1
|
Lu W, Yan J, Wang C, Qin W, Han X, Qin Z, Wei Y, Xu H, Gao J, Gao C, Ye T, Tay FR, Niu L, Jiao K. Interorgan communication in neurogenic heterotopic ossification: the role of brain-derived extracellular vesicles. Bone Res 2024; 12:11. [PMID: 38383487 PMCID: PMC10881583 DOI: 10.1038/s41413-023-00310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 02/23/2024] Open
Abstract
Brain-derived extracellular vesicles participate in interorgan communication after traumatic brain injury by transporting pathogens to initiate secondary injury. Inflammasome-related proteins encapsulated in brain-derived extracellular vesicles can cross the blood‒brain barrier to reach distal tissues. These proteins initiate inflammatory dysfunction, such as neurogenic heterotopic ossification. This recurrent condition is highly debilitating to patients because of its relatively unknown pathogenesis and the lack of effective prophylactic intervention strategies. Accordingly, a rat model of neurogenic heterotopic ossification induced by combined traumatic brain injury and achillotenotomy was developed to address these two issues. Histological examination of the injured tendon revealed the coexistence of ectopic calcification and fibroblast pyroptosis. The relationships among brain-derived extracellular vesicles, fibroblast pyroptosis and ectopic calcification were further investigated in vitro and in vivo. Intravenous injection of the pyroptosis inhibitor Ac-YVAD-cmk reversed the development of neurogenic heterotopic ossification in vivo. The present work highlights the role of brain-derived extracellular vesicles in the pathogenesis of neurogenic heterotopic ossification and offers a potential strategy for preventing neurogenic heterotopic ossification after traumatic brain injury. Brain-derived extracellular vesicles (BEVs) are released after traumatic brain injury. These BEVs contain pathogens and participate in interorgan communication to initiate secondary injury in distal tissues. After achillotenotomy, the phagocytosis of BEVs by fibroblasts induces pyroptosis, which is a highly inflammatory form of lytic programmed cell death, in the injured tendon. Fibroblast pyroptosis leads to an increase in calcium and phosphorus concentrations and creates a microenvironment that promotes osteogenesis. Intravenous injection of the pyroptosis inhibitor Ac-YVAD-cmk suppressed fibroblast pyroptosis and effectively prevented the onset of heterotopic ossification after neuronal injury. The use of a pyroptosis inhibitor represents a potential strategy for the treatment of neurogenic heterotopic ossification.
Collapse
Affiliation(s)
- Weicheng Lu
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianfei Yan
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chenyu Wang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenpin Qin
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoxiao Han
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zixuan Qin
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu Wei
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haoqing Xu
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jialu Gao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Changhe Gao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tao Ye
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Lina Niu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Vijayan V, Sreekumar S, Ahina KM, Lakra R, Kiran MS. Lanthanum Oxide Nanoparticles Reinforced Collagen ƙ-Carrageenan Hydroxyapatite Biocomposite as Angio-Osteogenic Biomaterial for In Vivo Osseointegration and Bone Repair. Adv Biol (Weinh) 2023; 7:e2300039. [PMID: 37080950 DOI: 10.1002/adbi.202300039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/22/2023] [Indexed: 04/22/2023]
Abstract
A composite biomatrix fabricated with collagen, ƙ-carrageenan, hydroxyapatite reinforced with lanthanum oxide nanoparticles is explored as proangiogenic and osteogenic bone tissue repair biomaterial. The biomatrix shows increased physical and biological stability as observed from proteolytic degradation and thermal stability studies. The addition of lanthanum oxide nanoparticles facilitates good osseointegration coupled with simultaneous activation of proangiogenic properties to act as a bone mimicking material. The minimal level of reactive oxygen species and superior cytocompatibility help the as-synthesized biomatrix in achieving capillary migration into the bone micro environment. The composite biomatrix upregulates the expression of VEGF, VEGF-R2 genes in endothelial cells and osteopontin, osteocalcin in osteoblasts cells, respectively. The in vivo hard tissue repair experiment conducted in a rat model shows complete healing of the bone defect by eight weeks with the application of collagen-ƙ-carrageenan-hydroxyapatite-lanthanum oxide nanoparticle biomaterial when compared to the biomaterial made out of individual constituents alone. The biomaterial matrix gets biointegrated into the bone tissue and exerts its therapeutic value in bringing a faster osseo repair process. The study shows the feasibility of using rare-earth metal nanoparticles in combination with protein-polysaccharide biopolymers for bone regeneration.
