1
|
Mattioli F, Maglianella V, D'Antonio S, Trimarco E, Caligiore D. Non-invasive brain stimulation for patients and healthy subjects: Current challenges and future perspectives. J Neurol Sci 2024; 456:122825. [PMID: 38103417 DOI: 10.1016/j.jns.2023.122825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
Non-invasive brain stimulation (NIBS) techniques have a rich historical background, yet their utilization has witnessed significant growth only recently. These techniques encompass transcranial electrical stimulation and transcranial magnetic stimulation, which were initially employed in neuroscience to explore the intricate relationship between the brain and behaviour. However, they are increasingly finding application in research contexts as a means to address various neurological, psychiatric, and neurodegenerative disorders. This article aims to fulfill two primary objectives. Firstly, it seeks to showcase the current state of the art in the clinical application of NIBS, highlighting how it can improve and complement existing treatments. Secondly, it provides a comprehensive overview of the utilization of NIBS in augmenting the brain function of healthy individuals, thereby enhancing their performance. Furthermore, the article delves into the points of convergence and divergence between these two techniques. It also addresses the existing challenges and future prospects associated with NIBS from ethical and research standpoints.
Collapse
Affiliation(s)
- Francesco Mattioli
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199 Rome, Italy; School of Computing, Electronics and Mathematics, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Valerio Maglianella
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Sara D'Antonio
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Emiliano Trimarco
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Daniele Caligiore
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199 Rome, Italy; Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy.
| |
Collapse
|
2
|
Jeon SY, Choi JH, Kang SS, An YH, Shim HJ. Personalized Neuromodulation: A Novel Strategy for Improving Tinnitus Treatment. J Clin Med 2023; 12:6987. [PMID: 38002601 PMCID: PMC10672003 DOI: 10.3390/jcm12226987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
This study evaluated the efficacy of personalized neuromodulation, where treatment modalities are chosen based on the patient's responses in a pilot trial. A total of 71 patients with tinnitus were divided into two groups: a personalized group and a randomized neuromodulation group. In the personalized group (n = 35), repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS) were assessed in a pilot trial, and responsive modalities were administered to 16 patients, while the non-responders (n = 19) were randomly assigned to rTMS, tDCS, or combined modalities. Patients in the randomized group (n = 36) were randomly allocated to rTMS, tDCS, or combined modalities. The Tinnitus Handicap Inventory (THI) score improvement after 10 sessions of each neuromodulation was significantly greater in the personalized group than in the randomized group (p = 0.043), with no significant differences in tinnitus loudness, distress, or awareness. The treatment success rate was highest in the personalized responder subgroup (92.3%), and significantly greater than that in the non-responder subgroup (53.0%; p = 0.042) and the randomized group (56.7%; p = 0.033). Personalized neuromodulation, where the treatment modality is chosen based on the patient's responses in a pilot trial, is an advantageous strategy for treating tinnitus.
Collapse
Affiliation(s)
| | | | | | | | - Hyun Joon Shim
- Department of Otorhinolaryngology-Head and Neck Surgery, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul 01830, Republic of Korea; (S.Y.J.); (J.H.C.); (S.S.K.); (Y.-H.A.)
| |
Collapse
|
3
|
Comparison of Treatment Outcome between Repetitive Transcranial Magnetic Stimulation (rTMS) and Transcutaneous Direct Current Stimulation (tDCS) in Intractable Tinnitus. J Clin Med 2021; 10:jcm10040635. [PMID: 33562396 PMCID: PMC7916028 DOI: 10.3390/jcm10040635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) and transcutaneous direct current stimulation (tDCS) are non-invasive treatments for chronic tinnitus based on neuromodulation of cortical activity. Both are considered effective, but with heterogeneous results due to lack of established protocols. Because the target groups for both modalities overlap, it is difficult to recommend one of them. We tried to unify the inclusion criteria and treatment schedules to compare the two modalities. The medical charts of 36 patients who underwent rTMS as part of clinical routine were reviewed and data for 34 patients who underwent tDCS about 7 years later were collected prospectively. Both groups had chronic unilateral tinnitus refractory to medication. Patients were treated for 5 consecutive days, and tinnitus symptoms were evaluated by survey both at the end of the treatment schedule and 1 month after the treatment. The ratio of responders who showed >20% reduction in tinnitus handicap inventory scores were compared. At the end of the treatment, the rTMS group showed a rapid response compared to the tDCS group (rTMS, 30.6%; tDCS, 12.1%; p = 0.054). However, both groups showed a significant and similar reduction in tinnitus symptoms 1 month after the treatment (rTMS, 47.2%; tDCS, 36.4%; p = 0.618). As both groups showed comparable results for tinnitus reduction, tDCS may be superior in terms of cost-effectiveness.
