Wang
- International Industry Center, Tasly Pharmaceutical Group Co. Ltd., Tianjin 300410, China
| | - Wensheng Zhang
- International Industry Center, Tasly Pharmaceutical Group Co. Ltd., Tianjin 300410, China
| | - Shunnan Zhang
- International Industry Center, Tasly Pharmaceutical Group Co. Ltd., Tianjin 300410, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
| | - Zhengliang Ye
- International Industry Center, Tasly Pharmaceutical Group Co. Ltd., Tianjin 300410, China
| |
Collapse
|
13
|
Cheng L, Wang F, Cao Y, Cai G, Wei Q, Shi S, Guo Y. Screening of potent α-glucosidase inhibitory and antioxidant polyphenols in Prunella vulgaris L. by bioreaction-HPLC-quadrupole-time-of-flight-MS/MS and in silico analysis. J Sep Sci 2022; 45:3393-3403. [PMID: 35819998 DOI: 10.1002/jssc.202200374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Prunella vulgaris L. is a well-known traditional Chinese medicine for blood glucose homeostasis and antioxidant potential. Ethyl acetate fraction of P. vulgaris L. demonstrated higher phenolic content (85.53 ± 6.74 mg gallic acid equivalents per gram dry weight), α-glucosidase inhibitory (IC50 , 69.13 ± 2.86 μg/mL), and antioxidant (IC50 , 8.68 ± 1.01 μg/mL) activities. However, the bioactive polyphenols responsible for the beneficial properties remain unclear. Here, bioreaction-HPLC-quadrupole-time-of-flight-MS/MS method was developed for rapid, accurate, and efficient screening and identification of polyphenols with α-glucosidase inhibitory and antioxidant activities from P. vulgaris L. Bioactive polyphenols can specifically bind with α-glucosidase or react with 1,1-diphenyl-2-picryl-hydrazyl radical, which was easily discriminated from nonactive compounds. Subsequently, twenty bioactive polyphenols (sixteen phenyl propionic acid derivatives and four flavonoids) were screened and identified. Furthermore, molecular docking analysis revealed that screened twenty polyphenols bind with the active sites of α-glucosidase through hydrogen bonding and π-π stacking. Density functional theory calculations demonstrated their electron transport ability and chemical reactivity. The in silico analysis confirmed the screened results. In summary, this study provided a valuable strategy for rapid discovering bioactive compounds from complex natural products, and offered scientific evidence for further development and application of P. vulgaris L. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Li Cheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China.,College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Fang Wang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China
| | - Yuanxin Cao
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, P. R. China
| | - Guihan Cai
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Qisheng Wei
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, P. R. China
| | - Shuyun Shi
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China.,College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.,Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, P. R. China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, China
| |
Collapse
|
14
|
Stefova E, Cvetanoska M, Bogdanov J, Matevski V, Stanoeva JP. Assessment of Distribution and Diversity of Pyrrolizidine Alkaloids in the Most Prevalent Boraginaceae Species in Macedonia. Chem Biodivers 2022; 19:e202200066. [PMID: 35581149 DOI: 10.1002/cbdv.202200066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/17/2022] [Indexed: 11/06/2022]
Abstract
Systematic study of extraction efficiency of pyrrolizidine alkaloids (PAs) and corresponding pyrrolizidine alkaloid N-oxides (PANOs) from plant material for subsequent LC/MS analysis was carried out. The optimal extraction was achieved with methanol and one clean up step using SPE C18 column. With the optimized LC-ESI-MS/MS method using ion trap, the distribution and diversity of PAs and PANOs in plant material (leaves, flowers and stems) obtained from wild-growing E. vulgare, E. italicum, S. officinale L., C. creticum and O. heterophylla species from Macedonia was assessed. These widespread Boraginaceae species contain various PAs and PANOs and 25 of them were identified. Based on these qualitative and quantitative analyses, the profiles of 1,2-unsaturated PAs for each sample were obtained and their toxic potential was estimated. The toxic potential of O. heterophylla and C. creticum were assumed to be highest (containing up to 4753 mg/kg and 3507 mg/kg), followed by E. vulgare (up to 1340 mg/kg), S. officinale L. (up to 479 mg/kg) and E. italicum (up to 16 mg/kg). This method can be used for monitoring the inclusion of these secondary metabolites in the food chain in order to contribute in their risk management.