Collapse
Affiliation(s)
- Vinu Vijayan
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India
- University of Madras, Chennai, Tamil Nadu, 600005, India
| | - Sreelekshmi Sreekumar
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kannoth Madappurakkal Ahina
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India
| | - Rachita Lakra
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India
| | - Manikantan Syamala Kiran
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India
- University of Madras, Chennai, Tamil Nadu, 600005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Ye S, Mahmood DFD, Ma F, Leng L, Bucala R, Vera PL. Urothelial Oxidative Stress and ERK Activation Mediate HMGB1-Induced Bladder Pain. Cells 2023; 12:1440. [PMID: 37408274 PMCID: PMC10217556 DOI: 10.3390/cells12101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
Activation of intravesical protease activated receptors-4 (PAR4) results in bladder pain through the release of urothelial macrophage migration inhibitory factor (MIF) and high mobility group box-1 (HMGB1). We aimed to identify HMGB1 downstream signaling events at the bladder that mediate HMGB1-induced bladder pain in MIF-deficient mice to exclude any MIF-related effects. We studied whether oxidative stress and ERK activation are involved by examining bladder tissue in mice treated with intravesical disulfide HMGB1 for 1 h and analyzed with Western blot and immunohistochemistry. HMGB1 intravesical treatment increased urothelium 4HNE and phospho-ERK1/2 staining, suggesting that HMGB1 increased urothelial oxidative stress and ERK activation. Furthermore, we examined the functional roles of these events. We evaluated lower abdominal mechanical thresholds (an index of bladder pain) before and 24 h after intravesical PAR4 or disulfide HMGB1. Intravesical pre-treatments (10 min prior) included: N-acetylcysteine amide (NACA, reactive oxygen species scavenger) and FR180204 (FR, selective ERK1/2 inhibitor). Awake micturition parameters (voided volume; frequency) were assessed at 24 h after treatment. Bladders were collected for histology at the end of the experiment. Pre-treatment with NACA or FR significantly prevented HMGB1-induced bladder pain. No significant effects were noted on micturition volume, frequency, inflammation, or edema. Thus, HMGB1 activates downstream urothelial oxidative stress production and ERK1/2 activation to mediate bladder pain. Further dissection of HMGB1 downstream signaling pathway may lead to novel potential therapeutic strategies to treat bladder pain.
Collapse
Affiliation(s)
- Shaojing Ye
- Lexington VA Health Care System, Research & Development, Lexington, KY 40502, USA
| | - Dlovan F. D. Mahmood
- Lexington VA Health Care System, Research & Development, Lexington, KY 40502, USA
| | - Fei Ma
- Lexington VA Health Care System, Research & Development, Lexington, KY 40502, USA
| | - Lin Leng
- Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Richard Bucala
- Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Pedro L. Vera
- Lexington VA Health Care System, Research & Development, Lexington, KY 40502, USA
- Department of Physiology, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
4
|
Zhao L, Li H, Zhang S, Dong Z, Cui Q. Serum HMGB1 levels and its clinical significance in elderly patients with intertrochanteric fractures after intramedullary fixation surgery. Medicine (Baltimore) 2023; 102:e32873. [PMID: 36827030 PMCID: PMC11309695 DOI: 10.1097/md.0000000000032873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Intramedullary fixation is a valuable alternative for the treatment of intertrochanteric fractures. However, further development of new biomarkers to predict the prognosis of the patient is still needed for timely and effective treatment and intervention. The present study aimed to explore the serum high-mobility group box 1 (HMGB1) levels in the prognosis of intertrochanteric fracture patients and its correlation with clinical results. METHODS The present prospective cohort study recruited 115 intertrochanteric fracture patients who were admitted from January 2015 to December 2019. All patients were evaluated preoperatively and treated (proximal femoral nail antirotation or intramedullary proximal femoral nail) by the same team. The serum HMGB1, interleukin-6, interleukin-1β, tumor necrosis factor α, and C-reactive protein levels were measured by enzyme-linked immunosorbent assay. Demographic and clinical data of all patients were collected. Harris score was used to assess the prognosis of intertrochanteric fracture patients after 6 months of treatment. Statistical analysis was conducted using SPSS software with P < .05 as statistically different. RESULTS The time of the operation and the amount of bleeding in intramedullary proximal femoral nail were remarkably elevated compared with the proximal femoral nail antirotation group (P < .05). The age, proportion of complications and visual analogue score VAS after 72 hours of surgery in the Harris score < 80 group were remarkably increased compared with Harris score ≥ 80 group (P < .05). In addition, we found that the serum HMGB1 levels in Harris score < 80 group were markedly elevated than the patients in Harris score ≥ 80 group at all time points (P < .05). The results showed that the serum HMGB1 levels at postoperative 48 hours had the highest predictive value for predicting poor prognosis in intertrochanteric fracture patients. It was found that HMGB1, age and VAS after 72 hours of surgery were the risk factors for poor prognosis of intertrochanteric fracture patients. CONCLUSION This study showed that the serum HMGB1 levels was significantly decreased in intertrochanteric fracture patients with bad prognoses. This study may provide a new approach to screening intertrochanteric fracture patients with worse prognoses in advance.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Bone and Joint Surgery, Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine of Hebei Province, Cangzhou, China