Collapse
|
4
|
Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, Filipović SR, Grefkes C, Hasan A, Hummel FC, Jääskeläinen SK, Langguth B, Leocani L, Londero A, Nardone R, Nguyen JP, Nyffeler T, Oliveira-Maia AJ, Oliviero A, Padberg F, Palm U, Paulus W, Poulet E, Quartarone A, Rachid F, Rektorová I, Rossi S, Sahlsten H, Schecklmann M, Szekely D, Ziemann U. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin Neurophysiol 2020; 131:474-528. [PMID: 31901449 DOI: 10.1016/j.clinph.2019.11.002] [Citation(s) in RCA: 1073] [Impact Index Per Article: 214.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/21/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023]
Abstract
A group of European experts reappraised the guidelines on the therapeutic efficacy of repetitive transcranial magnetic stimulation (rTMS) previously published in 2014 [Lefaucheur et al., Clin Neurophysiol 2014;125:2150-206]. These updated recommendations take into account all rTMS publications, including data prior to 2014, as well as currently reviewed literature until the end of 2018. Level A evidence (definite efficacy) was reached for: high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the painful side for neuropathic pain; HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC) using a figure-of-8 or a H1-coil for depression; low-frequency (LF) rTMS of contralesional M1 for hand motor recovery in the post-acute stage of stroke. Level B evidence (probable efficacy) was reached for: HF-rTMS of the left M1 or DLPFC for improving quality of life or pain, respectively, in fibromyalgia; HF-rTMS of bilateral M1 regions or the left DLPFC for improving motor impairment or depression, respectively, in Parkinson's disease; HF-rTMS of ipsilesional M1 for promoting motor recovery at the post-acute stage of stroke; intermittent theta burst stimulation targeted to the leg motor cortex for lower limb spasticity in multiple sclerosis; HF-rTMS of the right DLPFC in posttraumatic stress disorder; LF-rTMS of the right inferior frontal gyrus in chronic post-stroke non-fluent aphasia; LF-rTMS of the right DLPFC in depression; and bihemispheric stimulation of the DLPFC combining right-sided LF-rTMS (or continuous theta burst stimulation) and left-sided HF-rTMS (or intermittent theta burst stimulation) in depression. Level A/B evidence is not reached concerning efficacy of rTMS in any other condition. The current recommendations are based on the differences reached in therapeutic efficacy of real vs. sham rTMS protocols, replicated in a sufficient number of independent studies. This does not mean that the benefit produced by rTMS inevitably reaches a level of clinical relevance.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France.