Collapse
Affiliation(s)
- Elena Stefova
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, R. N. Macedonia
| | - Marinela Cvetanoska
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, R. N. Macedonia
| | - Jane Bogdanov
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, R. N. Macedonia
| | - Vlado Matevski
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, R. N. Macedonia.,Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000, Skopje, R. N. Macedonia
| | - Jasmina Petreska Stanoeva
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, R. N. Macedonia
| |
Collapse
|
15
|
Letsyo E. High-performance counter-current chromatography purification and off-line mass spectrometry monitoring and identification of pyrrolizidine alkaloid markers of tropical Ghanaian honey. J Sep Sci 2021; 45:960-967. [PMID: 34863040 DOI: 10.1002/jssc.202100718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/09/2021] [Accepted: 11/30/2021] [Indexed: 11/08/2022]
Abstract
The nutritional and medicinal properties of honey have been well-documented. However, honey has occasionally been contaminated with hepatotoxic pyrrolizidine alkaloids as a result of bees foraging on the flowers of pyrrolizidine alkaloid plants. This study establishes a simple and rapid method to determine the marker pyrrolizidine alkaloids in honey using high-performance counter-current chromatography and an off-line electrospray ionization-tandem mass spectrometry, in order to identify the botanical sources responsible for the contamination. The honey sample was initially liquid-liquid extracted (sulfuric acid/hexane, 2:3, v/v) to enrich the pyrrolizidine alkaloids and subsequently purified by a semi-preparative high-performance counter-current chromatography using a solvent system, hexane/butanol/1% aqueous ammonia, 1:1:2, v/v, based on partition coefficient measurements of the target alkaloids. The recovered fractions were profiled by injecting them sequentially into an off-line electrospray ionization-tandem mass spectrometry device to monitor the preparative molecular weight based on elution and extrusion modes. The monitored lycopsamine-type pyrrolizidine alkaloids and their N-oxides (m/z 300, 316; lycopsamine, intermedine, rinderine, and echinatine) were used as the phytochemical markers to identify plants like Chromolaena odorata, Ageratum spp., or Heliotropium spp. to be responsible for the pyrrolizidine alkaloid contamination. Identification of these pyrrolizidine alkaloid plants could guide beekeepers in locating their beehives in order to minimize their potential liver damaging effects.
Collapse
Affiliation(s)
- Emmanuel Letsyo
- Department of Food Science and Technology, Ho Technical University, P.O Box HP 217, Ho, Ghana.,Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstrasse 20, Braunschweig, 38106, Germany
| |
Collapse
|
16
|
Prada F, Stashenko EE, Martínez JR. Volatiles Emission by Crotalaria nitens after Insect Attack. Molecules 2021; 26:6941. [PMID: 34834034 PMCID: PMC8618423 DOI: 10.3390/molecules26226941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/26/2021] [Accepted: 11/12/2021] [Indexed: 01/09/2023] Open
Abstract
Plants are known to increase the emission of volatile organic compounds upon the damage of phytophagous insects. However, very little is known about the composition and temporal dynamics of volatiles released by wild plants of the genus Crotalaria (Fabaceae) attacked with the specialist lepidopteran caterpillar Utetheisa ornatrix (Linnaeus) (Erebidae). In this work, the herbivore-induced plant volatiles (HIPV) emitted by Crotalaria nitens Kunth plants were isolated with solid phase micro-extraction and the conventional purge and trap technique, and their identification was carried out by GC/MS. The poly-dimethylsiloxane/divinylbenzene fiber showed higher affinity for the extraction of apolar compounds (e.g., trans-β-caryophyllene) compared to the Porapak™-Q adsorbent from the purge & trap method that extracted more polar compounds (e.g., trans-nerolidol and indole). The compounds emitted by C. nitens were mainly green leaf volatile substances, terpenoids, aromatics, and aldoximes (isobutyraldoxime and 2-methylbutyraldoxime), whose maximum emission was six hours after the attack. The attack by caterpillars significantly increased the volatile compounds emission in the C. nitens leaves compared to those subjected to mechanical damage. This result indicated that the U. ornatrix caterpillar is responsible for generating a specific response in C. nitens plants. It was demonstrated that HIPVs repelled conspecific moths from attacked plants and favored oviposition in those without damage. The results showed the importance of volatiles in plant-insect interactions, as well as the choice of appropriate extraction and analytical methods for their study.
Collapse
Affiliation(s)
- Fausto Prada
- Center for Chromatography and Mass Spectrometry (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (F.P.); (J.R.M.)
- Colombia Research Center for Biomolecules (CIBIMOL), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Elena E. Stashenko
- Center for Chromatography and Mass Spectrometry (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (F.P.); (J.R.M.)
- Colombia Research Center for Biomolecules (CIBIMOL), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Jairo René Martínez
- Center for Chromatography and Mass Spectrometry (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (F.P.); (J.R.M.)