| | - Haoran Li
- Department of Bone and Joint Surgery, Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine of Hebei Province, Cangzhou, China
| | - Shaohui Zhang
- Department of Bone and Joint Surgery, Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine of Hebei Province, Cangzhou, China
| | - Zhanyin Dong
- Department of Bone and Joint Surgery, Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine of Hebei Province, Cangzhou, China
| | - Qing Cui
- Department of Bone and Joint Surgery, Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine of Hebei Province, Cangzhou, China
| |
Collapse
|
5
|
Fretwurst T, Tritschler I, Rothweiler R, Nahles S, Altmann B, Schilling O, Nelson K. Proteomic profiling of human bone from different anatomical sites - A pilot study. Proteomics Clin Appl 2022; 16:e2100049. [PMID: 35462455 DOI: 10.1002/prca.202100049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE The study aim is a comparative proteome-based analysis of different autologous bone entities (alveolar bone [AB], iliac cortical [IC] bone, and iliac spongiosa [IS]) used for alveolar onlay grafting. EXPERIMENTAL DESIGN Site-matched bone samples of AB, IC, and IS were harvested during alveolar onlay grafting. Proteins were extracted using a detergent-based (sodium dodecyl sulfate) strategy and trypsinized. Proteome analysis was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). MaxQuant was used for peptide-to-spectrum matching, peak detection, and quantitation. Linear models for microarray analysis (LIMMA) were used to detect differentially abundant peptides and proteins. RESULTS A total of 1730 different proteins were identified across the 15 samples at a false discovery rate of 1%. Partial least-squares discriminant analysis approved segregation of AB, IC, and IS protein profiles. LIMMA statistics highlighted 66 proteins that were more abundant in AB then in IC (vs. 92 proteins were enriched in IC over AB). Gene Ontology enrichment analysis revealed a matrisomal versus an immune-related proteome fingerprint in AB versus IC. CONCLUSION AND CLINICAL RELEVANCE This pilot study demonstrates an ECM protein-related proteome fingerprint in AB and an immune-related proteome fingerprint in IS and IC.
Collapse
Affiliation(s)
- Tobias Fretwurst
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | | | - René Rothweiler
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Susanne Nahles
- Department of Oral and Maxillofacial Surgery, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Brigitte Altmann
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,G.E.R.N Center for Tissue Replacement, Regeneration & Neogenesis, Department of Prosthetic Dentistry, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Katja Nelson
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Muire PJ, Avila JJ, Lofgren AL, Wenke JC. Neutralization of HMGB1 improves fracture healing and γδ T lymphocyte counts at the fracture site in a polytrauma rat model. J Exp Orthop 2022; 9:21. [PMID: 35229226 PMCID: PMC8885932 DOI: 10.1186/s40634-022-00453-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Delayed fracture healing is a common consequence of polytrauma (PT) occurring in patients with multiple injuries. We believe that when early release of high mobility group box 1 (HMGB1) molecules from necrotic tissues exceed their normal levels in blood, they dysregulate immune responses associated with normal healing. This study investigates the detrimental effect of such dysregulate immune responses by targeting HMGB1 in a PT rat model with debilitating injuries. We hypothesized that neutralization of extracellular HMGB1 immediately post-trauma would ameliorate local immune dysregulation and improve fracture healing in a PT rat model. Methods PT rats received a single dose of either anti-rat HMGB1 polyclonal antibody (PT-Ab HMGB1) or IgY isotype (PT-IgY), were left untreated (PT-C), or had a single injury/osteotomy only (OST). Fracture healing was evaluated by micro-computed tomography (µCT) and histology at 5 weeks; and macrophages and T cell counts within the fracture site were determined with flow cytometry at 1 week. Results Notably, bone regeneration within the fracture site in PT-Ab HMGB1 rats was improved with comparable connective tissue organization than PT-C rats. Further, only γδTCR+ T cells, but not macrophages and CD4+ and CD8+ T cells, were diminished at the fracture site in PT-C and PT-IgY rats. Interestingly, the PT-Ab HMGB1 rats had increased γδTCR+ T cells compared to PT-C and PT-IgY, suggesting their potential role in regulating fracture healing. Conclusions Therefore, the initial burst of systemic HMGB1 following trauma may have a role in regulating bone regeneration via the modulation of a subclass of T cells within the fracture site, suggesting it’s importance as a therapeutic target in PT to combat immune dysregulation and delayed fracture healing. Supplementary Information The online version contains supplementary material available at 10.1186/s40634-022-00453-3.