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - David H Benninger
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Jérôme Brunelin
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Saša R Filipović
- Department of Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Christian Grefkes
- Department of Neurology, Cologne University Hospital, Cologne, Germany; Institute of Neurosciences and Medicine (INM3), Jülich Research Centre, Jülich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Friedhelm C Hummel
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Swiss Federal Institute of Technology (EPFL) Valais and Clinique Romande de Réadaptation, Sion, Switzerland; Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Turku University Hospital and University of Turku, Turku, Finland
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Letizia Leocani
- Department of Neurorehabilitation and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele, University Vita-Salute San Raffaele, Milan, Italy
| | - Alain Londero
- Department of Otorhinolaryngology - Head and Neck Surgery, Université Paris Descartes Sorbonne Paris Cité, Hôpital Européen Georges Pompidou, Paris, France
| | - Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy; Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria; Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Jean-Paul Nguyen
- Multidisciplinary Pain Center, Clinique Bretéché, ELSAN, Nantes, France; Multidisciplinary Pain, Palliative and Supportive Care Center, UIC22-CAT2-EA3826, University Hospital, CHU Nord-Laënnec, Nantes, France
| | - Thomas Nyffeler
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Perception and Eye Movement Laboratory, Department of Neurology, University of Bern, Bern, Switzerland; Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Albino J Oliveira-Maia
- Champalimaud Research & Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal; Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal; NOVA Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; Medical Park Chiemseeblick, Bernau, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Emmanuel Poulet
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France; Department of Emergency Psychiatry, Edouard Herriot Hospital, Groupement Hospitalier Centre, Hospices Civils de Lyon, Lyon, France
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience, Si-BIN Lab Human Physiology Section, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Hanna Sahlsten
- ENT Clinic, Mehiläinen and University of Turku, Turku, Finland
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - David Szekely
- Department of Psychiatry, Princess Grace Hospital, Monaco
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
5
|
Steady-state auditory evoked fields reflect long-term effects of repetitive transcranial magnetic stimulation in tinnitus. Clin Neurophysiol 2019; 130:1665-1672. [DOI: 10.1016/j.clinph.2019.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/02/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
|
6
|
Schoisswohl S, Agrawal K, Simoes J, Neff P, Schlee W, Langguth B, Schecklmann M. RTMS parameters in tinnitus trials: a systematic review. Sci Rep 2019; 9:12190. [PMID: 31434985 PMCID: PMC6704094 DOI: 10.1038/s41598-019-48750-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past few years extensive body of research was produced investigating the effects of repetitive transcranial magnetic stimulation (rTMS) for the treatment of chronic tinnitus with heterogeneous results. This heterogeneity is exemplified by two recently published large-scale clinical trials reporting different outcomes. Technical aspects of rTMS were suspected as a potential source for this incongruency. The aim of this systematic review is to examine the overall efficacy as well as to identify possible technical factors relevant for the effectiveness of rTMS tinnitus trials. Via a literature search appropriate original research papers were identified and rTMS parameters were extracted from each study arm for subsequent statistical analysis with respect to observed effects (significant vs. not significant pre-post rTMS effects). Our findings indicate that verum rTMS is superior to sham rTMS as demonstrated by the proportion of significant pre-post contrasts. Some relevant rTMS parameters (e.g., pulse waveform) are not reported. Lower rTMS stimulation intensity was associated with significant effects in verum rTMS arms. An additional stimulation of the DLPFC to the temporal cortex was not found to promote efficacy. Future research should consider differential effects of rTMS induced by technical parameters and strive for an exhaustive reporting of relevant rTMS parameters.
Collapse
Affiliation(s)
- Stefan Schoisswohl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.
- European School for Interdisciplinary Tinnitus Research (ESIT), Regensburg, Germany.