- Colombia Research Center for Biomolecules (CIBIMOL), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| |
Collapse
|
17
|
Determination of Pyrrolizidine Alkaloids in Teas Using Liquid Chromatography-Tandem Mass Spectrometry Combined with Rapid-Easy Extraction. Foods 2021; 10:foods10102250. [PMID: 34681300 PMCID: PMC8534422 DOI: 10.3390/foods10102250] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
This study developed an analytical method to determine pyrrolizidine alkaloids (PAs) in teas using liquid chromatography–tandem mass spectrometry combined with rapid-easy extraction. PAs were extracted with 40 mL of 0.05 M sulfuric acid in 50% methanol solution and cleaned up using Oasis MCX SPE cartridges. Chromatographic separation of 21 PAs was conducted on an X-Bridge C18 column with gradient elution. According to the AOAC official analysis methods, the developed method was verified to establish linearity, limits of detection, limits of quantification, accuracy, inter-day precision, and intra-day precision for each PA. Overall, the method showed excellent repeatability, sensitivity, and reproducibility. The verified method was applied to tea samples, including maté, lemon balm, fennel, hibiscus, chrysanthemum, lavender, oolong tea, chamomile, rooibos, peppermint, mix tea, black, and green tea. One of the main advantages of the method developed in this study is that it allows complete separation of lycopsamine and intermedine peaks. Therefore, the method could be used to monitor PAs in teas.
Collapse
|
18
|
Zan K, Hu X, Li Y, Wang Y, Jin H, Zuo T, Ma S. Simultaneous determination of eight pyrrolizidine alkaloids in various parts of Eupatorium lindleyanum by ultra high performance liquid chromatography tandem mass spectrometry and risk assessments based on a real-life exposure scenario. J Sep Sci 2021; 44:3237-3247. [PMID: 34240803 DOI: 10.1002/jssc.202100286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 02/02/2023]
Abstract
Pyrrolizidine alkaloids are toxins having hepatotoxic and carcinogenic effects on human health. A ultra high performance liquid chromatography tandem mass spectrometry technique was developed for the first time for the simultaneous determination of eight pyrrolizidine alkaloids, including four diastereoisomers (intermedine, lycopsamine, rinderine, and echinatine) and their respective N-oxide forms, in different parts of Eupatorium lindleyanum. The risk assessment method for pyrrolizidine alkaloids in Eupatorium lindleyanum was explored using the margin of exposure strategy for the first time based on a real-life exposure scenario. Differences were found in all eight pyrrolizidine alkaloids in various parts of Eupatorium lindleyanum. Besides, the total levels of pyrrolizidine alkaloids in Eupatorium lindleyanum followed the order of root > flower > stem > leaf. Moreover, the risk assessment data revealed that the deleterious effects on human health were unlikely at exposure times of less than 200, 37, and 12 days during the lifetimes of Eupatorium lindleyanum leaves, stems, and flowers, respectively. This study reported both the contents of and risk associated with Eupatorium lindleyanum pyrrolizidine alkaloids. The comprehensive application of the novel ultra high performance liquid chromatography tandem mass spectrometry technique alongside the risk assessment approach provided a scientific basis for quality evaluation and rational utilization of toxic pyrrolizidine alkaloids in Eupatorium lindleyanum to improve public health safety.
Collapse
Affiliation(s)
- Ke Zan
- National Institutes for Food and Drug Control, Beijing, 102629, P. R. China
| | - Xiaowen Hu
- National Institutes for Food and Drug Control, Beijing, 102629, P. R. China
| | - Yaolei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Ying Wang
- National Institutes for Food and Drug Control, Beijing, 102629, P. R. China
| | - Hongyu Jin
- National Institutes for Food and Drug Control, Beijing, 102629, P. R. China
| | - Tiantian Zuo
- National Institutes for Food and Drug Control, Beijing, 102629, P. R. China
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control, Beijing, 102629, P. R. China
| |
Collapse
|
19
|
Crotalaria spectabilis poisoning in horses fed contaminating oats. Toxicon 2021; 197:6-11. [PMID: 33852904 DOI: 10.1016/j.toxicon.2021.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 01/18/2023]
Abstract
The present report describes the clinical and pathological changes induced by the consumption of oats contaminated with Crotalaria spectabilis seeds by horses. Eighty horses were exposed to oats containing 10 g/kg of C. spectabilis seeds with 0.46% pyrrolizidine alkaloids, and 21 horses died within a 6-month period. Clinical signs included jaundice, apathy, a hypotonic tongue, ataxia, hyporexia, weight loss, aimless wandering, violent behavior, and proprioceptive deficits. Pathological findings were predominant in the liver and included periportal bridging fibrosis, megalocytosis, centrilobular necrosis, and bile stasis. Other findings were Alzheimer's type II astrocytes in the cortex, midbrain, basal nuclei, brainstem and pons; multifocal edema and hemorrhage in the lungs; and degeneration and necrosis of the tubular epithelium of kidneys. Horses are highly sensitive to pyrrolizidine alkaloid-containing plants, and the observed clinical and pathological findings are typical of this poisoning. The seeds were planted, and botanical identification of the adult plants confirmed the diagnosis of C. spectabilis poisoning.