Collapse
|
7
|
Ma C, Liu H, Wei Y, Li H, Miao D, Ren Y. Exogenous PTH 1-34 Attenuates Impaired Fracture Healing in Endogenous PTH Deficiency Mice via Activating Indian Hedgehog Signaling Pathway and Accelerating Endochondral Ossification. Front Cell Dev Biol 2022; 9:750878. [PMID: 35071224 PMCID: PMC8766796 DOI: 10.3389/fcell.2021.750878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Fracture healing is a complicated, long-term, and multistage repair process. Intermittent administration of parathyroid hormone (PTH) has been proven effective on intramembranous and endochondral bone formation during the fracture healing process, however, the mechanism is unclear. In this study, we investigated the role of exogenous PTH and endogenous PTH deficiency in bone fracture healing and explored the mechanism by using PTH knockout (PTH-/-) mice and ATDC5 cells. In a mouse femur fracture model, endogenous PTH deficiency could delay endochondral ossification whereas exogenous PTH promotes accumulation of endochondral bone, accelerates cartilaginous callus conversion to bony callus, enhances maturity of bony callus, and attenuates impaired fracture healing resulting from endogenous PTH deficiency. In fracture callus tissue, endogenous PTH deficiency could inhibit chondrocyte proliferation and differentiation whereas exogenous PTH could activate the IHH signaling pathway to accelerate endochondral ossification and rescue impaired fracture healing resulting from endogenous PTH deficiency. In vitro, exogenous PTH promotes cell proliferation by activating IHH signaling pathway on ATDC5 cells. In mechanistic studies, by using ChIP and luciferase reporter assays, we showed that PTH could phosphorylate CREB, and subsequently bind to the promoter of IHH, causing the activation of IHH gene expression. Therefore, results from this study support the concept that exogenous PTH 1-34 attenuates impaired fracture healing in endogenous PTH deficiency mice via activating the IHH pathway and accelerating endochondral ossification. Hence, the investigation of the mechanism underlying the effects of PTH treatment on fracture repair might guide the exploration of effective therapeutic targets for fracture.
Collapse
Affiliation(s)
- Cheng Ma
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huan Liu
- Department of Orthopaedics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Yifan Wei
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - He Li
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dengshun Miao
- Nanjing Medical University, Affiliated Friendship Plastic Surgery Hospital, Nanjing, China
| | - Yongxin Ren
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Network Pharmacological Study of Achyranthis bidentatae Radix Effect on Bone Trauma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5692039. [PMID: 33748269 PMCID: PMC7959927 DOI: 10.1155/2021/5692039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/22/2020] [Accepted: 02/18/2021] [Indexed: 01/02/2023]
Abstract
Purpose Bone trauma is a clinical condition that afflicts the majority of the world's population. For the management of bone trauma, the underlying mechanisms of the drugs effective for bone healing are deemed necessary. Achyranthis bidentatae Radix (ABR) is a popular alternative medicine recommended in the treatment of bone trauma and injury, yet its mechanism of action persists to be vague. This study was conducted for the evaluation of the mode of action of ABR through network pharmacology in treating bone trauma. Methods An extensive survey of published works led to the development of a drug-target database, after which multiple protein targets for bone trauma were discerned. The protein-protein interaction network was developed by utilizing the STITCH database and gene ontology (GO) enrichment analysis using Cytoscape and ClueGO. Moreover, docking studies were performed for revealing the affinity of various ingredients with IL6. Results The extensive literature survey yielded the presence of 176 components in ABR, and 151 potential targets were acquired. Scrutinization of these targets revealed that 21 potential targets were found to be associated with bone trauma. Out of which, some remarkable targets such as IL6, MAPK14, MAPK8, SRC, PTGS2, and MMP2 were observed to be associated in the functional interaction of ABR. According to docking results, several ingredients of ABR such as Baicalien, Copistine, Epiberberine, Kaempferol, and Palmatine have the lowest docking scores (range between -6 and -7). Conclusions The results of the study elucidated that ABR can positively be utilized for the management of bone trauma, which can be mediated by multiple molecular mechanisms such as ERBB2 signaling pathway, positive regulation of oxidoreductase activity, JNK cascade pathway, multicellular organism metabolic process, T cell costimulation, and the positive regulation of MAPK activity. The findings also suggest that several ingredients of ABR such as Baicalien, Copistine, Epiberberine, Kaempferol, and Palmatine have good affinity with IL6, suggesting the promising potential of ABR in treating bone trauma, likely through IL6.