| | - Kushal Agrawal
- Institute of Databases and Information Systems, University of Ulm, Ulm, Germany
- European School for Interdisciplinary Tinnitus Research (ESIT), Regensburg, Germany
| | - Jorge Simoes
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- European School for Interdisciplinary Tinnitus Research (ESIT), Regensburg, Germany
| | - Patrick Neff
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Zurich, Switzerland
| | - Winfried Schlee
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- European School for Interdisciplinary Tinnitus Research (ESIT), Regensburg, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- European School for Interdisciplinary Tinnitus Research (ESIT), Regensburg, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- European School for Interdisciplinary Tinnitus Research (ESIT), Regensburg, Germany
| |
Collapse
|
7
|
Londero A, Bonfils P, Lefaucheur J. Transcranial magnetic stimulation and subjective tinnitus. A review of the literature, 2014–2016. Eur Ann Otorhinolaryngol Head Neck Dis 2018; 135:51-58. [DOI: 10.1016/j.anorl.2017.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Clinical characteristics of patients with tinnitus evaluated with the Tinnitus Sample Case History Questionnaire in Japan: A case series. PLoS One 2017; 12:e0180609. [PMID: 28841656 PMCID: PMC5571926 DOI: 10.1371/journal.pone.0180609] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
Background The Tinnitus Sample Case History Questionnaire was determined as a standardized questionnaire for obtaining patient case histories and for characterizing patients into subgroups at the Tinnitus Research Initiative in 2006. In this study, we developed a Japanese version of this questionnaire for evaluating the clinical characteristics of patients with tinnitus. The Japanese version of the questionnaire will be available for evaluating treatments for tinnitus and for comparing data on tinnitus in research centers. Aims/Objectives To evaluate the clinical characteristics of patients with tinnitus in Japan using a newly developed Japanese version of Tinnitus Sample Case History Questionnaire. Study design This was a prospective study based on patient records. Setting University hospitals, general hospitals, and clinics. Subjects and methods We collected patient data using a Japanese translated version of the Tinnitus Sample Case History Questionnaire. In total, 584 patients who visited our institutions in Japan between August 2012 and March 2014 were included (280 males and 304 females; age 13–92 years; mean age, 60.8). We examined patients after dividing them into two groups according to the presence or absence of hyperacusis. The collected results were compared with those from the Tinnitus Research Initiative database. Results Compared with the TRI database, there were significantly more elderly female patients and fewer patients with trauma-associated tinnitus. There was a statistically lower ratio of patients with hyperacusis. We found that patients with tinnitus in addition to hyperacusis had greater tinnitus severity and exhibited higher rates of various complications. Conclusion The Japanese version of the Tinnitus Sample Case History Questionnaire developed in this study can be a useful tool for evaluating patients with tinnitus in Japan. The results of this multicenter study reflect the characteristics of patients with tinnitus who require medical care in Japan. Our data provides a preliminary basis for an international comparison of tinnitus epidemiology.
Collapse
|
9
|
Mahboubi H, Haidar YM, Kiumehr S, Ziai K, Djalilian HR. Customized Versus Noncustomized Sound Therapy for Treatment of Tinnitus: A Randomized Crossover Clinical Trial. Ann Otol Rhinol Laryngol 2017; 126:681-687. [PMID: 28831839 DOI: 10.1177/0003489417725093] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To determine the effectiveness of a customized sound therapy and compare its effectiveness to that of masking with broadband noise. METHODS Subjects were randomized to receive either customized sound therapy or broadband noise for 2 hours per day for 3 months and then switched to the other treatment after a washout period. The outcome variables were tinnitus loudness (scored 0-10), Tinnitus Handicap Inventory (THI), Beck Anxiety Inventory (BAI), minimum masking levels (MML), and residual inhibition (RI). RESULTS Eighteen subjects completed the study. Mean age was 53 ± 11 years, and mean tinnitus duration was 118 ± 99 months. With customized sound therapy, mean loudness decreased from 6.4 ± 2.0 to 4.9 ± 1.9 ( P = .001), mean THI decreased from 42.8 ± 21.6 to 31.5 ± 20.3 ( P < .001), mean BAI decreased from 10.6 ± 10.9 to 8.3 ± 9.9 ( P = .01), and MML decreased from 22.3 ± 11.6 dB SL to 17.2 ± 10.6 dB SL ( P = .005). After 3 months of broadband noise therapy, only BAI and, to a lesser degree, MML decreased ( P = .003 and .04, respectively). CONCLUSIONS Customized sound therapy can decrease the loudness and THI scores of tinnitus patients, and the results may be superior to broadband noise.