Collapse
|
20
|
Chiocchio I, Mandrone M, Tomasi P, Marincich L, Poli F. Plant Secondary Metabolites: An Opportunity for Circular Economy. Molecules 2021; 26:495. [PMID: 33477709 PMCID: PMC7831927 DOI: 10.3390/molecules26020495] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/20/2022] Open
Abstract
Moving toward a more sustainable development, a pivotal role is played by circular economy and a smarter waste management. Industrial wastes from plants offer a wide spectrum of possibilities for their valorization, still being enriched in high added-value molecules, such as secondary metabolites (SMs). The current review provides an overview of the most common SM classes (chemical structures, classification, biological activities) present in different plant waste/by-products and their potential use in various fields. A bibliographic survey was carried out, taking into account 99 research articles (from 2006 to 2020), summarizing all the information about waste type, its plant source, industrial sector of provenience, contained SMs, reported bioactivities, and proposals for its valorization. This survey highlighted that a great deal of the current publications are focused on the exploitation of plant wastes in human healthcare and food (including cosmetic, pharmaceutical, nutraceutical and food additives). However, as summarized in this review, plant SMs also possess an enormous potential for further uses. Accordingly, an increasing number of investigations on neglected plant matrices and their use in areas such as veterinary science or agriculture are expected, considering also the need to implement "greener" practices in the latter sector.
Collapse
Affiliation(s)
| | - Manuela Mandrone
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (I.C.); (P.T.); (L.M.); (F.P.)
| | | | | | | |
Collapse
|
21
|
Lu AJ, Lu YL, Tan DP, Qin L, Ling H, Wang CH, He YQ. Identification of Pyrrolizidine Alkaloids in Senecio Plants by Liquid Chromatography-Mass Spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:1957863. [PMID: 34824876 PMCID: PMC8610691 DOI: 10.1155/2021/1957863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 05/04/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are considered as the major constituents that cause hepatoxicity in Senecio plants. PAs can be found in about 3%-5% of the world's flowering plants. Nowadays, the identification method of PAs by separation and preparation was too slow and lacked effective power. A rapid method to identify PAs in plants must be developed. Based on the fragmentation regularity, the hepatoxic PAs and nonhepatoxic PAs were characterized by liquid chromatography-mass spectrometry (LC-MS). The detailed structures of PAs in five Senecio plants were identified based on tandem mass spectrometry (MS/MS) spectrum and chemical research information. In the present study, some new fragmentation regularities of PAs have been found, such as product ions at m/z 122, m/z 140 and m/z 124, m/z 142, which have been discovered as the characteristic fragments of lactone and mono-esterase type of saturated PAs, respectively. Moreover, two product ions at m/z 120 and m/z 138 have been reported as the characteristic fragments of unsaturated PAs. Some of them were found in Senecio species for the first time, and some of them may be new nature product or even new compound. Finally, we classified these plants into five categories based on PAs which were identified in the present study; the result corresponded with the classification by morphology. In addition, we have found some constituents that have odd molecular weight number only in Senecio species but not in Ligularia species; the detailed structures of these non-PAs constituents need penetrating study. LC-MS was rapid and sensitive method for detecting and identifying PAs in plants. Pyrrolizidine alkaloids were the toxiferous constituent of Senecio plants. In this study, we found that PAs can be used as the characteristic constituent of Senecio species.
Collapse
Affiliation(s)
- An-Jing Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yan-Liu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Dao-Peng Tan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lin Qin
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Hua Ling
- School of Pharmacy, Georgia Campus-Philadelphia College of Osteopathic Medicine, 625 Old Peachtree Rd NW, Suwanee, GA 30024, USA
| | - Chang-Hong Wang
- Shanghai Key Laboratory of Complex Prescription, Shanghai University of Traditional Chinese Medicine, 1200 Cai-Lun Road, Shanghai 201203, China
| | - Yu-Qi He
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| |
Collapse
|