Collapse
|
9
|
Gacaferi H, Mimpen JY, Baldwin MJ, Snelling SJB, Nelissen RGHH, Carr AJ, Dakin SG. The potential roles of high mobility group box 1 (HMGB1) in musculoskeletal disease: A systematic review. TRANSLATIONAL SPORTS MEDICINE 2020. [DOI: 10.1002/tsm2.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hamez Gacaferi
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
- Department of Orthopaedics Leiden University Medical Centre Leiden The Netherlands
| | - Jolet Y. Mimpen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| | - Mathew J. Baldwin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| | - Sarah J. B. Snelling
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| | | | - Andrew J. Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| | - Stephanie G. Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| |
Collapse
|
10
|
Gao H, Huang C, Zhao K, Chen X, Zhang X, Deng Y, Liu Z, Duan DD. Research Progress on the Molecular Mechanism by Which Depression Affects Bone Metabolism. DNA Cell Biol 2020; 39:738-746. [PMID: 32077753 DOI: 10.1089/dna.2019.5284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Haiming Gao
- Department of Orthopaedics, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Chenyi Huang
- Department of Orthopaedics, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Kaili Zhao
- Department of Orthopaedics, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Xueyan Chen
- Department of Orthopaedics, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Xuemei Zhang
- Department of Orthopaedics, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Yaoge Deng
- Department of Orthopaedics, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Zongchao Liu
- Department of Orthopaedics, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - D D Duan
- Center for Phenomics of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
- Laboratory of Cardiovascular Phenomics, Department of Pharmacology, University of Nevada Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
11
|
De Martinis M, Ginaldi L, Sirufo MM, Pioggia G, Calapai G, Gangemi S, Mannucci C. Alarmins in Osteoporosis, RAGE, IL-1, and IL-33 Pathways: A Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:medicina56030138. [PMID: 32204562 PMCID: PMC7142770 DOI: 10.3390/medicina56030138] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
Alarmins are endogenous mediators released by cells following insults or cell death to alert the host’s innate immune system of a situation of danger or harm. Many of these, such as high-mobility group box-1 and 2 (HMGB1, HMGB2) and S100 (calgranulin proteins), act through RAGE (receptor for advanced glycation end products), whereas the IL-1 and IL-33 cytokines bind the IL-1 receptors type I and II, and the cellular receptor ST2, respectively. The alarmin family and their signal pathways share many similarities of cellular and tissue localization, functions, and involvement in various physiological processes and inflammatory diseases including osteoporosis. The aim of the review was to evaluate the role of alarmins in osteoporosis. A bibliographic search of the published scientific literature regarding the role of alarmins in osteoporosis was organized independently by two researchers in the following scientific databases: Pubmed, Scopus, and Web of Science. The keywords used were combined as follows: “alarmins and osteoporosis”, “RAGE and osteoporosis”, “HMGB1 and osteoporosis”, “IL-1 and osteoporosis”, “IL 33 and osteopororsis”, “S100s protein and osteoporosis”. The information was summarized and organized in the present review. We highlight the emerging roles of alarmins in various bone remodeling processes involved in the onset and development of osteoporosis, as well as their potential role as biomarkers of osteoporosis severity and progression. Findings of the research suggest a potential use of alarmins as pharmacological targets in future therapeutic strategies aimed at preventing bone loss and fragility fractures induced by aging and inflammatory diseases.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health, & Environmental Sciences, University of L’Aquila, 6700 L’Aquila, Italy; (M.D.M.); (L.G.); (M.M.S.)
| | - Lia Ginaldi
- Department of Life, Health, & Environmental Sciences, University of L’Aquila, 6700 L’Aquila, Italy; (M.D.M.); (L.G.); (M.M.S.)
| | - Maria Maddalena Sirufo
- Department of Life, Health, & Environmental Sciences, University of L’Aquila, 6700 L’Aquila, Italy; (M.D.M.); (L.G.); (M.M.S.)
| | - Giovanni Pioggia
- National Research Council of Italy (CNR)-Institute for Biomedical Research and Innovation (IRIB), 98164 Messina, Italy;
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +39-090-22-12-697
| |
Collapse
|