Collapse
Affiliation(s)
- Hossein Mahboubi
- 1 Division of Neurotology and Skull Base Surgery, Department of Otolaryngology - Head and Neck Surgery, University of California, Irvine, CA, USA
| | - Yarah M Haidar
- 1 Division of Neurotology and Skull Base Surgery, Department of Otolaryngology - Head and Neck Surgery, University of California, Irvine, CA, USA
| | - Saman Kiumehr
- 1 Division of Neurotology and Skull Base Surgery, Department of Otolaryngology - Head and Neck Surgery, University of California, Irvine, CA, USA
| | - Kasra Ziai
- 1 Division of Neurotology and Skull Base Surgery, Department of Otolaryngology - Head and Neck Surgery, University of California, Irvine, CA, USA
| | - Hamid R Djalilian
- 1 Division of Neurotology and Skull Base Surgery, Department of Otolaryngology - Head and Neck Surgery, University of California, Irvine, CA, USA.,2 Department of Biomedical Engineering (HRD), University of California, Irvine, CA, USA
| |
Collapse
|
10
|
Electroacupuncture for Tinnitus: A Systematic Review. PLoS One 2016; 11:e0150600. [PMID: 26938213 PMCID: PMC4777560 DOI: 10.1371/journal.pone.0150600] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/17/2016] [Indexed: 11/19/2022] Open
Abstract
Background Treatment effects of electroacupuncture for patients with subjective tinnitus has yet to be clarified. Objectives To assess the effect of electroacupuncutre for alleviating the symptoms of subjective tinnitus. Methods Extensive literature searches were carried out in three English and four Chinese databases (PubMed, EMBASE, Cochrane Library, CNKI, Wanfang Chinese Digital Periodical and Conference Database, VIP, and ChiCTR).The date of the most recent search was 1 June 2014. Randomized controlled trials (RCTs) or quasi-RCTs were included. The titles, abstracts, and keywords of all records were reviewed by two authors independently. The data were collected and extracted by three authors. The risk of bias in the trials was assessed in accordance with the Cochrane Handbook, version 5.1.0. (http://www.handbook.cochrane.org). Eighty-nine studies were retrieved. After discarding 84 articles, five studies with 322 participants were identified. Assessment of the methodological quality of the studies identified weaknesses in all five studies. All studies were judged as having a high risk of selection and performance bias. The attrition bias was high in four studies. Incompleteness bias was low in all studies. Reporting bias was unclear in all studies. Because of the limited number of trials included and the various types of interventions and outcomes, we were unable to conduct pooled analyses. Conclusions Due to the poor methodological quality of the primary studies and the small sample sizes, no convincing evidence that electroacupuncture is beneficial for treating tinnitus could be found. There is an urgent need for more high-quality trials with large sample sizes for the investigation of electroacupuncture treatment for tinnitus.
Collapse
|
11
|
Donaldson PH, Rinehart NJ, Enticott PG. Noninvasive stimulation of the temporoparietal junction: A systematic review. Neurosci Biobehav Rev 2015; 55:547-72. [DOI: 10.1016/j.neubiorev.2015.05.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 01/15/2023]
|
12
|
Arts RAGJ, George ELJ, Griessner A, Zierhofer C, Stokroos RJ. Tinnitus Suppression by Intracochlear Electrical Stimulation in Single-Sided Deafness: A Prospective Clinical Trial - Part I. Audiol Neurootol 2015; 20:294-313. [PMID: 26227468 DOI: 10.1159/000381936] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/28/2015] [Indexed: 11/19/2022] Open
Abstract
Cochlear implantation is a viable treatment option for tinnitus, but the underlying mechanism is yet unclear. Is the tinnitus suppression due to the reversal of the assumed maladaptive neuroplasticity or is it the shift in attention from the tinnitus to environmental sounds and therefore a reduced awareness that reduces tinnitus perception? In this prospective trial, 10 patients with single-sided deafness were fitted with a cochlear implant to investigate the effect of looped intracochlear electrical stimulation (i.e. stimulation that does not encode environmental sounds) on tinnitus, in an effort to find optimal stimulation parameters. Variables under investigation were: amplitude (perceived stimulus loudness), anatomical location inside the cochlea (electrode/electrodes), amplitude modulation, polarity (cathodic/anodic first biphasic stimulation) and stimulation rate. The results suggest that tinnitus can be reduced with looped electrical stimulation, in some cases even with inaudible stimuli. The optimal stimuli for tinnitus suppression appear to be subject specific. However, medium-to-loud stimuli suppress tinnitus significantly better than soft stimuli, which partly can be explained by the masking effect. Although the long-term effects on tinnitus would still have to be investigated and will be described in part II, intracochlear electrical stimulation seems a potential treatment option for tinnitus in this population.
Collapse
Affiliation(s)
- Remo A G J Arts
- Department of ENT/Head and Neck Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
13
|
Sahlsten H, Isohanni J, Haapaniemi J, Salonen J, Paavola J, Löyttyniemi E, Johansson R, Jääskeläinen SK. Electric field navigated transcranial magnetic stimulation for chronic tinnitus: A pilot study. Int J Audiol 2015; 54:899-909. [DOI: 10.3109/14992027.2015.1054041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Markovitz CD, Hogan PS, Wesen KA, Lim HH. Pairing broadband noise with cortical stimulation induces extensive suppression of ascending sensory activity. J Neural Eng 2015; 12:026006. [PMID: 25686163 PMCID: PMC4359690 DOI: 10.1088/1741-2560/12/2/026006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The corticofugal system can alter coding along the ascending sensory pathway. Within the auditory system, electrical stimulation of the auditory cortex (AC) paired with a pure tone can cause egocentric shifts in the tuning of auditory neurons, making them more sensitive to the pure tone frequency. Since tinnitus has been linked with hyperactivity across auditory neurons, we sought to develop a new neuromodulation approach that could suppress a wide range of neurons rather than enhance specific frequency-tuned neurons. APPROACH We performed experiments in the guinea pig to assess the effects of cortical stimulation paired with broadband noise (PN-Stim) on ascending auditory activity within the central nucleus of the inferior colliculus (CNIC), a widely studied region for AC stimulation paradigms. MAIN RESULTS All eight stimulated AC subregions induced extensive suppression of activity across the CNIC that was not possible with noise stimulation alone. This suppression built up over time and remained after the PN-Stim paradigm. SIGNIFICANCE We propose that the corticofugal system is designed to decrease the brain's input gain to irrelevant stimuli and PN-Stim is able to artificially amplify this effect to suppress neural firing across the auditory system. The PN-Stim concept may have potential for treating tinnitus and other neurological disorders.
Collapse
Affiliation(s)
- Craig D. Markovitz
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, MN USA
| | - Patrick S. Hogan
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, MN USA
| | - Kyle A. Wesen
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, MN USA
| | - Hubert H. Lim
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, MN USA
- University of Minnesota, Department of Otolaryngology-Head and Neck Surgery, Minneapolis, MN USA
- University of Minnesota, Institute for Translational Neuroscience, Minneapolis, MN USA
| |
Collapse
|
15
|
Deep brain stimulation in tinnitus: current and future perspectives. Brain Res 2015; 1608:51-65. [PMID: 25758066 DOI: 10.1016/j.brainres.2015.02.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 11/22/2022]
Abstract
Chronic tinnitus, also known as ringing in the ears, affects up to 15% of the adults and causes a serious socio-economic burden. At present, there is no treatment available which substantially reduces the perception of this phantom sound. In the past few years, preclinical and clinical studies have unraveled central mechanisms involved in the pathophysiology of tinnitus, replacing the classical periphery-based hypothesis. In subcortical auditory and non-auditory regions, increased spontaneous activity, neuronal bursting and synchrony were found. When reaching the auditory cortex, these neuronal alterations become perceptually relevant and consequently are perceived as phantom sound. A therapy with a potential to counteract deeply located pathological activity is deep brain stimulation, which has already been demonstrated to be effective in neurological diseases such as Parkinson's disease. In this review, several brain targets are discussed as possible targets for deep brain stimulation in tinnitus. The potential applicability of this treatment in tinnitus is discussed with examples from the preclinical field and clinical case studies.
Collapse
|